Olivier Moliner
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration
Olivier Moliner, Sangxia Huang, Kalle Åström
Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems
Abstract Slides Poster Similar
Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.