Masaaki Ikehara

Papers from this author

GAN-Based Image Deblurring Using DCT Discriminator

Hiroki Tomosada, Takahiro Kudo, Takanori Fujisawa, Masaaki Ikehara

Responsive image

Auto-TLDR; DeblurDCTGAN: A Discrete Cosine Transform for Image Deblurring

Slides Poster Similar

In this paper, we propose high quality image debluring by using discrete cosine transform (DCT) with less computational complexity. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale architecture of CNN restores blurred image cleary and suppresses more ringing artifacts or block noise, but it takes much time to process. To solve these problems, we propose a method that preserves texture and suppresses ringing artifacts in the restored image without multi-scale architecture using DCT based loss named ``DeblurDCTGAN.''. It compares frequency domain of the images made from deblurred image and grand truth image by using DCT. Hereby, DeblurDCTGAN can reduce block noise or ringing artifacts while maintaining deblurring performance. Our experimental results show that DeblurDCTGAN gets the highest performances on both PSNR and SSIM comparing with other conventional methods in both GoPro test Dataset and DVD test Dataset. Also, the running time per pair of DeblurDCTGAN is faster than others.

Residual Learning of Video Frame Interpolation Using Convolutional LSTM

Keito Suzuki, Masaaki Ikehara

Responsive image

Auto-TLDR; Video Frame Interpolation Using Residual Learning and Convolutional LSTMs

Slides Poster Similar

Video frame interpolation aims to generate interme- diate frames between the original frames. This produces videos with a higher frame r ate and creates smoother motion. Many video frame interpolation methods first estimate the motion vector between the input frames and then synthesizes the intermediate frame based on the motion. However, these methods rely on the accuracy of the motion estimation step and fail to accurately generate the interpolated frame when the estimated motion vectors are inaccurate. Therefore, to avoid the uncertainties caused by motion estimation, this paper proposes a method that directly generates the intermediate frame. Since two consecutive frames are relatively similar, our method takes the average of these two frames and utilizes residual learning to learn the difference between the average of these frames and the ground truth middle frame. In addition, our method uses Convolutional LSTMs and four input frames to better incorporate spatiotemporal information. This neural network can be easily trained end to end without difficult to obtain data such as optical flow. Our experimental results show that the proposed method can perform favorably against other state-of-the-art frame interpolation methods.