AttendAffectNet: Self-Attention Based Networks for Predicting Affective Responses from Movies

Thi Phuong Thao Ha, Bt Balamurali, Herremans Dorien, Roig Gemma

Responsive image

Auto-TLDR; AttendAffectNet: A Self-Attention Based Network for Emotion Prediction from Movies

Slides Poster

In this work, we propose different variants of the self-attention based network for emotion prediction from movies, which we call AttendAffectNet. We take both audio and video into account and incorporate the relation among multiple modalities by applying self-attention mechanism in a novel manner into the extracted features for emotion prediction. We compare it to the typically temporal integration of the self-attention based model, which in our case, allows to capture the relation of temporal representations of the movie while considering the sequential dependencies of emotion responses. We demonstrate the effectiveness of our proposed architectures on the extended COGNIMUSE dataset [1], [2] and the MediaEval 2016 Emotional Impact of Movies Task [3], which consist of movies with emotion annotations. Our results show that applying the self-attention mechanism on the different audio-visual features, rather than in the time domain, is more effective for emotion prediction. Our approach is also proven to outperform state-of-the-art models for emotion prediction.

Similar papers

Region-Based Non-Local Operation for Video Classification

Guoxi Huang, Adrian Bors

Responsive image

Auto-TLDR; Regional-based Non-Local Operation for Deep Self-Attention in Convolutional Neural Networks

Slides Poster Similar

Convolutional Neural Networks (CNNs) model long-range dependencies by deeply stacking convolution operations with small window sizes, which makes the optimizations difficult. This paper presents region-based non-local operation (RNL), a family of self-attention mechanisms, which can directly capture long-range dependencies without a deep stack of local operations. Given an intermediate feature map, our method recalibrates the feature at a position by aggregating information from the neighboring regions of all positions. By combining a channel attention module with the proposed RNL, we design an attention chain, which can be integrated into off-the-shelf CNNs for end-to-end training. We evaluate our method on two video classification benchmarks. The experimental result of our method outperforms other attention mechanisms, and we achieve state-of-the-art performance on Something-Something V1.

Context Matters: Self-Attention for Sign Language Recognition

Fares Ben Slimane, Mohamed Bouguessa

Responsive image

Auto-TLDR; Attentional Network for Continuous Sign Language Recognition

Slides Poster Similar

This paper proposes an attentional network for the task of Continuous Sign Language Recognition. The proposed approach exploits co-independent streams of data to model the sign language modalities. These different channels of information can share a complex temporal structure between each other. For that reason, we apply attention to synchronize and help capture entangled dependencies between the different sign language components. Even though Sign Language is multi-channel, handshapes represent the central entities in sign interpretation. Seeing handshapes in their correct context defines the meaning of a sign. Taking that into account, we utilize the attention mechanism to efficiently aggregate the hand features with their appropriate Spatio-temporal context for better sign recognition. We found that by doing so the model is able to identify the essential Sign Language components that revolve around the dominant hand and the face areas. We test our model on the benchmark dataset RWTH-PHOENIX-Weather 2014, yielding competitive results.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

End-To-End Triplet Loss Based Emotion Embedding System for Speech Emotion Recognition

Puneet Kumar, Sidharth Jain, Balasubramanian Raman, Partha Pratim Roy, Masakazu Iwamura

Responsive image

Auto-TLDR; End-to-End Neural Embedding System for Speech Emotion Recognition

Slides Poster Similar

In this paper, an end-to-end neural embedding system based on triplet loss and residual learning has been proposed for speech emotion recognition. The proposed system learns the embeddings from the emotional information of the speech utterances. The learned embeddings are used to recognize the emotions portrayed by given speech samples of various lengths. The proposed system implements Residual Neural Network architecture. It is trained using softmax pre-training and triplet loss function. The weights between the fully connected and embedding layers of the trained network are used to calculate the embedding values. The embedding representations of various emotions are mapped onto a hyperplane, and the angles among them are computed using the cosine similarity. These angles are utilized to classify a new speech sample into its appropriate emotion class. The proposed system has demonstrated 91.67\% and 64.44\% accuracy while recognizing emotions for RAVDESS and IEMOCAP dataset, respectively.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Attention-Driven Body Pose Encoding for Human Activity Recognition

Bappaditya Debnath, Swagat Kumar, Marry O'Brien, Ardhendu Behera

Responsive image

Auto-TLDR; Attention-based Body Pose Encoding for Human Activity Recognition

Slides Poster Similar

This article proposes a novel attention-based body pose encoding for human activity recognition. Most of the existing human activity recognition approaches based on 3D pose data often enrich the input data using additional handcrafted representations such as velocity, super normal vectors, pairwise relations, and so on. The enriched data complements the 3D body joint position data and improves the model performance. In this paper, we propose a novel approach that learns enhanced feature representations from a given sequence of 3D body joints. To achieve this, the approach exploits two body pose streams: 1) a spatial stream which encodes the spatial relationship between various body joints at each time point to learn spatial structure involving the spatial distribution of different body joints 2) a temporal stream that learns the temporal variation of individual body joints over the entire sequence duration to present a temporally enhanced representation. Afterwards, these two pose streams are fused with a multi-head attention mechanism. We also capture the contextual information from the RGB video stream using a deep Convolutional Neural Network (CNN) model combined with a multi-head attention and a bidirectional Long Short-Term Memory (LSTM) network. Finally, the RGB video stream is combined with the fused body pose stream to give a novel end-to-end deep model for effective human activity recognition. The proposed model is evaluated on three datasets including the challenging NTU-RGBD dataset and achieves state-of-the-art results.

Mutual Alignment between Audiovisual Features for End-To-End Audiovisual Speech Recognition

Hong Liu, Yawei Wang, Bing Yang

Responsive image

Auto-TLDR; Mutual Iterative Attention for Audio Visual Speech Recognition

Slides Poster Similar

Asynchronization issue caused by different types of modalities is one of the major problems in audio visual speech recognition (AVSR) research. However, most AVSR systems merely rely on up sampling of video or down sampling of audio to align audio and visual features, assuming that the feature sequences are aligned frame-by-frame. These pre-processing steps oversimplify the asynchrony relation between acoustic signal and lip motion, lacking flexibility and impairing the performance of the system. Although there are systems modeling the asynchrony between the modalities, sometimes they fail to align speech and video precisely in some even all noise conditions. In this paper, we propose a mutual feature alignment method for AVSR which can make full use of cross modility information to address the asynchronization issue by introducing Mutual Iterative Attention (MIA) mechanism. Our method can automatically learn an alignment in a mutual way by performing mutual attention iteratively between the audio and visual features, relying on the modified encoder structure of Transformer. Experimental results show that our proposed method obtains absolute improvements up to 20.42% over the audio modality alone depending upon the signal-to-noise-ratio (SNR) level. Better recognition performance can also be achieved comparing with the traditional feature concatenation method under both clean and noisy conditions. It is expectable that our proposed mutual feature alignment method can be easily generalized to other multimodal tasks with semantically correlated information.

Mood Detection Analyzing Lyrics and Audio Signal Based on Deep Learning Architectures

Konstantinos Pyrovolakis, Paraskevi Tzouveli, Giorgos Stamou

Responsive image

Auto-TLDR; Automated Music Mood Detection using Music Information Retrieval

Slides Poster Similar

Digital era has changed the way music is produced and propagated creating new needs for automated and more effective management of music tracks in big volumes. Automated music mood detection constitutes an active task in the field of MIR (Music Information Retrieval) and connected with many research papers in the past few years. In order to approach the task of mood detection, we faced separately the analysis of musical lyrics and the analysis of musical audio signal. Then we applied a uniform multichannel analysis to classify our data in mood classes. The available data we will use to train and evaluate our models consists of a total of 2.000 song titles, classified in four mood classes {happy, angry, sad, relaxed}. The result of this process leads to a uniform prediction for emotional arousal that a music track can cause to a listener and show the way to develop many applications.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

ESResNet: Environmental Sound Classification Based on Visual Domain Models

Andrey Guzhov, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Environmental Sound Classification with Short-Time Fourier Transform Spectrograms

Slides Poster Similar

Environmental Sound Classification (ESC) is an active research area in the audio domain and has seen a lot of progress in the past years. However, many of the existing approaches achieve high accuracy by relying on domain-specific features and architectures, making it harder to benefit from advances in other fields (e.g., the image domain). Additionally, some of the past successes have been attributed to a discrepancy of how results are evaluated (i.e., on unofficial splits of the UrbanSound8K (US8K) dataset), distorting the overall progression of the field. The contribution of this paper is twofold. First, we present a model that is inherently compatible with mono and stereo sound inputs. Our model is based on simple log-power Short-Time Fourier Transform (STFT) spectrograms and combines them with several well-known approaches from the image domain (i.e., ResNet, Siamese-like networks and attention). We investigate the influence of cross-domain pre-training, architectural changes, and evaluate our model on standard datasets. We find that our model out-performs all previously known approaches in a fair comparison by achieving accuracies of 97.0 % (ESC-10), 91.5 % (ESC-50) and 84.2 % / 85.4 % (US8K mono / stereo). Second, we provide a comprehensive overview of the actual state of the field, by differentiating several previously reported results on the US8K dataset between official or unofficial splits. For better reproducibility, our code (including any re-implementations) is made available.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Towards Practical Compressed Video Action Recognition: A Temporal Enhanced Multi-Stream Network

Bing Li, Longteng Kong, Dongming Zhang, Xiuguo Bao, Di Huang, Yunhong Wang

Responsive image

Auto-TLDR; TEMSN: Temporal Enhanced Multi-Stream Network for Compressed Video Action Recognition

Slides Poster Similar

Current compressed video action recognition methods are mainly based on completely received compressed videos. However, in real transmission, the compressed video packets are usually disorderly received and lost due to network jitters or congestion. It is of great significance to recognize actions in early phases with limited packets, e.g. forecasting the potential risks from videos quickly. In this paper, we proposed a Temporal Enhanced Multi-Stream Network (TEMSN) for practical compressed video action recognition. First, we use three compressed modalities as complementary cues and build a multi-stream network to capture the rich information from compressed video packets. Second, we design a temporal enhanced module based on Encoder-Decoder structure applied on each stream to infer the missing packets, and generate more complete action dynamics. Thanks to the rich modalities and temporal enhancement, our approach is able to better modeling the action with limited compressed packets. Experiments on HMDB-51 and UCF-101 dataset validate its effectiveness and efficiency.

Knowledge Distillation for Action Anticipation Via Label Smoothing

Guglielmo Camporese, Pasquale Coscia, Antonino Furnari, Giovanni Maria Farinella, Lamberto Ballan

Responsive image

Auto-TLDR; A Multi-Modal Framework for Action Anticipation using Long Short-Term Memory Networks

Slides Poster Similar

Human capability to anticipate near future from visual observations and non-verbal cues is essential for developing intelligent systems that need to interact with people. Several research areas, such as human-robot interaction (HRI), assisted living or autonomous driving need to foresee future events to avoid crashes or help people. Egocentric scenarios are classic examples where action anticipation is applied due to their numerous applications. Such challenging task demands to capture and model domain's hidden structure to reduce prediction uncertainty. Since multiple actions may equally occur in the future, we treat action anticipation as a multi-label problem with missing labels extending the concept of label smoothing. This idea resembles the knowledge distillation process since useful information is injected into the model during training. We implement a multi-modal framework based on long short-term memory (LSTM) networks to summarize past observations and make predictions at different time steps. We perform extensive experiments on EPIC-Kitchens and EGTEA Gaze+ datasets including more than 2500 and 100 action classes, respectively. The experiments show that label smoothing systematically improves performance of state-of-the-art models for action anticipation.

3D Attention Mechanism for Fine-Grained Classification of Table Tennis Strokes Using a Twin Spatio-Temporal Convolutional Neural Networks

Pierre-Etienne Martin, Jenny Benois-Pineau, Renaud Péteri, Julien Morlier

Responsive image

Auto-TLDR; Attentional Blocks for Action Recognition in Table Tennis Strokes

Slides Poster Similar

The paper addresses the problem of recognition of actions in video with low inter-class variability such as Table Tennis strokes. Two stream, "twin" convolutional neural networks are used with 3D convolutions both on RGB data and optical flow. Actions are recognized by classification of temporal windows. We introduce 3D attention modules and examine their impact on classification efficiency. In the context of the study of sportsmen performances, a corpus of the particular actions of table tennis strokes is considered. The use of attention blocks in the network speeds up the training step and improves the classification scores up to 5% with our twin model. We visualize the impact on the obtained features and notice correlation between attention and player movements and position. Score comparison of state-of-the-art action classification method and proposed approach with attentional blocks is performed on the corpus. Proposed model with attention blocks outperforms previous model without them and our baseline.

Audio-Based Near-Duplicate Video Retrieval with Audio Similarity Learning

Pavlos Avgoustinakis, Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Andreas L. Symeonidis, Ioannis Kompatsiaris

Responsive image

Auto-TLDR; AuSiL: Audio Similarity Learning for Near-duplicate Video Retrieval

Slides Poster Similar

In this work, we address the problem of audio-based near-duplicate video retrieval. We propose the Audio Similarity Learning (AuSiL) approach that effectively captures temporal patterns of audio similarity between video pairs. For the robust similarity calculation between two videos, we first extract representative audio-based video descriptors by leveraging transfer learning based on a Convolutional Neural Network (CNN) trained on a large scale dataset of audio events, and then we calculate the similarity matrix derived from the pairwise similarity of these descriptors. The similarity matrix is subsequently fed to a CNN network that captures the temporal structures existing within its content. We train our network following a triplet generation process and optimizing the triplet loss function. To evaluate the effectiveness of the proposed approach, we have manually annotated two publicly available video datasets based on the audio duplicity between their videos. The proposed approach achieves very competitive results compared to three state-of-the-art methods. Also, unlike the competing methods, it is very robust for the retrieval of audio duplicates generated with speed transformations.

Unsupervised Co-Segmentation for Athlete Movements and Live Commentaries Using Crossmodal Temporal Proximity

Yasunori Ohishi, Yuki Tanaka, Kunio Kashino

Responsive image

Auto-TLDR; A guided attention scheme for audio-visual co-segmentation

Slides Poster Similar

Audio-visual co-segmentation is a task to extract segments and regions corresponding to specific events on unlabelled audio and video signals. It is particularly important to accomplish it in an unsupervised way, since it is generally very difficult to manually label all the objects and events appearing in audio-visual signals for supervised learning. Here, we propose to take advantage of temporal proximity of corresponding audio and video entities included in the signals. For this purpose, we newly employ a guided attention scheme to this task to efficiently detect and utilize temporal cooccurrences of audio and video information. The experiments using a real TV broadcasting of Sumo wrestling, a sport event, with live commentaries show that our model can automatically extract specific athlete movements and its spoken descriptions in an unsupervised manner.

The Application of Capsule Neural Network Based CNN for Speech Emotion Recognition

Xincheng Wen, Kunhong Liu

Responsive image

Auto-TLDR; CapCNN: A Capsule Neural Network for Speech Emotion Recognition

Slides Poster Similar

Moreover, the abstraction of audio features makes it impossible to fully use the inherent relationship among audio features. This paper proposes a model that combines a convolutional neural network(CNN) and a capsule neural network (CapsNet), named as CapCNN. The advantage of CapCNN lies in that it provides a solution to solve time sensitivity and focus on the overall characteristics. In this study, it is found that CapCNN can well handle the speech emotion recognition task. Compared with other state-of-art methods, our algorithm shows high performances on the CASIA and EMODB datasets. The detailed analysis confirms that our method provides balanced results on the various classes.

Audio-Visual Speech Recognition Using a Two-Step Feature Fusion Strategy

Hong Liu, Wanlu Xu, Bing Yang

Responsive image

Auto-TLDR; A Two-Step Feature Fusion Network for Speech Recognition

Slides Poster Similar

Lip-reading methods and fusion strategy are crucial for audio-visual speech recognition. In recent years, most approaches involve two separate audio and visual streams with early or late fusion strategies. Such a single-stage fusion method may fail to guarantee the integrity and representativeness of fusion information simultaneously. This paper extends a traditional single-stage fusion network to a two-step feature fusion network by adding an audio-visual early feature fusion (AV-EFF) stream to the baseline model. This method can learn the fusion information of different stages, preserving the original features as much as possible and ensuring the independence of different features. Besides, to capture long-range dependencies of video information, a non-local block is added to the feature extraction part of the visual stream (NL-Visual) to obtain the long-term spatio-temporal features. Experimental results on the two largest public datasets in English (LRW) and Mandarin (LRW-1000) demonstrate our method is superior to other state-of-the-art methods.

Visual Oriented Encoder: Integrating Multimodal and Multi-Scale Contexts for Video Captioning

Bang Yang, Yuexian Zou

Responsive image

Auto-TLDR; Visual Oriented Encoder for Video Captioning

Slides Poster Similar

Video captioning is a challenging task which aims at automatically generating a natural language description of a given video. Recent researches have shown that exploiting the intrinsic multi-modalities of videos significantly promotes captioning performance. However, how to integrate multi-modalities to generate effective semantic representations for video captioning is still an open issue. Some researchers proposed to learn multimodal features in parallel during the encoding stage. The downside of these methods lies in the neglect of the interaction among multi-modalities and their rich contextual information. In this study, inspired by the fact that visual contents are generally more important for comprehending videos, we propose a novel Visual Oriented Encoder (VOE) to integrate multimodal features in an interactive manner. Specifically, VOE is designed as a hierarchical structure, where bottom layers are utilized to extract multi-scale contexts from auxiliary modalities while the top layer is exploited to generate joint representations by considering both visual and contextual information. Following the encoder-decoder framework, we systematically develop a VOE-LSTM model and evaluate it on two mainstream benchmarks: MSVD and MSR-VTT. Experimental results show that the proposed VOE surpasses conventional encoders and our VOE-LSTM model achieves competitive results compared with state-of-the-art approaches.

Attention-Based Deep Metric Learning for Near-Duplicate Video Retrieval

Kuan-Hsun Wang, Chia Chun Cheng, Yi-Ling Chen, Yale Song, Shang-Hong Lai

Responsive image

Auto-TLDR; Attention-based Deep Metric Learning for Near-duplicate Video Retrieval

Slides Similar

Near-duplicate video retrieval (NDVR) is an important and challenging problem due to the increasing amount of videos uploaded to the Internet. In this paper, we propose an attention-based deep metric learning method for NDVR. Our method is based on well-established principles: We leverage two-stream networks to combine RGB and optical flow features, and incorporate an attention module to effectively deal with distractor frames commonly observed in near duplicate videos. We further aggregate the features corresponding to multiple video segments to enhance the discriminative power. The whole system is trained using a deep metric learning objective with a Siamese architecture. Our experiments show that the attention module helps eliminate redundant and noisy frames, while focusing on visually relevant frames for solving NVDR. We evaluate our approach on recent large-scale NDVR datasets, CC_WEB_VIDEO, VCDB, FIVR and SVD. To demonstrate the generalization ability of our approach, we report results in both within- and cross-dataset settings, and show that the proposed method significantly outperforms state-of-the-art approaches.

The Effect of Spectrogram Reconstruction on Automatic Music Transcription: An Alternative Approach to Improve Transcription Accuracy

Kin Wai Cheuk, Yin-Jyun Luo, Emmanouil Benetos, Herremans Dorien

Responsive image

Auto-TLDR; Exploring the effect of spectrogram reconstruction loss on automatic music transcription

Slides Similar

Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then concatenated together and used as the input to train another model with the pitch labels to obtain the final transcription. We attempt to use only the pitch labels (together with spectrogram reconstruction loss) and explore how far this model can go without introducing supervised sub-tasks. In this paper, we do not aim at achieving state-of-the-art transcription accuracy, instead, we explore the effect that spectrogram reconstruction has on our AMT model. Our proposed model consists of two U-nets: the first U-net transcribes the spectrogram into a posteriorgram, and a second U-net transforms the posteriorgram back into a spectrogram. A reconstruction loss is applied between the original spectrogram and the reconstructed spectrogram to constrain the second U-net to focus only on reconstruction. We train our model on different datasets including MAPS, MAESTRO, and MusicNet. Our experiments show that adding the reconstruction loss can generally improve the note-level transcription accuracy when compared to the same model without the reconstruction part. Moreover, it can also boost the frame-level precision to be higher than the state-of-the-art models. The feature maps learned by our u-net contain gridlike structures (not present in the baseline model) which implies that with the present of reconstruction loss, the model is probably trying to count along both the time and frequency axis, resulting in a higher note-level transcription accuracy.

MFI: Multi-Range Feature Interchange for Video Action Recognition

Sikai Bai, Qi Wang, Xuelong Li

Responsive image

Auto-TLDR; Multi-range Feature Interchange Network for Action Recognition in Videos

Slides Poster Similar

Short-range motion features and long-range dependencies are two complementary and vital cues for action recognition in videos, but it remains unclear how to efficiently and effectively extract these two features. In this paper, we propose a novel network to capture these two features in a unified 2D framework. Specifically, we first construct a Short-range Temporal Interchange (STI) block, which contains a Channels-wise Temporal Interchange (CTI) module for encoding short-range motion features. Then a Graph-based Regional Interchange (GRI) module is built to present long-range dependencies using graph convolution. Finally, we replace original bottleneck blocks in the ResNet with STI blocks and insert several GRI modules between STI blocks, to form a Multi-range Feature Interchange (MFI) Network. Practically, extensive experiments are conducted on three action recognition datasets (i.e., Something-Something V1, HMDB51, and UCF101), which demonstrate that the proposed MFI network achieves impressive results with very limited computing cost.

RMS-Net: Regression and Masking for Soccer Event Spotting

Matteo Tomei, Lorenzo Baraldi, Simone Calderara, Simone Bronzin, Rita Cucchiara

Responsive image

Auto-TLDR; An Action Spotting Network for Soccer Videos

Slides Poster Similar

The recently proposed action spotting task consists in finding the exact timestamp in which an event occurs. This task fits particularly well for soccer videos, where events correspond to salient actions strictly defined by soccer rules (a goal occurs when the ball crosses the goal line). In this paper, we devise a lightweight and modular network for action spotting, which can simultaneously predict the event label and its temporal offset using the same underlying features. We enrich our model with two training strategies: the first one for data balancing and uniform sampling, the second for masking ambiguous frames and keeping the most discriminative visual cues. When tested on the SoccerNet dataset and using standard features, our full proposal exceeds the current state of the art by 3 Average-mAP points. Additionally, it reaches a gain of more than 10 Average-mAP points on the test set when fine-tuned in combination with a strong 2D backbone.

Automatic Annotation of Corpora for Emotion Recognition through Facial Expressions Analysis

Alex Mircoli, Claudia Diamantini, Domenico Potena, Emanuele Storti

Responsive image

Auto-TLDR; Automatic annotation of video subtitles on the basis of facial expressions using machine learning algorithms

Slides Poster Similar

The recent diffusion of social networks has made available an unprecedented amount of user-generated content, which may be analyzed in order to determine people's opinions and emotions about a large variety of topics. Research has made many efforts in defining accurate algorithms for analyzing emotions expressed by users in texts; however, their performance often rely on the existence of large annotated datasets, whose current scarcity represents a major issue. The manual creation of such datasets represents a costly and time-consuming activity and hence there is an increasing demand for techniques for the automatic annotation of corpora. In this work we present a methodology for the automatic annotation of video subtitles on the basis of the analysis of facial expressions of people in videos, with the goal of creating annotated corpora that may be used to train emotion recognition algorithms. Facial expressions are analyzed through machine learning algorithms, on the basis of a set of manually-engineered facial features that are extracted from video frames. The soundness of the proposed methodology has been evaluated through an extensive experimentation aimed at determining the performance on real datasets of each methodological step.

Hierarchical Multimodal Attention for Deep Video Summarization

Melissa Sanabria, Frederic Precioso, Thomas Menguy

Responsive image

Auto-TLDR; Automatic Summarization of Professional Soccer Matches Using Event-Stream Data and Multi- Instance Learning

Slides Poster Similar

The way people consume sports on TV has drastically evolved in the last years, particularly under the combined effects of the legalization of sport betting and the huge increase of sport analytics. Several companies are nowadays sending observers in the stadiums to collect live data of all the events happening on the field during the match. Those data contain meaningful information providing a very detailed description of all the actions occurring during the match to feed the coaches and staff, the fans, the viewers, and the gamblers. Exploiting all these data, sport broadcasters want to generate extra content such as match highlights, match summaries, players and teams analytics, etc., to appeal subscribers. This paper explores the problem of summarizing professional soccer matches as automatically as possible using both the aforementioned event-stream data collected from the field and the content broadcasted on TV. We have designed an architecture, introducing first (1) a Multiple Instance Learning method that takes into account the sequential dependency among events and then (2) a hierarchical multimodal attention layer that grasps the importance of each event in an action. We evaluate our approach on matches from two professional European soccer leagues, showing its capability to identify the best actions for automatic summarization by comparing with real summaries made by human operators.

Video Representation Fusion Network For Multi-Label Movie Genre Classification

Tianyu Bi, Dmitri Jarnikov, Johan Lukkien

Responsive image

Auto-TLDR; A Video Representation Fusion Network for Movie Genre Classification

Slides Poster Similar

In this paper, we introduce a Video Representation Fusion Network (VRFN) for movie genre classification. Different from the previous works, which use frame-level features for movie genre classification, our approach uses video classification architecture to create video-level features from a group of frames and fuse these features temporally to learn long-term spatiotemporal information for the movie genre classification task. We use a pre-trained I3D model to generate intermediate video representations and connect it with a C3D-LSTM model for feature fusion and movie genre classification. LMTD-9 dataset which contains 4007 trailers multi-labeled with 9 movie genres is used for training and evaluation of the model. The experimental results demonstrate that learning long-term temporal dependencies by fusing video representations improves the performance in movie genre classification. Our best model outperforms the state-of-the-art methods by 3.4% improvement in AUPRC (macro).

Learnable Higher-Order Representation for Action Recognition

Jie Shao, Xiangyang Xue

Responsive image

Auto-TLDR; Learningable Higher-Order Operations for Spatiotemporal Dynamics in Video Recognition

Similar

Capturing spatiotemporal dynamics is an essential topic in video recognition. In this paper, we present learnable higher-order operations as a generic family of building blocks for capturing spatiotemporal dynamics from RGB input video space. Similar to higher-order functions, the weights of higher-order operations are themselves derived from the data with learnable parameters. Classical architectures such as residual learning and network-in-network are first-order operations where weights are directly learned from the data. Higher-order operations make it easier to capture context-sensitive patterns, such as motion. Self-attention models are also higher-order operations, but the attention weights are mostly computed from an affine operation or dot product. The learnable higher-order operations can be more generic and flexible. Experimentally, we show that on the task of video recognition, our higher-order models can achieve results on par with or better than the existing state-of-the-art methods on Something-Something (V1 and V2), Kinetics and Charades datasets.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Nina Weng, Jiahao Wang, Annan Li, Yunhong Wang

Responsive image

Auto-TLDR; 2S-TCN: A Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Slides Poster Similar

In the field of facial attractiveness prediction, while deep models using static pictures have shown promising results, little attention is paid to dynamic facial information, which is proven to be influential by psychological studies. Meanwhile, the increasing popularity of short video apps creates an enormous demand of facial attractiveness prediction from short video clips. In this paper, we target on the dynamic facial attractiveness prediction problem. To begin with, a large-scale video-based facial attractiveness prediction dataset (VFAP) with more than one thousand clips from TikTok is collected. A two-stream temporal convolutional network (2S-TCN) is then proposed to capture dynamic attractiveness feature from both facial appearance and landmarks. We employ attentive feature enhancement along with specially designed modality and temporal fusion strategies to better explore the temporal dynamics. Extensive experiments on the proposed VFAP dataset demonstrate that 2S-TCN has a distinct advantage over the state-of-the-art static prediction methods.

Self-Supervised Learning of Dynamic Representations for Static Images

Siyang Song, Enrique Sanchez, Linlin Shen, Michel Valstar

Responsive image

Auto-TLDR; Facial Action Unit Intensity Estimation and Affect Estimation from Still Images with Multiple Temporal Scale

Slides Poster Similar

Facial actions are spatio-temporal signals by nature, and therefore their modeling is crucially dependent on the availability of temporal information. In this paper, we focus on inferring such temporal dynamics of facial actions when no explicit temporal information is available, i.e. from still images. We present a novel approach to capture multiple scales of such temporal dynamics, with an application to facial Action Unit (AU) intensity estimation and dimensional affect estimation. In particular, 1) we propose a framework that infers a dynamic representation (DR) from a still image, which captures the bi-directional flow of time within a short time-window centered at the input image; 2) we show that we can train our method without the need of explicitly generating target representations, allowing the network to represent dynamics more broadly; and 3) we propose to apply a multiple temporal scale approach that infers DRs for different window lengths (MDR) from a still image. We empirically validate the value of our approach on the task of frame ranking, and show how our proposed MDR attains state of the art results on BP4D for AU intensity estimation and on SEMAINE for dimensional affect estimation, using only still images at test time.

Continuous Sign Language Recognition with Iterative Spatiotemporal Fine-Tuning

Kenessary Koishybay, Medet Mukushev, Anara Sandygulova

Responsive image

Auto-TLDR; A Deep Neural Network for Continuous Sign Language Recognition with Iterative Gloss Recognition

Slides Poster Similar

This paper aims to develop a deep neural network for Continuous Sign Language Recognition (CSLR) with iterative Gloss Recognition (GR) fine-tuning. CSLR has been a popular research field in the last years and iterative optimization methods are well established. This paper introduces our proposed architecture involving Spatiotemporal feature-extraction model to segment useful ``gloss-unit" features and BiLSTM with CTC as a sequence model. Spatiotemporal Feature Extractor is used for both image features extraction and sequence length reduction. To this end, we compare different architectures for feature extraction and sequence model. In addition, we iteratively fine-tune feature extractor on gloss-unit video segments with alignments from the end2end model. During the iterative training, we use novel alignment correction technique, which is based on minimum transformations of Levenshtein distance. All the experiments were conducted on the RWTH-PHOENIX-Weather-2014 dataset.

Responsive Social Smile: A Machine-Learning Based Multimodal Behavior Assessment Framework towards Early Stage Autism Screening

Yueran Pan, Kunjing Cai, Ming Cheng, Xiaobing Zou, Ming Li

Responsive image

Auto-TLDR; Responsive Social Smile: A Machine Learningbased Assessment Framework for Early ASD Screening

Poster Similar

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which causes social deficits in social lives. Early ASD screening for children is an important method to reduce the impact of ASD on people’s whole lives. Traditional screening methods rely on protocol experiments and subjective evaluations from clinicians and domain experts and thereby cost a lot. To standardize the process of ASD screening, we 1 collaborate with a group of ASD experts, and design a ”Responsive Social Smile” protocol and an experiment environment. Also, we propose a machine learningbased assessment framework for early ASD screening. By integrating technologies of speech recognition and computer vision, the framework can quantitatively analyze the behaviors of children under well-designed protocols. By collecting 196 test samples from 41 children in the clinical treatments, our proposed method obtains 85.20% accuracy for the score prediction of individual protocol, and 80.49% unweighted accuracy for the final ASD prediction. This result indicates that our model reaches the average level of domain experts in ASD diagnosis.

Single View Learning in Action Recognition

Gaurvi Goyal, Nicoletta Noceti, Francesca Odone

Responsive image

Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer

Slides Poster Similar

Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.

Exploring Spatial-Temporal Representations for fNIRS-based Intimacy Detection via an Attention-enhanced Cascade Convolutional Recurrent Neural Network

Chao Li, Qian Zhang, Ziping Zhao

Responsive image

Auto-TLDR; Intimate Relationship Prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network Using Functional Near-Infrared Spectroscopy

Slides Poster Similar

The detection of intimacy plays a crucial role in the improvement of intimate relationship, which contributes to promote the family and social harmony. Previous studies have shown that different degrees of intimacy have significant differences in brain imaging. Recently, a few of work has emerged to recognise intimacy automatically by using machine learning technique. Moreover, considering the temporal dynamic characteristics of intimacy relationship on neural mechanism, how to model spatio-temporal dynamics for intimacy prediction effectively is still a challenge. In this paper, we propose a novel method to explore deep spatial-temporal representations for intimacy prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network (ACCRNN). Given the advantages of time-frequency resolution in complex neuronal activities analysis, this paper utilizes functional near-infrared spectroscopy (fNIRS) to analyse and infer to intimate relationship. We collect a fNIRS-based dataset for the analysis of intimate relationship. Forty-two-channel fNIRS signals are recorded from the 44 subjects' prefrontal cortex when they watched a total of 18 photos of lovers, friends and strangers for 30 seconds per photo. The experimental results show that our proposed method outperforms the others in terms of accuracy with the precision of 96.5%. To the best of our knowledge, this is the first time that such a hybrid deep architecture has been employed for fNIRS-based intimacy prediction.

Which are the factors affecting the performance of audio surveillance systems?

Antonio Greco, Antonio Roberto, Alessia Saggese, Mario Vento

Responsive image

Auto-TLDR; Sound Event Recognition Using Convolutional Neural Networks and Visual Representations on MIVIA Audio Events

Slides Similar

Sound event recognition systems are rapidly becoming part of our life, since they can be profitably used in several vertical markets, ranging from audio security applications to scene classification and multi-modal analysis in social robotics. In the last years, a not negligible part of the scientific community started to apply Convolutional Neural Networks (CNNs) to image-based representations of the audio stream, due to their successful adoption in almost all the computer vision tasks. In this paper, we carry out a detailed benchmark of various widely used CNN architectures and visual representations on a popular dataset, namely the MIVIA Audio Events database. Our analysis is aimed at understanding how these factors affect the sound event recognition performance with a particular focus on the false positive rate, very relevant in audio surveillance solutions. In fact, although most of the proposed solutions achieve a high recognition rate, the capability of distinguishing the events-of-interest from the background is often not yet sufficient for real systems, and prevent its usage in real applications. Our comprehensive experimental analysis investigates this aspect and allows to identify useful design guidelines for increasing the specificity of sound event recognition systems.

Transformer Networks for Trajectory Forecasting

Francesco Giuliari, Hasan Irtiza, Marco Cristani, Fabio Galasso

Responsive image

Auto-TLDR; TransformerNetworks for Trajectory Prediction of People Interactions

Slides Poster Similar

Most recent successes on forecasting the people mo-tion are based on LSTM models andallmost recent progress hasbeen achieved by modelling the social interaction among peopleand the people interaction with the scene. We question the useof the LSTM models and propose the novel use of TransformerNetworks for trajectory forecasting. This is a fundamental switchfrom the sequential step-by-step processing of LSTMs to theonly-attention-based memory mechanisms of Transformers. Inparticular, we consider both the original Transformer Network(TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposedTransformers predict the trajectories of the individual peoplein the scene. These are “simple” models because each personis modelled separately without any complex human-human norscene interaction terms. In particular, the TF modelwithoutbells and whistlesyields the best score on the largest and mostchallenging trajectory forecasting benchmark of TrajNet [1]. Ad-ditionally, its extension which predicts multiple plausible futuretrajectories performs on par with more engineered techniqueson the 5 datasets of ETH [2]+UCY [3]. Finally, we showthat Transformers may deal with missing observations, as itmay be the case with real sensor data. Code is available atgithub.com/FGiuliari/Trajectory-Transformer

Hybrid Network for End-To-End Text-Independent Speaker Identification

Wajdi Ghezaiel, Luc Brun, Olivier Lezoray

Responsive image

Auto-TLDR; Text-Independent Speaker Identification with Scattering Wavelet Network and Convolutional Neural Networks

Slides Poster Similar

Deep learning has recently improved the performance of Speaker Identification (SI) systems. Promising results have been obtained with Convolutional Neural Networks (CNNs). This success are mostly driven by the advent of large datasets. However in the context of commercial applications, collection of large amount of training data is not always possible. In addition, robustness of a SI system is adversely effected by short utterances. SI with only a few and short utterances is a challenging problem. Therefore, in this paper, we propose a novel text-independent speaker identification system. The proposed system can identify speakers by learning from only few training short utterances examples. To achieve this, we combine CNN with Scattering Wavelet Network. We propose a two-stage feature extraction framework using a two-layer wavelet scattering network coupled with a CNN for SI system. The proposed architecture takes variable length speech segments. To evaluate the effectiveness of the proposed approach, Timit and Librispeech datasets are used in the experiments. These conducted experiments show that our hybrid architecture performs successfully for SI, even with a small number and short duration of training samples. In comparaison with related methods, the obtained results shows that an hybrid architecture achieve better performance.

Let's Play Music: Audio-Driven Performance Video Generation

Hao Zhu, Yi Li, Feixia Zhu, Aihua Zheng, Ran He

Responsive image

Auto-TLDR; APVG: Audio-driven Performance Video Generation Using Structured Temporal UNet

Slides Poster Similar

We propose a new task named Audio-driven Performance Video Generation (APVG), which aims to synthesize the video of a person playing a certain instrument guided by a given music audio clip. It is a challenging task to generate the high-dimensional temporal consistent videos from low-dimensional audio modality. In this paper, we propose a multi-staged framework to achieve this new task to generate realistic and synchronized performance video from given music. Firstly, we provide both global appearance and local spatial information by generating the coarse videos and keypoints of body and hands from a given music respectively. Then, we propose to transform the generated keypoints to heatmap via a differentiable space transformer, since the heatmap offers more spatial information but is harder to generate directly from audio. Finally, we propose a Structured Temporal UNet (STU) to extract both intra-frame structured information and inter-frame temporal consistency. They are obtained via graph-based structure module, and CNN-GRU based high-level temporal module respectively for final video generation. Comprehensive experiments validate the effectiveness of our proposed framework.

A Novel Attention-Based Aggregation Function to Combine Vision and Language

Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara

Responsive image

Auto-TLDR; Fully-Attentive Reduction for Vision and Language

Slides Poster Similar

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

TinyVIRAT: Low-Resolution Video Action Recognition

Ugur Demir, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; TinyVIRAT: A Progressive Generative Approach for Action Recognition in Videos

Slides Poster Similar

The existing research in action recognition is mostly focused on high-quality videos where the action is distinctly visible. In real-world surveillance environments, the actions in videos are captured at a wide range of resolutions. Most activities occur at a distance with a small resolution and recognizing such activities is a challenging problem. In this work, we focus on recognizing tiny actions in videos. We introduce a benchmark dataset, TinyVIRAT, which contains natural low-resolution activities. The actions in TinyVIRAT videos have multiple labels and they are extracted from surveillance videos which makes them realistic and more challenging. We propose a novel method for recognizing tiny actions in videos which utilizes a progressive generative approach to improve the quality of low-resolution actions. The proposed method also consists of a weakly trained attention mechanism which helps in focusing on the activity regions in the video. We perform extensive experiments to benchmark the proposed TinyVIRAT dataset and observe that the proposed method significantly improves the action recognition performance over baselines. We also evaluate the proposed approach on synthetically resized action recognition datasets and achieve state-of-the-art results when compared with existing methods. The dataset and code will be publicly available.

Global Feature Aggregation for Accident Anticipation

Mishal Fatima, Umar Karim Khan, Chong Min Kyung

Responsive image

Auto-TLDR; Feature Aggregation for Predicting Accidents in Video Sequences

Slides Similar

Anticipation of accidents ahead of time in autonomous and non-autonomous vehicles aids in accident avoidance. In order to recognize abnormal events such as traffic accidents in a video sequence, it is important that the network takes into account interactions of objects in a given frame. We propose a novel Feature Aggregation (FA) block that refines each object's features by computing a weighted sum of the features of all objects in a frame. We use FA block along with Long Short Term Memory (LSTM) network to anticipate accidents in the video sequences. We report mean Average Precision (mAP) and Average Time-to-Accident (ATTA) on Street Accident (SA) dataset. Our proposed method achieves the highest score for risk anticipation by predicting accidents 0.32 sec and 0.75 sec earlier compared to the best results with Adaptive Loss and dynamic parameter prediction based methods respectively.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Facial Expression Recognition Using Residual Masking Network

Luan Pham, Vu Huynh, Tuan Anh Tran

Responsive image

Auto-TLDR; Deep Residual Masking for Automatic Facial Expression Recognition

Slides Poster Similar

Automatic facial expression recognition (FER) has gained much attention due to its applications in human-computer interaction. Among the approaches to improve FER tasks, this paper focuses on deep architecture with the attention mechanism. We propose a novel Masking idea to boost the performance of CNN in facial expression task. It uses a segmentation network to refine feature maps, enabling the network to focus on relevant information to make correct decisions. In experiments, we combine the ubiquitous Deep Residual Network and Unet-like architecture to produce a Residual Masking Network. The proposed method holds state-of-the-art (SOTA) accuracy on the well-known FER2013 and private VEMO datasets. Our works are available on Github.

Global Context-Based Network with Transformer for Image2latex

Nuo Pang, Chun Yang, Xiaobin Zhu, Jixuan Li, Xu-Cheng Yin

Responsive image

Auto-TLDR; Image2latex with Global Context block and Transformer

Slides Poster Similar

Image2latex usually means converts mathematical formulas in images into latex markup. It is a very challenging job due to the complex two-dimensional structure, variant scales of input, and very long representation sequence. Many researchers use encoder-decoder based model to solve this task and achieved good results. However, these methods don't make full use of the structure and position information of the formula. %In this paper, we improve the encoder by employing Global Context block and Transformer. To solve this problem, we propose a global context-based network with transformer that can (1) learn a more powerful and robust intermediate representation via aggregating global features and (2) encode position information explicitly and (3) learn latent dependencies between symbols by using self-attention mechanism. The experimental results on the dataset IM2LATEX-100K demonstrate the effectiveness of our method.

DenseRecognition of Spoken Languages

Jaybrata Chakraborty, Bappaditya Chakraborty, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; DenseNet: A Dense Convolutional Network Architecture for Speech Recognition in Indian Languages

Slides Poster Similar

In the present study, we have, for the first time, con- sidered a large number of Indian languages for recog- nition from their audio signals of different sources. A dense convolutional network architecture (DenseNet) has been proposed for this classification problem. Dy- namic elimination of low energy frames from the input speech signal has been considered as a preprocessing operation. Mel-spectrogram of pre-processed speech signal is fed to a DenseNet architecture for recogni- tion of its language. Recognition performance of the proposed architecture has been compared with that of several state-of-the-art deep architectures which include a traditional convolutional neural network (CNN), multiple ResNet architectures, CNN-BLSTM and DenseNet-BLSTM hybrid architectures. Addition- ally, we obtained recognition performances of a stacked BLSTM architecture fed with different sets of hand- crafted features for comparison purpose. Simulations have been performed on two different standard datasets which include (i) IITKGP-MLILSC dataset of news clips in 27 different Indian languages and (ii) Linguistic Data Consortium (LDC) dataset of telephonic conver- sations in 5 different Indian languages. Recognition performance of the proposed framework has been found to be consistently and significantly better than all other frameworks implemented in this study.

Motion Complementary Network for Efficient Action Recognition

Ke Cheng, Yifan Zhang, Chenghua Li, Jian Cheng, Hanqing Lu

Responsive image

Auto-TLDR; Efficient Motion Complementary Network for Action Recognition

Slides Poster Similar

Both two-stream ConvNet and 3D ConvNet are widely used in action recognition. However, both methods are not efficient for deployment: calculating optical flow is very slow, while 3D convolution is computationally expensive. Our key insight is that the motion information from optical flow maps is complementary to the motion information from 3D ConvNet. Instead of simply combining these two methods, we propose two novel techniques to enhance the performance with less computational cost: \textit{fixed-motion-accumulation} and \textit{balanced-motion-policy}. With these two techniques, we propose a novel framework called Efficient Motion Complementary Network(EMC-Net) that enjoys both high efficiency and high performance. We conduct extensive experiments on Kinetics, UCF101, and Jester datasets. We achieve notably higher performance while consuming 4.7$\times$ less computation than I3D, 11.6$\times$ less computation than ECO, 17.8$\times$ less computation than R(2+1)D. On Kinetics dataset, we achieve 2.6\% better performance than the recent proposed TSM with 1.4$\times$ fewer FLOPs and 10ms faster on K80 GPU.