Which are the factors affecting the performance of audio surveillance systems?

Antonio Greco, Antonio Roberto, Alessia Saggese, Mario Vento

Responsive image

Auto-TLDR; Sound Event Recognition Using Convolutional Neural Networks and Visual Representations on MIVIA Audio Events

Slides

Sound event recognition systems are rapidly becoming part of our life, since they can be profitably used in several vertical markets, ranging from audio security applications to scene classification and multi-modal analysis in social robotics. In the last years, a not negligible part of the scientific community started to apply Convolutional Neural Networks (CNNs) to image-based representations of the audio stream, due to their successful adoption in almost all the computer vision tasks. In this paper, we carry out a detailed benchmark of various widely used CNN architectures and visual representations on a popular dataset, namely the MIVIA Audio Events database. Our analysis is aimed at understanding how these factors affect the sound event recognition performance with a particular focus on the false positive rate, very relevant in audio surveillance solutions. In fact, although most of the proposed solutions achieve a high recognition rate, the capability of distinguishing the events-of-interest from the background is often not yet sufficient for real systems, and prevent its usage in real applications. Our comprehensive experimental analysis investigates this aspect and allows to identify useful design guidelines for increasing the specificity of sound event recognition systems.

Similar papers

ESResNet: Environmental Sound Classification Based on Visual Domain Models

Andrey Guzhov, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Environmental Sound Classification with Short-Time Fourier Transform Spectrograms

Slides Poster Similar

Environmental Sound Classification (ESC) is an active research area in the audio domain and has seen a lot of progress in the past years. However, many of the existing approaches achieve high accuracy by relying on domain-specific features and architectures, making it harder to benefit from advances in other fields (e.g., the image domain). Additionally, some of the past successes have been attributed to a discrepancy of how results are evaluated (i.e., on unofficial splits of the UrbanSound8K (US8K) dataset), distorting the overall progression of the field. The contribution of this paper is twofold. First, we present a model that is inherently compatible with mono and stereo sound inputs. Our model is based on simple log-power Short-Time Fourier Transform (STFT) spectrograms and combines them with several well-known approaches from the image domain (i.e., ResNet, Siamese-like networks and attention). We investigate the influence of cross-domain pre-training, architectural changes, and evaluate our model on standard datasets. We find that our model out-performs all previously known approaches in a fair comparison by achieving accuracies of 97.0 % (ESC-10), 91.5 % (ESC-50) and 84.2 % / 85.4 % (US8K mono / stereo). Second, we provide a comprehensive overview of the actual state of the field, by differentiating several previously reported results on the US8K dataset between official or unofficial splits. For better reproducibility, our code (including any re-implementations) is made available.

Ballroom Dance Recognition from Audio Recordings

Tomas Pavlin, Jan Cech, Jiri Matas

Responsive image

Auto-TLDR; A CNN-based approach to classify ballroom dances given audio recordings

Slides Poster Similar

We propose a CNN-based approach to classify ten genres of ballroom dances given audio recordings, five latin and five standard, namely Cha Cha Cha, Jive, Paso Doble, Rumba, Samba, Quickstep, Slow Foxtrot, Slow Waltz, Tango and Viennese Waltz. We utilize a spectrogram of an audio signal and we treat it as an image that is an input of the CNN. The classification is performed independently by 5-seconds spectrogram segments in sliding window fashion and the results are then aggregated. The method was tested on following datasets: Publicly available Extended Ballroom dataset collected by Marchand and Peeters, 2016 and two YouTube datasets collected by us, one in studio quality and the other, more challenging, recorded on mobile phones. The method achieved accuracy 93.9%, 96.7% and 89.8% respectively. The method runs in real-time. We implemented a web application to demonstrate the proposed method.

DenseRecognition of Spoken Languages

Jaybrata Chakraborty, Bappaditya Chakraborty, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; DenseNet: A Dense Convolutional Network Architecture for Speech Recognition in Indian Languages

Slides Poster Similar

In the present study, we have, for the first time, con- sidered a large number of Indian languages for recog- nition from their audio signals of different sources. A dense convolutional network architecture (DenseNet) has been proposed for this classification problem. Dy- namic elimination of low energy frames from the input speech signal has been considered as a preprocessing operation. Mel-spectrogram of pre-processed speech signal is fed to a DenseNet architecture for recogni- tion of its language. Recognition performance of the proposed architecture has been compared with that of several state-of-the-art deep architectures which include a traditional convolutional neural network (CNN), multiple ResNet architectures, CNN-BLSTM and DenseNet-BLSTM hybrid architectures. Addition- ally, we obtained recognition performances of a stacked BLSTM architecture fed with different sets of hand- crafted features for comparison purpose. Simulations have been performed on two different standard datasets which include (i) IITKGP-MLILSC dataset of news clips in 27 different Indian languages and (ii) Linguistic Data Consortium (LDC) dataset of telephonic conver- sations in 5 different Indian languages. Recognition performance of the proposed framework has been found to be consistently and significantly better than all other frameworks implemented in this study.

Influence of Event Duration on Automatic Wheeze Classification

Bruno M Rocha, Diogo Pessoa, Alda Marques, Paulo Carvalho, Rui Pedro Paiva

Responsive image

Auto-TLDR; Experimental Design of the Non-wheeze Class for Wheeze Classification

Slides Poster Similar

Patients with respiratory conditions typically exhibit adventitious respiratory sounds, such as wheezes. Wheeze events have variable duration. In this work we studied the influence of event duration on wheeze classification, namely how the creation of the non-wheeze class affected the classifiers' performance. First, we evaluated several classifiers on an open access respiratory sound database, with the best one reaching sensitivity and specificity values of 98% and 95%, respectively. Then, by changing one parameter in the design of the non-wheeze class, i.e., event duration, the best classifier only reached sensitivity and specificity values of 53% and 75%, respectively. These results demonstrate the importance of experimental design on the assessment of wheeze classification algorithms' performance.

Hybrid Network for End-To-End Text-Independent Speaker Identification

Wajdi Ghezaiel, Luc Brun, Olivier Lezoray

Responsive image

Auto-TLDR; Text-Independent Speaker Identification with Scattering Wavelet Network and Convolutional Neural Networks

Slides Poster Similar

Deep learning has recently improved the performance of Speaker Identification (SI) systems. Promising results have been obtained with Convolutional Neural Networks (CNNs). This success are mostly driven by the advent of large datasets. However in the context of commercial applications, collection of large amount of training data is not always possible. In addition, robustness of a SI system is adversely effected by short utterances. SI with only a few and short utterances is a challenging problem. Therefore, in this paper, we propose a novel text-independent speaker identification system. The proposed system can identify speakers by learning from only few training short utterances examples. To achieve this, we combine CNN with Scattering Wavelet Network. We propose a two-stage feature extraction framework using a two-layer wavelet scattering network coupled with a CNN for SI system. The proposed architecture takes variable length speech segments. To evaluate the effectiveness of the proposed approach, Timit and Librispeech datasets are used in the experiments. These conducted experiments show that our hybrid architecture performs successfully for SI, even with a small number and short duration of training samples. In comparaison with related methods, the obtained results shows that an hybrid architecture achieve better performance.

Audio-Based Near-Duplicate Video Retrieval with Audio Similarity Learning

Pavlos Avgoustinakis, Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Andreas L. Symeonidis, Ioannis Kompatsiaris

Responsive image

Auto-TLDR; AuSiL: Audio Similarity Learning for Near-duplicate Video Retrieval

Slides Poster Similar

In this work, we address the problem of audio-based near-duplicate video retrieval. We propose the Audio Similarity Learning (AuSiL) approach that effectively captures temporal patterns of audio similarity between video pairs. For the robust similarity calculation between two videos, we first extract representative audio-based video descriptors by leveraging transfer learning based on a Convolutional Neural Network (CNN) trained on a large scale dataset of audio events, and then we calculate the similarity matrix derived from the pairwise similarity of these descriptors. The similarity matrix is subsequently fed to a CNN network that captures the temporal structures existing within its content. We train our network following a triplet generation process and optimizing the triplet loss function. To evaluate the effectiveness of the proposed approach, we have manually annotated two publicly available video datasets based on the audio duplicity between their videos. The proposed approach achieves very competitive results compared to three state-of-the-art methods. Also, unlike the competing methods, it is very robust for the retrieval of audio duplicates generated with speed transformations.

Improving Gravitational Wave Detection with 2D Convolutional Neural Networks

Siyu Fan, Yisen Wang, Yuan Luo, Alexander Michael Schmitt, Shenghua Yu

Responsive image

Auto-TLDR; Two-dimensional Convolutional Neural Networks for Gravitational Wave Detection from Time Series with Background Noise

Poster Similar

Sensitive gravitational wave (GW) detectors such as that of Laser Interferometer Gravitational-wave Observatory (LIGO) realize the direct observation of GW signals that confirm Einstein's general theory of relativity. However, it remains challenges to quickly detect faint GW signals from a large number of time series with background noise under unknown probability distributions. Traditional methods such as matched-filtering in general assume Additive White Gaussian Noise (AWGN) and are far from being real-time due to its high computational complexity. To avoid these weaknesses, one-dimensional (1D) Convolutional Neural Networks (CNNs) are introduced to achieve fast online detection in milliseconds but do not have enough consideration on the trade-off between the frequency and time features, which will be revisited in this paper through data pre-processing and subsequent two-dimensional (2D) CNNs during offline training to improve the online detection sensitivity. In this work, the input data is pre-processed to form a 2D spectrum by Short-time Fourier transform (STFT), where frequency features are extracted without learning. Then, carrying out two 1D convolutions across time and frequency axes respectively, and concatenating the time-amplitude and frequency-amplitude feature maps with equal proportion subsequently, the frequency and time features are treated equally as the input of our following two-dimensional CNNs. The simulation of our above ideas works on a generated data set with uniformly varying SNR (2-17), which combines the GW signal generated by PYCBC and the background noise sampled directly from LIGO. Satisfying the real-time online detection requirement without noise distribution assumption, the experiments of this paper demonstrate better performance in average compared to that of 1D CNNs, especially in the cases of lower SNR (4-9).

Adversarially Training for Audio Classifiers

Raymel Alfonso Sallo, Mohammad Esmaeilpour, Patrick Cardinal

Responsive image

Auto-TLDR; Adversarially Training for Robust Neural Networks against Adversarial Attacks

Slides Poster Similar

In this paper, we investigate the potential effect of the adversarially training on the robustness of six advanced deep neural networks against a variety of targeted and non-targeted adversarial attacks. We firstly show that, the ResNet-56 model trained on the 2D representation of the discrete wavelet transform appended with the tonnetz chromagram outperforms other models in terms of recognition accuracy. Then we demonstrate the positive impact of adversarially training on this model as well as other deep architectures against six types of attack algorithms (white and black-box) with the cost of the reduced recognition accuracy and limited adversarial perturbation. We run our experiments on two benchmarking environmental sound datasets and show that without any imposed limitations on the budget allocations for the adversary, the fooling rate of the adversarially trained models can exceed 90%. In other words, adversarial attacks exist in any scales, but they might require higher adversarial perturbations compared to non-adversarially trained models.

The Effect of Spectrogram Reconstruction on Automatic Music Transcription: An Alternative Approach to Improve Transcription Accuracy

Kin Wai Cheuk, Yin-Jyun Luo, Emmanouil Benetos, Herremans Dorien

Responsive image

Auto-TLDR; Exploring the effect of spectrogram reconstruction loss on automatic music transcription

Slides Similar

Most of the state-of-the-art automatic music transcription (AMT) models break down the main transcription task into sub-tasks such as onset prediction and offset prediction and train them with onset and offset labels. These predictions are then concatenated together and used as the input to train another model with the pitch labels to obtain the final transcription. We attempt to use only the pitch labels (together with spectrogram reconstruction loss) and explore how far this model can go without introducing supervised sub-tasks. In this paper, we do not aim at achieving state-of-the-art transcription accuracy, instead, we explore the effect that spectrogram reconstruction has on our AMT model. Our proposed model consists of two U-nets: the first U-net transcribes the spectrogram into a posteriorgram, and a second U-net transforms the posteriorgram back into a spectrogram. A reconstruction loss is applied between the original spectrogram and the reconstructed spectrogram to constrain the second U-net to focus only on reconstruction. We train our model on different datasets including MAPS, MAESTRO, and MusicNet. Our experiments show that adding the reconstruction loss can generally improve the note-level transcription accuracy when compared to the same model without the reconstruction part. Moreover, it can also boost the frame-level precision to be higher than the state-of-the-art models. The feature maps learned by our u-net contain gridlike structures (not present in the baseline model) which implies that with the present of reconstruction loss, the model is probably trying to count along both the time and frequency axis, resulting in a higher note-level transcription accuracy.

Feature Engineering and Stacked Echo State Networks for Musical Onset Detection

Peter Steiner, Azarakhsh Jalalvand, Simon Stone, Peter Birkholz

Responsive image

Auto-TLDR; Echo State Networks for Onset Detection in Music Analysis

Slides Poster Similar

In music analysis, one of the most fundamental tasks is note onset detection - detecting the beginning of new note events. As the target function of onset detection is related to other tasks, such as beat tracking or tempo estimation, onset detection is the basis for such related tasks. Furthermore, it can help to improve Automatic Music Transcription (AMT). Typically, different approaches for onset detection follow a similar outline: An audio signal is transformed into an Onset Detection Function (ODF), which should have rather low values (i.e. close to zero) for most of the time but with pronounced peaks at onset times, which can then be extracted by applying peak picking algorithms on the ODF. In the recent years, several kinds of neural networks were used successfully to compute the ODF from feature vectors. Currently, Convolutional Neural Networks (CNNs) define the state of the art. In this paper, we build up on an alternative approach to obtain a ODF by Echo State Networks (ESNs), which have achieved comparable results to CNNs in several tasks, such as speech and image recognition. In contrast to the typical iterative training procedures of deep learning architectures, such as CNNs or networks consisting of Long-Short-Term Memory Cells (LSTMs), in ESNs only a very small part of the weights is easily trained in one shot using linear regression. By comparing the performance of several feature extraction methods, pre-processing steps and introducing a new way to stack ESNs, we expand our previous approach to achieve results that fall between a bidirectional LSTM network and a CNN with relative improvements of 1.8% and -1.4%, respectively. For the evaluation, we used exactly the same 8-fold cross validation setup as for the reference results.

A Systematic Investigation on Deep Architectures for Automatic Skin Lesions Classification

Pierluigi Carcagni, Marco Leo, Andrea Cuna, Giuseppe Celeste, Cosimo Distante

Responsive image

Auto-TLDR; RegNet: Deep Investigation of Convolutional Neural Networks for Automatic Classification of Skin Lesions

Slides Poster Similar

Computer vision-based techniques are more and more employed in healthcare and medical fields nowadays in order, principally, to be as a support to the experienced medical staff to help them to make a quick and correct diagnosis. One of the hot topics in this arena concerns the automatic classification of skin lesions. Several promising works exist about it, mainly leveraging Convolutional Neural Networks (CNN), but proposed pipeline mainly rely on complex data preprocessing and there is no systematic investigation about how available deep models can actually reach the accuracy needed for real applications. In order to overcome these drawbacks, in this work, an end-to-end pipeline is introduced and some of the most recent Convolutional Neural Networks (CNNs) architectures are included in it and compared on the largest common benchmark dataset recently introduced. To this aim, for the first time in this application context, a new network design paradigm, namely RegNet, has been exploited to get the best models among a population of configurations. The paper introduces a threefold level of contribution and novelty with respect the previous literature: the deep investigation of several CNN architectures driving to a consistent improvement of the lesions recognition accuracy, the exploitation of a new network design paradigm able to study the behavior of populations of models and a deep discussion about pro and cons of each analyzed method paving the path towards new research lines.

One-Shot Learning for Acoustic Identification of Bird Species in Non-Stationary Environments

Michelangelo Acconcjaioco, Stavros Ntalampiras

Responsive image

Auto-TLDR; One-shot Learning in the Bioacoustics Domain using Siamese Neural Networks

Slides Poster Similar

This work introduces the one-shot learning paradigm in the computational bioacoustics domain. Even though, most of the related literature assumes availability of data characterizing the entire class dictionary of the problem at hand, that is rarely true as a habitat's species composition is only known up to a certain extent. Thus, the problem needs to be addressed by methodologies able to cope with non-stationarity. To this end, we propose a framework able to detect changes in the class dictionary and incorporate new classes on the fly. We design an one-shot learning architecture composed of a Siamese Neural Network operating in the logMel spectrogram space. We extensively examine the proposed approach on two datasets of various bird species using suitable figures of merit. Interestingly, such a learning scheme exhibits state of the art performance, while taking into account extreme non-stationarity cases.

Fine-Tuning Convolutional Neural Networks: A Comprehensive Guide and Benchmark Analysis for Glaucoma Screening

Amed Mvoulana, Rostom Kachouri, Mohamed Akil

Responsive image

Auto-TLDR; Fine-tuning Convolutional Neural Networks for Glaucoma Screening

Slides Poster Similar

This work aimed at giving a comprehensive and in-detailed guide on the route to fine-tuning Convolutional Neural Networks (CNNs) for glaucoma screening. Transfer learning consists in a promising alternative to train CNNs from stratch, to avoid the huge data and resources requirements. After a thorough study of five state-of-the-art CNNs architectures, a complete and well-explained strategy for fine-tuning these networks is proposed, using hyperparameter grid-searching and two-phase training approach. Excellent performance is reached on model evaluation, with a 0.9772 AUROC validation rate, giving arise to reliable glaucoma diagosis-help systems. Also, a benchmark analysis is conducted across all fine-tuned models, studying them according to performance indices such as model complexity and size, AUROC density and inference time. This in-depth analysis allows a rigorous comparison between model characteristics, and is useful for giving practioners important trademarks for prospective applications and deployments.

Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks

Michele Alberti, Angela Botros, Schuetz Narayan, Rolf Ingold, Marcus Liwicki, Mathias Seuret

Responsive image

Auto-TLDR; Trainable and Spectrally Initializable Matrix Transformations for Neural Networks

Slides Poster Similar

In this work, we introduce a new architectural component to Neural Networks (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated the possibility of adding static spectral transformations as feature processors, our focus is on more general trainable transforms. We study the transforms in various architectural configurations on four datasets of different nature: from medical (ColorectalHist, HAM10000) and natural (Flowers) images to historical documents (CB55). With rigorous experiments that control for the number of parameters and randomness, we show that networks utilizing the introduced matrix transformations outperform vanilla neural networks. The observed accuracy increases appreciably across all datasets. In addition, we show that the benefit of spectral initialization leads to significantly faster convergence, as opposed to randomly initialized matrix transformations. The transformations are implemented as auto-differentiable PyTorch modules that can be incorporated into any neural network architecture. The entire code base is open-source.

Detection of Calls from Smart Speaker Devices

Vinay Maddali, David Looney, Kailash Patil

Responsive image

Auto-TLDR; Distinguishing Between Smart Speaker and Cell Devices Using Only the Audio Using a Feature Set

Slides Poster Similar

The ubiquity of smart speakers is increasing, with a growing number of households utilising these devices to make calls over the telephony network. As the technology is typically configured to retain the cellular phone number of the user, it presents challenges in applications where knowledge of the true call origin is required. There are a wide range of makes and models for these devices, as is the case with cell phones, and it is challenging to detect the general category as a smart speaker or cell, independent of the designated phone number. In this paper, we present an approach to differentiate between calls originating from smart speakers and ones from cellular devices using only the audio. We present a feature set that characterises the relevant acoustic information, such as the degree of reverberation and noise, to distinguish between these categories. When evaluated on a dataset spanning multiple models for each device category, as well as different modes-of-usage and microphone-speaker distances, the method yields an Equal Error Rate (EER) of 12.6%.

Modulation Pattern Detection Using Complex Convolutions in Deep Learning

Jakob Krzyston, Rajib Bhattacharjea, Andrew Stark

Responsive image

Auto-TLDR; Complex Convolutional Neural Networks for Modulation Pattern Classification

Slides Poster Similar

Telecommunications relies on transmitting and receiving signals containing specific modulation patterns in both the real and complex domains. Classifying modulation patterns is difficult because noise and poor signal to noise ratio (SNR) obfuscate the `input' signal. Although deep learning approaches have shown great promise over statistical methods in this problem space, deep learning frameworks have been developed to deal with exclusively real-valued data and are unable to compute convolutions for complex-valued data. In previous work, we have shown that CNNs using complex convolutions are able to classify modulation patterns by up to 35\% more accurately than comparable CNN architectures. In this paper, we demonstrate that enabling complex convolutions in CNNs are (1) up to 50\% better at recognizing modulation patterns in complex signals with high SNR when trained on low SNR data, and (2) up to 12\% better at recognizing modulation patterns in complex signals with low SNR when trained on high SNR data. Additionally, we compare the features learned in each experiment by visualizing the inputs that results in one-hot modulation pattern classification for each network.

Electroencephalography Signal Processing Based on Textural Features for Monitoring the Driver’s State by a Brain-Computer Interface

Giulia Orrù, Marco Micheletto, Fabio Terranova, Gian Luca Marcialis

Responsive image

Auto-TLDR; One-dimensional Local Binary Pattern Algorithm for Estimating Driver Vigilance in a Brain-Computer Interface System

Slides Poster Similar

In this study we investigate a textural processing method of electroencephalography (EEG) signal as an indicator to estimate the driver's vigilance in a hypothetical Brain-Computer Interface (BCI) system. The novelty of the solution proposed relies on employing the one-dimensional Local Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data. From the resulting feature vector, the classification is done according to three vigilance classes: awake, tired and drowsy. The claim is that the class transitions can be detected by describing the variations of the micro-patterns' occurrences along the EEG signal. The 1D-LBP is able to describe them by detecting mutual variations of the signal temporarily "close" as a short bit-code. Our analysis allows to conclude that the 1D-LBP adoption has led to significant performance improvement. Moreover, capturing the class transitions from the EEG signal is effective, although the overall performance is not yet good enough to develop a BCI for assessing the driver's vigilance in real environments.

AttendAffectNet: Self-Attention Based Networks for Predicting Affective Responses from Movies

Thi Phuong Thao Ha, Bt Balamurali, Herremans Dorien, Roig Gemma

Responsive image

Auto-TLDR; AttendAffectNet: A Self-Attention Based Network for Emotion Prediction from Movies

Slides Poster Similar

In this work, we propose different variants of the self-attention based network for emotion prediction from movies, which we call AttendAffectNet. We take both audio and video into account and incorporate the relation among multiple modalities by applying self-attention mechanism in a novel manner into the extracted features for emotion prediction. We compare it to the typically temporal integration of the self-attention based model, which in our case, allows to capture the relation of temporal representations of the movie while considering the sequential dependencies of emotion responses. We demonstrate the effectiveness of our proposed architectures on the extended COGNIMUSE dataset [1], [2] and the MediaEval 2016 Emotional Impact of Movies Task [3], which consist of movies with emotion annotations. Our results show that applying the self-attention mechanism on the different audio-visual features, rather than in the time domain, is more effective for emotion prediction. Our approach is also proven to outperform state-of-the-art models for emotion prediction.

The Application of Capsule Neural Network Based CNN for Speech Emotion Recognition

Xincheng Wen, Kunhong Liu

Responsive image

Auto-TLDR; CapCNN: A Capsule Neural Network for Speech Emotion Recognition

Slides Poster Similar

Moreover, the abstraction of audio features makes it impossible to fully use the inherent relationship among audio features. This paper proposes a model that combines a convolutional neural network(CNN) and a capsule neural network (CapsNet), named as CapCNN. The advantage of CapCNN lies in that it provides a solution to solve time sensitivity and focus on the overall characteristics. In this study, it is found that CapCNN can well handle the speech emotion recognition task. Compared with other state-of-art methods, our algorithm shows high performances on the CASIA and EMODB datasets. The detailed analysis confirms that our method provides balanced results on the various classes.

Digit Recognition Applied to Reconstructed Audio Signals Using Deep Learning

Anastasia-Sotiria Toufa, Constantine Kotropoulos

Responsive image

Auto-TLDR; Compressed Sensing for Digit Recognition in Audio Reconstruction

Poster Similar

Compressed sensing allows signal reconstruction from a few measurements. This work proposes a complete pipeline for digit recognition applied to audio reconstructed signals. The reconstruction procedure exploits the assumption that the original signal lies in the range of a generator. A pretrained generator of a Generative Adversarial Network generates audio digits. A new method for reconstruction is proposed, using only the most active segment of the signal, i.e., the segment with the highest energy. The underlying assumption is that such segment offers a more compact representation, preserving the meaningful content of signal. Cases when the reconstruction produces noise, instead of digit, are treated as outliers. In order to detect and reject them, three unsupervised indicators are used, namely, the total energy of reconstructed signal, the predictions of an one-class Support Vector Machine, and the confidence of a pretrained classifier used for recognition. This classifier is based on neural networks architectures and is pretrained on original audio recordings, employing three input representations, i.e., raw audio, spectrogram, and gammatonegram. Experiments are conducted, analyzing both the quality of reconstruction and the performance of classifiers in digit recognition, demonstrating that the proposed method yields higher performance in both the quality of reconstruction and digit recognition accuracy.

Detecting Marine Species in Echograms Via Traditional, Hybrid, and Deep Learning Frameworks

Porto Marques Tunai, Alireza Rezvanifar, Melissa Cote, Alexandra Branzan Albu, Kaan Ersahin, Todd Mudge, Stephane Gauthier

Responsive image

Auto-TLDR; End-to-End Deep Learning for Echogram Interpretation of Marine Species in Echograms

Slides Poster Similar

This paper provides a comprehensive comparative study of traditional, hybrid, and deep learning (DL) methods for detecting marine species in echograms. Acoustic backscatter data obtained from multi-frequency echosounders is visualized as echograms and typically interpreted by marine biologists via manual or semi-automatic methods, which are time-consuming. Challenges related to automatic echogram interpretation are the variable size and acoustic properties of the biological targets (marine life), along with significant inter-class similarities. Our study explores and compares three types of approaches that cover the entire range of machine learning methods. Based on our experimental results, we conclude that an end-to-end DL-based framework, that can be readily scaled to accommodate new species, is overall preferable to other learning approaches for echogram interpretation, even when only a limited number of annotated training samples is available.

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

RMS-Net: Regression and Masking for Soccer Event Spotting

Matteo Tomei, Lorenzo Baraldi, Simone Calderara, Simone Bronzin, Rita Cucchiara

Responsive image

Auto-TLDR; An Action Spotting Network for Soccer Videos

Slides Poster Similar

The recently proposed action spotting task consists in finding the exact timestamp in which an event occurs. This task fits particularly well for soccer videos, where events correspond to salient actions strictly defined by soccer rules (a goal occurs when the ball crosses the goal line). In this paper, we devise a lightweight and modular network for action spotting, which can simultaneously predict the event label and its temporal offset using the same underlying features. We enrich our model with two training strategies: the first one for data balancing and uniform sampling, the second for masking ambiguous frames and keeping the most discriminative visual cues. When tested on the SoccerNet dataset and using standard features, our full proposal exceeds the current state of the art by 3 Average-mAP points. Additionally, it reaches a gain of more than 10 Average-mAP points on the test set when fine-tuned in combination with a strong 2D backbone.

S2I-Bird: Sound-To-Image Generation of Bird Species Using Generative Adversarial Networks

Joo Yong Shim, Joongheon Kim, Jong-Kook Kim

Responsive image

Auto-TLDR; Generating bird images from sound using conditional generative adversarial networks

Slides Poster Similar

Generating images from sound is a challenging task. This paper proposes a novel deep learning model that generates bird images from their corresponding sound information. Our proposed model includes a sound encoder in order to extract suitable feature representations from audio recordings, and then it generates bird images that corresponds to its calls using conditional generative adversarial networks (GANs) with auxiliary classifiers. We demonstrate that our model produces better image generation results which outperforms other state-of-the-art methods in a similar context.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

A Comparison of Neural Network Approaches for Melanoma Classification

Maria Frasca, Michele Nappi, Michele Risi, Genoveffa Tortora, Alessia Auriemma Citarella

Responsive image

Auto-TLDR; Classification of Melanoma Using Deep Neural Network Methodologies

Slides Poster Similar

Melanoma is the deadliest form of skin cancer and it is diagnosed mainly visually, starting from initial clinical screening and followed by dermoscopic analysis, biopsy and histopathological examination. A dermatologist’s recognition of melanoma may be subject to errors and may take some time to diagnose it. In this regard, deep learning can be useful in the study and classification of skin cancer. In particular, by classifying images with Deep Neural Network methodologies, it is possible to obtain comparable or even superior results compared to those of dermatologists. In this paper, we propose a methodology for the classification of melanoma by adopting different deep learning techniques applied to a common dataset, composed of images from the ISIC dataset and consisting of different types of skin diseases, including melanoma on which we applied a specific pre-processing phase. In particular, a comparison of the results is performed in order to select the best effective neural network to be applied to the problem of recognition and classification of melanoma. Moreover, we also evaluate the impact of the pre- processing phase on the final classification. Different metrics such as accuracy, sensitivity, and specificity have been selected to assess the goodness of the adopted neural networks and compare them also with the manual classification of dermatologists.

End-To-End Triplet Loss Based Emotion Embedding System for Speech Emotion Recognition

Puneet Kumar, Sidharth Jain, Balasubramanian Raman, Partha Pratim Roy, Masakazu Iwamura

Responsive image

Auto-TLDR; End-to-End Neural Embedding System for Speech Emotion Recognition

Slides Poster Similar

In this paper, an end-to-end neural embedding system based on triplet loss and residual learning has been proposed for speech emotion recognition. The proposed system learns the embeddings from the emotional information of the speech utterances. The learned embeddings are used to recognize the emotions portrayed by given speech samples of various lengths. The proposed system implements Residual Neural Network architecture. It is trained using softmax pre-training and triplet loss function. The weights between the fully connected and embedding layers of the trained network are used to calculate the embedding values. The embedding representations of various emotions are mapped onto a hyperplane, and the angles among them are computed using the cosine similarity. These angles are utilized to classify a new speech sample into its appropriate emotion class. The proposed system has demonstrated 91.67\% and 64.44\% accuracy while recognizing emotions for RAVDESS and IEMOCAP dataset, respectively.

Deep Transfer Learning for Alzheimer’s Disease Detection

Nicole Cilia, Claudio De Stefano, Francesco Fontanella, Claudio Marrocco, Mario Molinara, Alessandra Scotto Di Freca

Responsive image

Auto-TLDR; Automatic Detection of Handwriting Alterations for Alzheimer's Disease Diagnosis using Dynamic Features

Slides Poster Similar

Early detection of Alzheimer’s Disease (AD) is essential in order to initiate therapies that can reduce the effects of such a disease, improving both life quality and life expectancy of patients. Among all the activities carried out in our daily life, handwriting seems one of the first to be influenced by the arise of neurodegenerative diseases. For this reason, the analysis of handwriting and the study of its alterations has become of great interest in this research field in order to make a diagnosis as early as possible. In recent years, many studies have tried to use classification algorithms applied to handwritings to implement decision support systems for AD diagnosis. A key issue for the use of these techniques is the detection of effective features, that allow the system to distinguish the natural handwriting alterations due to age, from those caused by neurodegenerative disorders. In this context, many interesting results have been published in the literature in which the features have been typically selected by hand, generally considering the dynamics of the handwriting process in order to detect motor disorders closely related to AD. Features directly derived from handwriting generation models can be also very helpful for AD diagnosis. It should be remarked, however, that the above features do not consider changes in the shape of handwritten traces, which may occur as a consequence of neurodegenerative diseases, as well as the correlation among shape alterations and changes in the dynamics of the handwriting process. Moving from these considerations, the aim of this study is to verify if the combined use of both shape and dynamic features allows a decision support system to improve performance for AD diagnosis. To this purpose, starting from a database of on-line handwriting samples, we generated for each of them a synthetic off-line colour image, where the colour of each elementary trait encodes, in the three RGB channels, the dynamic information associated to that trait. Finally, we exploited the capability of Deep Neural Networks (DNN) to automatically extract features from raw images. The experimental comparison of the results obtained by using standard features and features extracted according the above procedure, confirmed the effectiveness of our approach.

A Systematic Investigation on End-To-End Deep Recognition of Grocery Products in the Wild

Marco Leo, Pierluigi Carcagni, Cosimo Distante

Responsive image

Auto-TLDR; Automatic Recognition of Products on grocery shelf images using Convolutional Neural Networks

Slides Poster Similar

Automatic recognition of products on grocery shelf images is a new and attractive topic in computer vision and machine learning since, it can be exploited in different application areas. This paper introduces a complete end-to-end pipeline (without preliminary radiometric and spatial transformations usually involved while dealing with the considered issue) and it provides a systematic investigation of recent machine learning models based on convolutional neural networks for addressing the product recognition task by exploiting the proposed pipeline on a recent challenging grocery product dataset. The investigated models were never been used in this context: they derive from the successful and more generic object recognition task and have been properly tuned to address this specific issue. Besides, also ensembles of nets built by most advanced theoretical fundaments have been taken into account. Gathered classification results were very encouraging since the recognition accuracy has been improved up to 15\% with respect to the leading approaches in the state of art on the same dataset. A discussion about the pros and cons of the investigated solutions are discussed by paving the path towards new research lines.

Improving Mix-And-Separate Training in Audio-Visual Sound Source Separation with an Object Prior

Quan Nguyen, Simone Frintrop, Timo Gerkmann, Mikko Lauri, Julius Richter

Responsive image

Auto-TLDR; Object-Prior: Learning the 1-to-1 correspondence between visual and audio signals by audio- visual sound source methods

Slides Similar

The performance of an audio-visual sound source separation system is determined by its ability to separate audio sources given images of the sources and the audio mixture. The goal of this study is to investigate the ability to learn the mapping between the sounds and the images of instruments by audio- visual sound source separation methods based on the state-of-the- art PixelPlayer [1]. Theoretical and empirical analyses illustrate that the PixelPlayer is not properly trained to learn the 1-to- 1 correspondence between visual and audio signals during its mix-and-separate training process. Based on the insights from this analysis, a weakly-supervised method called Object-Prior is proposed and evaluated on two audio-visual datasets. The experimental results show that the proposed Object-Prior method outperforms the PixelPlayer and other baselines in the audio- visual sound source separation task. It is also more robust against asynchronized data, where the frame and the audio do not come from the same video, and recognizes musical instruments based on their sound with higher accuracy than the PixelPlayer. This indicates that learning the 1-to-1 correspondence between visual and audio features of an instrument improves the effectiveness of audio-visual sound source separation.

Are Multiple Cross-Correlation Identities Better Than Just Two? Improving the Estimate of Time Differences-Of-Arrivals from Blind Audio Signals

Danilo Greco, Jacopo Cavazza, Alessio Del Bue

Responsive image

Auto-TLDR; Improving Blind Channel Identification Using Cross-Correlation Identity for Time Differences-of-Arrivals Estimation

Slides Poster Similar

Given an unknown audio source, the estimation of time differences-of-arrivals (TDOAs) can be efficiently and robustly solved using blind channel identification and exploiting the cross-correlation identity (CCI). Prior "blind" works have improved the estimate of TDOAs by means of different algorithmic solutions and optimization strategies, while always sticking to the case N = 2 microphones. But what if we can obtain a direct improvement in performance by just increasing N? In this paper we try to investigate this direction, showing that, despite the arguable simplicity, this is capable of (sharply) improving upon state-of-the-art blind channel identification methods based on CCI, without modifying the computational pipeline. Inspired by our results, we seek to warm up the community and the practitioners by paving the way (with two concrete, yet preliminary, examples) towards joint approaches in which advances in the optimization are combined with an increased number of microphones, in order to achieve further improvements.

The Color Out of Space: Learning Self-Supervised Representations for Earth Observation Imagery

Stefano Vincenzi, Angelo Porrello, Pietro Buzzega, Marco Cipriano, Pietro Fronte, Roberto Cuccu, Carla Ippoliti, Annamaria Conte, Simone Calderara

Responsive image

Auto-TLDR; Satellite Image Representation Learning for Remote Sensing

Slides Poster Similar

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.

Multimodal Side-Tuning for Document Classification

Stefano Zingaro, Giuseppe Lisanti, Maurizio Gabbrielli

Responsive image

Auto-TLDR; Side-tuning for Multimodal Document Classification

Slides Poster Similar

In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.

On the Use of Benford's Law to Detect GAN-Generated Images

Nicolo Bonettini, Paolo Bestagini, Simone Milani, Stefano Tubaro

Responsive image

Auto-TLDR; Using Benford's Law to Detect GAN-generated Images from Natural Images

Slides Poster Similar

The advent of Generative Adversarial Network (GAN) architectures has given anyone the ability of generating incredibly realistic synthetic imagery. The malicious diffusion of GAN-generated images may lead to serious social and political consequences (e.g., fake news spreading, opinion formation, etc.). It is therefore important to regulate the widespread distribution of synthetic imagery by developing solutions able to detect them. In this paper, we study the possibility of using Benford’s law to discriminate GAN-generated images from natural photographs. Benford’s law describes the distribution of the most significant digit for quantized Discrete Cosine Transform (DCT) coefficients. Extending and generalizing this property, we show that it is possible to extract a compact feature vector from an image. This feature vector can be fed to an extremely simple classifier for GAN-generated image detection purpose even in data scarcity scenarios where Convolutional Neural Network (CNN) architectures tend to fail.

Deep Learning on Active Sonar Data Using Bayesian Optimization for Hyperparameter Tuning

Henrik Berg, Karl Thomas Hjelmervik

Responsive image

Auto-TLDR; Bayesian Optimization for Sonar Operations in Littoral Environments

Slides Poster Similar

Sonar operations in littoral environments may be challenging due to an increased probability of false alarms. Machine learning can be used to train classifiers that are able to filter out most of the false alarms automatically, however, this is a time consuming process, with many hyperparameters that need to be tuned in order to yield useful results. In this paper, Bayesian optimization is used to search for good values for some of the hyperparameters, like topology and training parameters, resulting in performance superior to earlier trial-and-error based training. Additionally, we analyze some of the parameters involved in the Bayesian optimization, as well as the resulting hyperparameter values.

From Early Biological Models to CNNs: Do They Look Where Humans Look?

Marinella Iole Cadoni, Andrea Lagorio, Enrico Grosso, Jia Huei Tan, Chee Seng Chan

Responsive image

Auto-TLDR; Comparing Neural Networks to Human Fixations for Semantic Learning

Slides Poster Similar

Early hierarchical computational visual models as well as recent deep neural networks have been inspired by the functioning of the primate visual cortex system. Although much effort has been made to dissect neural networks to visualize the features they learn at the individual units, the scope of the visualizations has been limited to a categorization of the features in terms of their semantic level. Considering the ability humans have to select high semantic level regions of a scene, the question whether neural networks can match this ability, and if similarity with humans attention is correlated with neural networks performance naturally arise. To address this question we propose a pipeline to select and compare sets of feature points that maximally activate individual networks units to human fixations. We extract features from a variety of neural networks, from early hierarchical models such as HMAX up to recent deep convolutional neural netwoks such as Densnet, to compare them to human fixations. Experiments over the ETD database show that human fixations correlate with CNNs features from deep layers significantly better than with random sets of points, while they do not with features extracted from the first layers of CNNs, nor with the HMAX features, which seem to have low semantic level compared with the features that respond to the automatically learned filters of CNNs. It also turns out that there is a correlation between CNN’s human similarity and classification performance.

Single-Modal Incremental Terrain Clustering from Self-Supervised Audio-Visual Feature Learning

Reina Ishikawa, Ryo Hachiuma, Akiyoshi Kurobe, Hideo Saito

Responsive image

Auto-TLDR; Multi-modal Variational Autoencoder for Terrain Type Clustering

Slides Poster Similar

The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices. Sensors, such as RGB cameras, depth sensors, vibration sensors, and microphones, are used as the multi-modal data. Many studies have explored ways to use them, especially in the robotics field. Some papers have successfully introduced single-modal or multi-modal methods. However, in practice, robots can be faced with extreme conditions; microphones do not work well in the crowded scenes, and an RGB camera cannot capture terrains well in the dark. In this paper, we present a novel framework using the multi-modal variational autoencoder and the Gaussian mixture model clustering algorithm on image data and audio data for terrain type clustering. Our method enables the terrain type clustering even if one of the modalities (either image or audio) is missing at the test-time. We evaluated the clustering accuracy with a conventional multi-modal terrain type clustering method and we conducted ablation studies to show the effectiveness of our approach.

Audio-Visual Speech Recognition Using a Two-Step Feature Fusion Strategy

Hong Liu, Wanlu Xu, Bing Yang

Responsive image

Auto-TLDR; A Two-Step Feature Fusion Network for Speech Recognition

Slides Poster Similar

Lip-reading methods and fusion strategy are crucial for audio-visual speech recognition. In recent years, most approaches involve two separate audio and visual streams with early or late fusion strategies. Such a single-stage fusion method may fail to guarantee the integrity and representativeness of fusion information simultaneously. This paper extends a traditional single-stage fusion network to a two-step feature fusion network by adding an audio-visual early feature fusion (AV-EFF) stream to the baseline model. This method can learn the fusion information of different stages, preserving the original features as much as possible and ensuring the independence of different features. Besides, to capture long-range dependencies of video information, a non-local block is added to the feature extraction part of the visual stream (NL-Visual) to obtain the long-term spatio-temporal features. Experimental results on the two largest public datasets in English (LRW) and Mandarin (LRW-1000) demonstrate our method is superior to other state-of-the-art methods.

Bridging the Gap between Natural and Medical Images through Deep Colorization

Lia Morra, Luca Piano, Fabrizio Lamberti, Tatiana Tommasi

Responsive image

Auto-TLDR; Transfer Learning for Diagnosis on X-ray Images Using Color Adaptation

Slides Poster Similar

Deep learning has thrived by training on large-scale datasets. However, in many applications, as for medical image diagnosis, getting massive amount of data is still prohibitive due to privacy, lack of acquisition homogeneity and annotation cost. In this scenario transfer learning from natural image collections is a standard practice that attempts to tackle shape, texture and color discrepancy all at once through pretrained model fine-tuning. In this work we propose to disentangle those challenges and design a dedicated network module that focuses on color adaptation. We combine learning from scratch of the color module with transfer learning of different classification backbones obtaining an end-to-end, easy-to-train architecture for diagnostic image recognition on X-ray images. Extensive experiments show how our approach is particularly efficient in case of data scarcity and provides a new path for further transferring the learned color information across multiple medical datasets.

Investigating and Exploiting Image Resolution for Transfer Learning-Based Skin Lesion Classification

Amirreza Mahbod, Gerald Schaefer, Chunliang Wang, Rupert Ecker, Georg Dorffner, Isabella Ellinger

Responsive image

Auto-TLDR; Fine-tuned Neural Networks for Skin Lesion Classification Using Dermoscopic Images

Slides Poster Similar

Skin cancer is among the most common cancer types. Dermoscopic image analysis improves the diagnostic accuracy for detection of malignant melanoma and other pigmented skin lesions when compared to unaided visual inspection. Hence, computer-based methods to support medical experts in the diagnostic procedure are of great interest. Fine-tuning pre-trained convolutional neural networks (CNNs) has been shown to work well for skin lesion classification. Pre-trained CNNs are usually trained with natural images of a fixed image size which is typically significantly smaller than captured skin lesion images and consequently dermoscopic images are downsampled for fine-tuning. However, useful medical information may be lost during this transformation. In this paper, we explore the effect of input image size on skin lesion classification performance of fine-tuned CNNs. For this, we resize dermoscopic images to different resolutions, ranging from 64x64 to 768x768 pixels and investigate the resulting classification performance of three well-established CNNs, namely DenseNet-121, ResNet-18, and ResNet-50. Our results show that using very small images (of size 64x64 pixels) degrades the classification performance, while images of size 128x128 pixels and above support good performance with larger image sizes leading to slightly improved classification. We further propose a novel fusion approach based on a three-level ensemble strategy that exploits multiple fine-tuned networks trained with dermoscopic images at various sizes. When applied on the ISIC 2017 skin lesion classification challenge, our fusion approach yields an area under the receiver operating characteristic curve of 89.2% and 96.6% for melanoma classification and seborrheic keratosis classification, respectively, outperforming state-of-the-art algorithms.

Lightweight Low-Resolution Face Recognition for Surveillance Applications

Yoanna Martínez-Díaz, Heydi Mendez-Vazquez, Luis S. Luevano, Leonardo Chang, Miguel Gonzalez-Mendoza

Responsive image

Auto-TLDR; Efficiency of Lightweight Deep Face Networks on Low-Resolution Surveillance Imagery

Slides Poster Similar

Typically, real-world requirements to deploy face recognition models in unconstrained surveillance scenarios demand to identify low-resolution faces with extremely low computational cost. In the last years, several methods based on complex deep learning models have been proposed with promising recognition results but at a high computational cost. Inspired by the compactness and computation efficiency of lightweight deep face networks and their high accuracy on general face recognition tasks, in this work we propose to benchmark two recently introduced lightweight face models on low-resolution surveillance imagery to enable efficient system deployment. In this way, we conduct a comprehensive evaluation on the two typical settings: LR-to-HR and LR-to-LR matching. In addition, we investigate the effect of using trained models with down-sampled synthetic data from high-resolution images, as well as the combination of different models, for face recognition on real low-resolution images. Experimental results show that the used lightweight face models achieve state-of-the-art results on low-resolution benchmarks with low memory footprint and computational complexity. Moreover, we observed that combining models trained with different degradations improves the recognition accuracy on low-resolution surveillance imagery, which is feasible due to their low computational cost.

Temporal Binary Representation for Event-Based Action Recognition

Simone Undri Innocenti, Federico Becattini, Federico Pernici, Alberto Del Bimbo

Responsive image

Auto-TLDR; Temporal Binary Representation for Gesture Recognition

Slides Poster Similar

In this paper we present an event aggregation strategy to convert the output of an event camera into frames processable by traditional Computer Vision algorithms. The proposed method first generates sequences of intermediate binary representations, which are then losslessly transformed into a compact format by simply applying a binary-to-decimal conversion. This strategy allows us to encode temporal information directly into pixel values, which are then interpreted by deep learning models. We apply our strategy, called Temporal Binary Representation, to the task of Gesture Recognition, obtaining state of the art results on the popular DVS128 Gesture Dataset. To underline the effectiveness of the proposed method compared to existing ones, we also collect an extension of the dataset under more challenging conditions on which to perform experiments.

Enhancing Deep Semantic Segmentation of RGB-D Data with Entangled Forests

Matteo Terreran, Elia Bonetto, Stefano Ghidoni

Responsive image

Auto-TLDR; FuseNet: A Lighter Deep Learning Model for Semantic Segmentation

Slides Poster Similar

Semantic segmentation is a problem which is getting more and more attention in the computer vision community. Nowadays, deep learning methods represent the state of the art to solve this problem, and the trend is to use deeper networks to get higher performance. The drawback with such models is a higher computational cost, which makes it difficult to integrate them on mobile robot platforms. In this work we want to explore how to obtain lighter deep learning models without compromising performance. To do so we will consider the features used in the Entangled Random Forest algorithm and we will study the best strategies to integrate these within FuseNet deep network. Such new features allow us to shrink the network size without loosing performance, obtaining hence a lighter model which achieves state-of-the-art performance on the semantic segmentation task and represents an interesting alternative for mobile robotics applications, where computational power and energy are limited.

Learning Visual Voice Activity Detection with an Automatically Annotated Dataset

Stéphane Lathuiliere, Pablo Mesejo, Radu Horaud

Responsive image

Auto-TLDR; Deep Visual Voice Activity Detection with Optical Flow

Slides Similar

Visual voice activity detection (V-VAD) uses visual features to predict whether a person is speaking or not. V-VAD is useful whenever audio VAD (A-VAD) is inefficient either because the acoustic signal is difficult to analyze or is simply missing. We propose two deep architectures for V-VAD, one based on facial landmarks and one based on optical flow. Moreover, available datasets, used for learning and for testing V-VAD, lack content variability. We introduce a novel methodology to automatically create and annotate very large datasets in-the-wild, based on combining A-VAD and face detection. A thorough empirical evaluation shows the advantage of training the proposed deep V-VAD models with such a dataset.

Fourier Domain Pruning of MobileNet-V2 with Application to Video Based Wildfire Detection

Hongyi Pan, Diaa Badawi, E. Cetin

Responsive image

Auto-TLDR; Deep Convolutional Neural Network for Wildfire Detection

Slides Poster Similar

In this paper, we propose a deep convolutional neural network for camera based wildfire detection. We train the neural network via transfer learning and use window based analysis strategy to increase the fire detection rate. To achieve computational efficiency, we calculate frequency response of the kernels in convolutional and dense layers and eliminate those filters with low energy impulse response. Moreover, to reduce the storage for edge devices, we compare the convolutional kernels in Fourier domain and discard similar filters using the cosine similarity measure in the frequency domain. We test the performance of the neural network with a variety of wildfire video clips and prune system performs as good as the regular network in daytime wild fire detection, and it also works well on some night wild fire video clips.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

Spatial Bias in Vision-Based Voice Activity Detection

Kalin Stefanov, Mohammad Adiban, Giampiero Salvi

Responsive image

Auto-TLDR; Spatial Bias in Vision-based Voice Activity Detection in Multiparty Human-Human Interactions

Poster Similar

We present models for automatic vision-based voice activity detection (VAD) in multiparty human-human interactions that are aimed at complementing the acoustic VAD methods. We provide evidence that this type of vision-based VAD models are susceptible to spatial bias in the datasets. The physical settings of the interaction, usually constant throughout data acquisition, determines the distribution of head poses of the participants. Our results show that when the head pose distributions are significantly different in the training and test sets, the performance of the models drops significantly. This suggests that previously reported results on datasets with a fixed physical configuration may overestimate the generalization capabilities of this type of models. We also propose a number of possible remedies to the spatial bias, including data augmentation, input masking and dynamic features, and provide an in-depth analysis of the visual cues used by our models.

Mood Detection Analyzing Lyrics and Audio Signal Based on Deep Learning Architectures

Konstantinos Pyrovolakis, Paraskevi Tzouveli, Giorgos Stamou

Responsive image

Auto-TLDR; Automated Music Mood Detection using Music Information Retrieval

Slides Poster Similar

Digital era has changed the way music is produced and propagated creating new needs for automated and more effective management of music tracks in big volumes. Automated music mood detection constitutes an active task in the field of MIR (Music Information Retrieval) and connected with many research papers in the past few years. In order to approach the task of mood detection, we faced separately the analysis of musical lyrics and the analysis of musical audio signal. Then we applied a uniform multichannel analysis to classify our data in mood classes. The available data we will use to train and evaluate our models consists of a total of 2.000 song titles, classified in four mood classes {happy, angry, sad, relaxed}. The result of this process leads to a uniform prediction for emotional arousal that a music track can cause to a listener and show the way to develop many applications.