Online Object Recognition Using CNN-Based Algorithm on High-Speed Camera Imaging

Shigeaki Namiki, Keiko Yokoyama, Shoji Yachida, Takashi Shibata, Hiroyoshi Miyano, Masatoshi Ishikawa

Responsive image

Auto-TLDR; Real-Time Object Recognition with High-Speed Camera Imaging with Population Data Clearing and Data Ensemble

Slides Poster

High-speed camera imaging (e.g., 1,000 fps) is effective to detect and recognize objects moving at high speeds because temporally dense images obtained by a high-speed camera can usually capture the best moment for object detection and recognition. However, the latest recognition algorithms, with their high complexity, are difficult to utilize in real-time applications involving high-speed cameras because a vast amount of images need to be processed with no latency. To tackle this problem, we propose a novel framework for real-time object recognition with high-speed camera imaging. The proposed framework has the key processes of population data cleansing and data ensemble. Population data cleansing improves the recognition accuracy by quantifying the recognizability and by excluding part of the images prior to the recognition process, while data ensemble improves the robustness of object recognition by merging the class probabilities with multiple images of the same object. Experimental results with a real dataset show that our framework is more effective than existing methods.

Similar papers

SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater Videos

Mygel Andrei Martija, Prospero Naval

Responsive image

Auto-TLDR; Underwater Multi-Object Tracking in the Wild with Deep Hungarian Network

Slides Poster Similar

In this paper, we seek to extend multi-object tracking research on a relatively less explored domain, that of, underwater multi-object tracking in the wild. Multi-object fish tracking is an important task because it can provide fish monitoring systems with richer information (e.g. multiple views of the same fish) as compared to detections and it can be an invaluable input to fish behavior analysis. However, there is a lack of an annotated benchmark dataset with enough samples for this task. To circumvent the need for manual ground truth tracking annotation, we craft a synthetic dataset. Using this synthetic dataset, we train an integrated detector and tracker called SynDHN. SynDHN uses the Deep Hungarian Network (DHN), which is a differentiable approximation of the Hungarian assignment algorithm. We repurpose DHN to become the tracking component of our algorithm by performing the task of affinity estimation between detector predictions. We consider both spatial and appearance features for affinity estimation. Our results show that despite being trained on a synthetic dataset, SynDHN generalizes well to real underwater video tracking and performs better against our baseline algorithms.

Object Segmentation Tracking from Generic Video Cues

Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper

Responsive image

Auto-TLDR; A Light-Weight Variational Framework for Video Object Segmentation in Videos

Slides Poster Similar

We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence specific training of dedicated CNN architectures, we show the potential of a variational model, based on generic video information from motion and color. Such cues are usually required for tasks such as robot navigation or grasp estimation. We leverage them directly for video object segmentation and thus provide accurate segmentations at potentially very low extra cost. Our simple method can provide competitive results compared to the costly CNN-based methods with parameter tuning. Furthermore, we show that our approach can be combined with state-of-the-art CNN-based segmentations in order to improve over their respective results. We evaluate our method on the datasets DAVIS 16,17 and SegTrack v2.

Dynamic Resource-Aware Corner Detection for Bio-Inspired Vision Sensors

Sherif Abdelmonem Sayed Mohamed, Jawad Yasin, Mohammad-Hashem Haghbayan, Antonio Miele, Jukka Veikko Heikkonen, Hannu Tenhunen, Juha Plosila

Responsive image

Auto-TLDR; Three Layer Filtering-Harris Algorithm for Event-based Cameras in Real-Time

Slides Similar

Event-based cameras are vision devices that transmit only brightness changes with low latency and ultra-low power consumption. Such characteristics make event-based cameras attractive in the field of localization and object tracking in resource-constrained systems. Since the number of generated events in such cameras is huge, the selection and filtering of the incoming events are beneficial from both increasing the accuracy of the features and reducing the computational load. In this paper, we present an algorithm to detect asynchronous corners form a stream of events in real-time on embedded systems. The algorithm is called the Three Layer Filtering-Harris or TLF-Harris algorithm. The algorithm is based on an events' filtering strategy whose purpose is 1) to increase the accuracy by deliberately eliminating some incoming events, i.e., noise and 2) to improve the real-time performance of the system, i.e., preserving a constant throughput in terms of input events per second, by discarding unnecessary events with a limited accuracy loss. An approximation of the Harris algorithm, in turn, is used to exploit its high-quality detection capability with a low-complexity implementation to enable seamless real-time performance on embedded computing platforms. The proposed algorithm is capable of selecting the best corner candidate among neighbors and achieves an average execution time savings of 59 % compared with the conventional Harris score. Moreover, our approach outperforms the competing methods, such as eFAST, eHarris, and FA-Harris, in terms of real-time performance, and surpasses Arc* in terms of accuracy.

Motion U-Net: Multi-Cue Encoder-Decoder Network for Motion Segmentation

Gani Rahmon, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; Motion U-Net: A Deep Learning Framework for Robust Moving Object Detection under Challenging Conditions

Slides Poster Similar

Detection of moving objects is a critical first step in many computer vision applications. Several algorithms for motion and change detection were proposed. However, many of these approaches lack the ability to handle challenging real-world scenarios. Recently, deep learning approaches started to produce impressive solutions to computer vision tasks, particularly for detection and segmentation. Many existing deep learning networks proposed for moving object detection rely only on spatial appearance cues. In this paper, we propose a novel multi-cue and multi-stream network, Motion U-Net (MU-Net), which integrates motion, change, and appearance cues using a deep learning framework for robust moving object detection under challenging conditions. The proposed network consists of a two-stream encoder module followed by feature concatenation and a decoder module. Motion and change cues are computed through our tensor-based motion estimation and a multi-modal background subtraction modules. The proposed system was tested and evaluated on the change detection challenge datasets (CDnet-2014) and compared to state-of-the-art methods. On CDnet-2014 dataset, our approach reaches an average overall F-measure of 0.9852 and outperforms all current state-of-the-art methods. The network was also tested on the unseen SBI-2015 dataset and produced promising results.

SiamMT: Real-Time Arbitrary Multi-Object Tracking

Lorenzo Vaquero, Manuel Mucientes, Victor Brea

Responsive image

Auto-TLDR; SiamMT: A Deep-Learning-based Arbitrary Multi-Object Tracking System for Video

Slides Poster Similar

Visual object tracking is of great interest in many applications, as it preserves the identity of an object throughout a video. However, while real applications demand systems capable of real-time-tracking multiple objects, multi-object tracking solutions usually follow the tracking-by-detection paradigm, thus they depend on running a costly detector in each frame, and they do not allow the tracking of arbitrary objects, i.e., they require training for specific classes. In response to this need, this work presents the architecture of SiamMT, a system capable of efficiently applying individual visual tracking techniques to multiple objects in real-time. This makes it the first deep-learning-based arbitrary multi-object tracker. To achieve this, we propose the global frame features extraction by using a fully-convolutional neural network, followed by the cropping and resizing of the different object search areas. The final similarity operation between these search areas and the target exemplars is carried out with an optimized pairwise cross-correlation. These novelties allow the system to track multiple targets in a scalable manner, achieving 25 fps with 60 simultaneous objects for VGA videos and 40 objects for HD720 videos, all with a tracking quality similar to SiamFC.

RONELD: Robust Neural Network Output Enhancement for Active Lane Detection

Zhe Ming Chng, Joseph Mun Hung Lew, Jimmy Addison Lee

Responsive image

Auto-TLDR; Real-Time Robust Neural Network Output Enhancement for Active Lane Detection

Slides Poster Similar

Accurate lane detection is critical for navigation in autonomous vehicles, particularly the active lane which demarcates the single road space that the vehicle is currently traveling on. Recent state-of-the-art lane detection algorithms utilize convolutional neural networks (CNNs) to train deep learning models on popular benchmarks such as TuSimple and CULane. While each of these models works particularly well on train and test inputs obtained from the same dataset, the performance drops significantly on unseen datasets of different environments. In this paper, we present a real-time robust neural network output enhancement for active lane detection (RONELD) method to identify, track, and optimize active lanes from deep learning probability map outputs. We first adaptively extract lane points from the probability map outputs, followed by detecting curved and straight lanes before using weighted least squares linear regression on straight lanes to fix broken lane edges resulting from fragmentation of edge maps in real images. Lastly, we hypothesize true active lanes through tracking preceding frames. Experimental results demonstrate an up to two-fold increase in accuracy using RONELD on cross-dataset validation tests.

Tracking Fast Moving Objects by Segmentation Network

Ales Zita, Filip Sroubek

Responsive image

Auto-TLDR; Fast Moving Objects Tracking by Segmentation Using Deep Learning

Slides Poster Similar

Tracking Fast Moving Objects (FMO), which appear as blurred streaks in video sequences, is a difficult task for standard trackers, as the object position does not overlap in consecutive video frames and texture information of the objects is blurred. Up-to-date approaches tuned for this task are based on background subtraction with a static background and slow deblurring algorithms. In this article, we present a tracking-by-segmentation approach implemented using modern deep learning methods that perform near real-time tracking on real-world video sequences. We have developed a physically plausible FMO sequence generator to be a robust foundation for our training pipeline and demonstrate straightforward network adaptation for different FMO scenarios with varying foreground.

Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Luigi Di Stefano

Responsive image

Auto-TLDR; Automated Deep Learning for Robotic Grasping Applications

Slides Poster Similar

In this paper we investigate how to effectively deploy deep learning in practical industrial settings, such as robotic grasping applications. When a deep-learning based solution is proposed, usually lacks of any simple method to generate the training data. In the industrial field, where automation is the main goal, not bridging this gap is one of the main reasons why deep learning is not as widespread as it is in the academic world. For this reason, in this work we developed a system composed by a 3-DoF Pose Estimator based on Convolutional Neural Networks (CNNs) and an effective procedure to gather massive amounts of training images in the field with minimal human intervention. By automating the labeling stage, we also obtain very robust systems suitable for production-level usage. An open source implementation of our solution is provided, alongside with the dataset used for the experimental evaluation.

Vacant Parking Space Detection Based on Task Consistency and Reinforcement Learning

Manh Hung Nguyen, Tzu-Yin Chao, Ching-Chun Huang

Responsive image

Auto-TLDR; Vacant Space Detection via Semantic Consistency Learning

Slides Poster Similar

In this paper, we proposed a novel task-consistency learning method that allows training a vacant space detection network (target task) based on the logistic consistency with the semantic outcomes from a naive flow-based motion behavior classifier (source task) in a parking lot. By well designing the reward mechanism upon semantic consistency, we show the possibility to train the target network in a reinforcement learning setting. Compared with conventional supervised detection methods, the major contribution of this work is to learn a vacant space detector via semantic consistency rather than supervised labels. The dynamic learning property may make the proposed detector been deployed in different lots easily without heavy training loads. The experiments show that based on the task consistency rewards from the motion behavior classifier, the vacant space detector can be trained successfully.

LFIR2Pose: Pose Estimation from an Extremely Low-Resolution FIR Image Sequence

Saki Iwata, Yasutomo Kawanishi, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase, Tomoyoshi Aizawa

Responsive image

Auto-TLDR; LFIR2Pose: Human Pose Estimation from a Low-Resolution Far-InfraRed Image Sequence

Slides Poster Similar

In this paper, we propose a method for human pose estimation from a Low-resolution Far-InfraRed (LFIR) image sequence captured by a 16 × 16 FIR sensor array. Human body estimation from such a single LFIR image is a hard task. For training the estimation model, annotation of the human pose to the images is also a difficult task for human. Thus, we propose the LFIR2Pose model which accepts a sequence of LFIR images and outputs the human pose of the last frame, and also propose an automatic annotation system for the model training. Additionally, considering that the scale of human body motion is largely different among body parts, we also propose a loss function focusing on the difference. Through an experiment, we evaluated the human pose estimation accuracy using an original data set, and confirmed that human pose can be estimated accurately from an LFIR image sequence.

IPN Hand: A Video Dataset and Benchmark for Real-Time Continuous Hand Gesture Recognition

Gibran Benitez-Garcia, Jesus Olivares-Mercado, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; IPN Hand: A Benchmark Dataset for Continuous Hand Gesture Recognition

Slides Poster Similar

Continuous hand gesture recognition (HGR) is an essential part of human-computer interaction with a wide range of applications in the automotive sector, consumer electronics, home automation, and others. In recent years, accurate and efficient deep learning models have been proposed for HGR. However, in the research community, the current publicly available datasets lack real-world elements needed to build responsive and efficient HGR systems. In this paper, we introduce a new benchmark dataset named IPN Hand with sufficient size, variation, and real-world elements able to train and evaluate deep neural networks. This dataset contains more than 4 000 gesture samples and 800 000 RGB frames from 50 distinct subjects. We design 13 different static and dynamic gestures focused on interaction with touchless screens. We especially consider the scenario when continuous gestures are performed without transition states, and when subjects perform natural movements with their hands as non-gesture actions. Gestures were collected from about 30 diverse scenes, with real-world variation in background and illumination. With our dataset, the performance of three 3D-CNN models is evaluated on the tasks of isolated and continuous real-time HGR. Furthermore, we analyze the possibility of increasing the recognition accuracy by adding multiple modalities derived from RGB frames, i.e., optical flow and semantic segmentation, while keeping the real-time performance of the 3D-CNN model. Our empirical study also provides a comparison with the publicly available nvGesture (NVIDIA) dataset. The experimental results show that the state-of-the-art ResNext-101 model decreases about 30% accuracy when using our real-world dataset, demonstrating that the IPN Hand dataset can be used as a benchmark, and may help the community to step forward in the continuous HGR.

Unsupervised Moving Object Detection through Background Models for PTZ Camera

Kimin Yun, Hyung-Il Kim, Kangmin Bae, Jongyoul Park

Responsive image

Auto-TLDR; Unsupervised Moving Object Detection in a PTZ Camera through Two Background Models

Slides Poster Similar

Moving object detection in a video plays an important role in many vision applications. Recently, moving object detection using appearance modeling based on a convolutional neural network has been actively developed. However, the CNN-based methods usually require the user's supervision of the first frame so that it becomes highly dependent on the training dataset. In contrast, the method of finding a foreground, which models a background occupying a large proportion in an image, can detect a moving object efficiently in an unsupervised manner. However, existing methods based on background modeling in a pan-tilt-zoom (PTZ) camera suffer many false positives or loss of moving objects due to the estimation error of camera motion. To overcome the aforementioned limitations, we propose a moving object detection method for a PTZ camera through two background models. In an unsupervised way, our method builds the two background models that have different roles: 1) a coarse background model for detecting large changes, and 2) a fine background model for detecting small changes. In more detail, the coarse background model builds a block-based Gaussian model, and the fine model builds a sample consensus model. Both models are adaptively updated according to the estimated camera motion in the video recorded by a PTZ camera. Then, each foreground result from two background models is incorporated to fill the moving object region. Through experiments, the proposed method achieves better performance than the state-of-the-art methods and operates in real-time without parallel processing. In addition, we showed the effectiveness of the proposed model through improved results of moving object detection through combination with the latest supervised method.

Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem Formulation

Dimche Kostadinov, Davide Scarammuza

Responsive image

Auto-TLDR; Unsupervised Representation Learning from Local Event Data for Pattern Recognition

Slides Poster Similar

Event-based cameras record asynchronous streamof per-pixel brightness changes. As such, they have numerous advantages over the common frame-based cameras, including high temporal resolution, high dynamic range, and no motion blur. Due to the asynchronous nature, efficient learning of compact representation for event data is challenging. While the extend to which the spatial and temporal event "information" is useful for pattern recognition tasks is not fully explored. In this paper, we focus on single layer architectures. We analyze the performance of two general problem formulations,i.e., the direct and the inverse, for unsupervised feature learning from local event data,i.e., local volumes of events that are described in space and time. We identify and show the main advantages of each approach. Theoretically, we analyze guarantees for local optimal solution, possibility for asynchronous and parallel parameter update as well as the computational complexity. We present numerical experiments for the task of object recognition, where we evaluate the solution under the direct and the inverse problem.We give a comparison with the state-of-the-art methods. Our empirical results highlight the advantages of the both approaches for representation learning from event data. Moreover, we show improvements of up to 9% in the recognition accuracy compared to the state-of-the-art methods from the same class of methods.

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

Temporal Pulses Driven Spiking Neural Network for Time and Power Efficient Object Recognition in Autonomous Driving

Wei Wang, Shibo Zhou, Jingxi Li, Xiaohua Li, Junsong Yuan, Zhanpeng Jin

Responsive image

Auto-TLDR; Spiking Neural Network for Real-Time Object Recognition on Temporal LiDAR Pulses

Slides Poster Similar

Accurate real-time object recognition from sensory data has long been a crucial and challenging task for autonomous driving. Even though deep neural networks (DNNs) have been widely applied in this area, their considerable processing latency, power consumption as well as computational complexity have been challenging issues for real-time autonomous driving applications. In this paper, we propose an approach to address the real-time object recognition problem utilizing spiking neural networks (SNNs). The proposed SNN model works directly with raw temporal LiDAR pulses without the pulse-to-point cloud preprocessing procedure, which can significantly reduce delay and power consumption. Being evaluated on various datasets derived from LiDAR and dynamic vision sensor (DVS), including Sim LiDAR, KITTI, and DVS-barrel, our proposed model has shown remarkable time and power efficiency, while achieving comparable recognition performance as the state-of-the-art methods. This paper highlights the SNN's great potentials in autonomous driving and related applications. To the best of our knowledge, this is the first attempt to use SNN to directly perform time and energy efficient object recognition on temporal LiDAR pulses in the setting of autonomous driving.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Smart Inference for Multidigit Convolutional Neural Network Based Barcode Decoding

Duy-Thao Do, Tolcha Yalew, Tae Joon Jun, Daeyoung Kim

Responsive image

Auto-TLDR; Smart Inference for Barcode Decoding using Deep Convolutional Neural Network

Slides Poster Similar

Barcodes are ubiquitous and have been used in most of critical daily activities for decades. However, most of traditional decoders require well-founded barcode under a relatively standard condition. While wilder conditioned barcodes such as underexposed, occluded, blurry, wrinkled and rotated are commonly captured in reality, those traditional decoders show weakness of recognizing. Several works attempted to solve those challenging barcodes, but many limitations still exist. This work aims to solve the decoding problem using deep convolutional neural network with the possibility of running on portable devices. Firstly, we proposed a special modification of inference based on the feature of having checksum and test-time augmentation, named as Smart Inference (SI) in prediction phase of a trained model. SI considerably boosts accuracy and reduces the false prediction for trained models. Secondly, we have created a large practical evaluation dataset of real captured 1D barcode under various challenging conditions to test our methods vigorously, which is publicly available for other researchers. The experiments' results demonstrated the SI effectiveness with the highest accuracy of 95.85% which outperformed many existing decoders on the evaluation set. Finally, we successfully minimized the best model by knowledge distillation to a shallow model which is shown to have high accuracy (90.85%) with good inference speed of 34.2 ms per image on a real edge device.

Real-Time Monocular Depth Estimation with Extremely Light-Weight Neural Network

Mian Jhong Chiu, Wei-Chen Chiu, Hua-Tsung Chen, Jen-Hui Chuang

Responsive image

Auto-TLDR; Real-Time Light-Weight Depth Prediction for Obstacle Avoidance and Environment Sensing with Deep Learning-based CNN

Slides Poster Similar

Obstacle avoidance and environment sensing are crucial applications in autonomous driving and robotics. Among all types of sensors, RGB camera is widely used in these applications as it can offer rich visual contents with relatively low-cost, and using a single image to perform depth estimation has become one of the main focuses in resent research works. However, prior works usually rely on highly complicated computation and power-consuming GPU to achieve such task; therefore, we focus on developing a real-time light-weight system for depth prediction in this paper. Based on the well-known encoder-decoder architecture, we propose a supervised learning-based CNN with detachable decoders that produce depth predictions with different scales. We also formulate a novel log-depth loss function that computes the difference of predicted depth map and ground truth depth map in log space, so as to increase the prediction accuracy for nearby locations. To train our model efficiently, we generate depth map and semantic segmentation with complex teacher models. Via a series of ablation studies and experiments, it is validated that our model can efficiently performs real-time depth prediction with only 0.32M parameters, with the best trained model outperforms previous works on KITTI dataset for various evaluation matrices.

Video Analytics Gait Trend Measurement for Fall Prevention and Health Monitoring

Lawrence O'Gorman, Xinyi Liu, Md Imran Sarker, Mariofanna Milanova

Responsive image

Auto-TLDR; Towards Health Monitoring of Gait with Deep Learning

Slides Poster Similar

We design a video analytics system to measure gait over time and detect trend and outliers in the data. The purpose is for health monitoring, the thesis being that trend especially can lead to early detection of declining health and be used to prevent accidents such as falls in the elderly. We use the OpenPose deep learning tool for recognizing the back and neck angle features of walking people, and measure speed as well. Trend and outlier statistics are calculated upon time series of these features. A challenge in this work is lack of testing data of decaying gait. We first designed experiments to measure consistency of the system on a healthy population, then analytically altered this real data to simulate gait decay. Results on about 4000 gait samples of 50 people over 3 months showed good separation of healthy gait subjects from those with trend or outliers, and furthermore the trend measurement was able to detect subtle decay in gait not easily discerned by the human eye.

Deep Real-Time Hand Detection Using CFPN on Embedded Systems

Pirdiansyah Hendri, Jun-Wei Hsieh, Ping Yang Chen

Responsive image

Auto-TLDR; Concatenated Feature Pyramid Network for Small Hand Detection on Embedded Devices

Slides Poster Similar

Real-time HI (Human Interface) systems need accurate and efficient hand detection models to meet the limited resources in budget, dimension, memory, computing, and electric power. In recent years, object detection became a less challenging task with the latest deep CNN-based state-of-the-art models, i.e., RCNN, SSD, and YOLO; however, these models cannot provide the desired efficiency and accuracy for HI systems on embedded devices due to their complex time-consuming architecture. In addition, the detection of small hands (<30x30 pixels) is still a challenging task for all the above existing methods. Thus, we propose a shallow model named Concatenated Feature Pyramid Network (CFPN) to provide above mentioned performance for small hand detection. The superiority of CFPN is confirmed on a HandFlow dataset with mAP:0.5 of 95.6 and FPS of 33 on Nvidia TX2. The COCO dataset is also used to compare with other state-of-the-art method and shows the highest efficiency and accuracy with the proposed CFPN model. Thus we conclude that the proposed model is useful for real-life small hand detection on embedded devices.

5D Light Field Synthesis from a Monocular Video

Kyuho Bae, Andre Ivan, Hajime Nagahara, In Kyu Park

Responsive image

Auto-TLDR; Synthesis of Light Field Video from Monocular Video using Deep Learning

Slides Similar

Commercially available light field cameras have difficulty in capturing 5D (4D + time) light field videos. They can only capture still light filed images or are excessively expensive for normal users to capture the light field video. To tackle this problem, we propose a deep learning-based method for synthesizing a light field video from a monocular video. We propose a new synthetic light field video dataset that renders photorealistic scenes using Unreal Engine because no light field video dataset is available. The proposed deep learning framework synthesizes the light field video with a full set (9x9) of sub-aperture images from a normal monocular video. The proposed network consists of three sub-networks, namely, feature extraction, 5D light field video synthesis, and temporal consistency refinement. Experimental results show that our model can successfully synthesize the light field video for synthetic and real scenes and outperforms the previous frame-by-frame method quantitatively and qualitatively.

AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and Graphical Features

Maximilian Kraus, Seyed Majid Azimi, Emec Ercelik, Reza Bahmanyar, Peter Reinartz, Alois Knoll

Responsive image

Auto-TLDR; AerialMPTNet: A novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features

Slides Poster Similar

Multi-pedestrian tracking in aerial imagery has several applications such as large-scale event monitoring, disaster management, search-and-rescue missions, and as input into predictive crowd dynamic models. Due to the challenges such as the large number and the tiny size of the pedestrians (e.g., 4 x 4 pixels) with their similar appearances as well as different scales and atmospheric conditions of the images with their extremely low frame rates (e.g., 2 fps), current state-of-the-art algorithms including the deep learning-based ones are unable to perform well. In this paper, we propose AerialMPTNet, a novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features from a Siamese Neural Network, movement predictions from a Long Short-Term Memory, and pedestrian interconnections from a GraphCNN. In addition, to address the lack of diverse aerial multi-pedestrian tracking datasets, we introduce the Aerial Multi-Pedestrian Tracking (AerialMPT) dataset consisting of 307 frames and 44,740 pedestrians annotated. To the best of our knowledge, AerialMPT is the largest and most diverse dataset to this date and will be released publicly. We evaluate AerialMPTNet on AerialMPT and KIT AIS, and benchmark with several state-of-the-art tracking methods. Results indicate that AerialMPTNet significantly outperforms other methods on accuracy and time-efficiency.

Anomaly Detection, Localization and Classification for Railway Inspection

Riccardo Gasparini, Andrea D'Eusanio, Guido Borghi, Stefano Pini, Giuseppe Scaglione, Simone Calderara, Eugenio Fedeli, Rita Cucchiara

Responsive image

Auto-TLDR; Anomaly Detection and Localization using thermal images in the lowlight environment

Slides Similar

The ability to detect, localize and classify objects that are anomalies is a challenging task in the computer vision community. In this paper, we tackle these tasks developing a framework to automatically inspect the railway during the night. Specifically, it is able to predict the presence, the image coordinates and the class of obstacles. To deal with the lowlight environment, the framework is based on thermal images and consists of three different modules that address the problem of detecting anomalies, predicting their image coordinates and classifying them. Moreover, due to the absolute lack of publicly released datasets collected in the railway context for anomaly detection, we introduce a new multi-modal dataset, acquired from a rail drone, used to evaluate the proposed framework. Experimental results confirm the accuracy of the framework and its suitability, in terms of computational load, performance, and inference time, to be implemented on a self-powered inspection system.

Siamese Fully Convolutional Tracker with Motion Correction

Mathew Francis, Prithwijit Guha

Responsive image

Auto-TLDR; A Siamese Ensemble for Visual Tracking with Appearance and Motion Components

Slides Poster Similar

Visual tracking algorithms use cues like appearance, structure, motion etc. for locating an object in a video. We propose an ensemble tracker with appearance and motion components. A siamese tracker that learns object appearance from a static image and motion vectors computed between consecutive frames with a flow network forms the ensemble. Motion predicted object localization is used to correct the appearance component in the ensemble. Complementary nature of the components bring performance improvement as observed in experiments performed on VOT2018 and VOT2019 datasets.

Coarse-To-Fine Foreground Segmentation Based on Co-Occurrence Pixel-Block and Spatio-Temporal Attention Model

Xinyu Liu, Dong Liang

Responsive image

Auto-TLDR; Foreground Segmentation from coarse to Fine Using Co-occurrence Pixel-Block Model for Dynamic Scene

Slides Poster Similar

Foreground segmentation in dynamic scene is an important task in video surveillance. The unsupervised background subtraction method based on background statistics modeling has difficulties in updating. On the other hand, the supervised foreground segmentation method based on deep learning relies on the large-scale of accurately annotated training data, which limits its cross-scene performance. In this paper, we propose a foreground segmentation method from coarse to fine. First, a across-scenes trained Spatio-Temporal Attention Model (STAM) is used to achieve coarse segmentation, which does not require training on specific scene. Then the coarse segmentation is used as a reference to help Co-occurrence Pixel-Block Model (CPB) complete the fine segmentation, and at the same time help CPB to update its background model. This method is more flexible than those deep-learning-based methods which depends on the specific-scene training, and realizes the accurate online dynamic update of the background model. Experimental results on WallFlower and LIMU validate our method outperforms STAM, CPB and other methods of participating in comparison.

Robust Visual Object Tracking with Two-Stream Residual Convolutional Networks

Ning Zhang, Jingen Liu, Ke Wang, Dan Zeng, Tao Mei

Responsive image

Auto-TLDR; Two-Stream Residual Convolutional Network for Visual Tracking

Slides Poster Similar

The current deep learning based visual tracking approaches have been very successful by learning the target classification and/or estimation model from a large amount of supervised training data in offline mode. However, most of them can still fail in tracking objects due to some more challenging issues such as dense distractor objects, confusing background, motion blurs, and so on. Inspired by the human ``visual tracking'' capability which leverages motion cues to distinguish the target from the background, we propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking, which successfully exploits both appearance and motion features for model update. Our TS-RCN can be integrated with existing deep learning based visual trackers. To further improve the tracking performance, we adopt a ``wider'' residual network ResNeXt as its feature extraction backbone. To the best of our knowledge, TS-RCN is the first end-to-end trainable two-stream visual tracking system, which makes full use of both appearance and motion features of the target. We have extensively evaluated the TS-RCN on most widely used benchmark datasets including VOT2018, VOT2019, and GOT-10K. The experiment results have successfully demonstrated that our two-stream model can greatly outperform the appearance based tracker, and it also achieves state-of-the-art performance. The tracking system can run at up to 38.1 FPS.

Real Time Fencing Move Classification and Detection at Touch Time During a Fencing Match

Cem Ekin Sunal, Chris G. Willcocks, Boguslaw Obara

Responsive image

Auto-TLDR; Fencing Body Move Classification and Detection Using Deep Learning

Slides Similar

Fencing is a fast-paced sport played with swords which are Epee, Foil, and Saber. However, such fast-pace can cause referees to make wrong decisions. Review of slow-motion camera footage in tournaments helps referees’ decision making, but it interrupts the match and may not be available for every organization. Motivated by the need for better decision making, analysis, and availability, we introduce the first fully-automated deep learning classification and detection system for fencing body moves at the moment a touch is made. This is an important step towards creating a fencing analysis system, with player profiling and decision tools that will benefit the fencing community. The proposed architecture combines You Only Look Once version three (YOLOv3) with a ResNet-34 classifier, trained on ImageNet settings to obtain 83.0\% test accuracy on the fencing moves. These results are exciting development in the sport, providing immediate feedback and analysis along with accessibility, hence making it a valuable tool for trainers and fencing match referees.

Human Segmentation with Dynamic LiDAR Data

Tao Zhong, Wonjik Kim, Masayuki Tanaka, Masatoshi Okutomi

Responsive image

Auto-TLDR; Spatiotemporal Neural Network for Human Segmentation with Dynamic Point Clouds

Slides Similar

Consecutive LiDAR scans and depth images compose dynamic 3D sequences, which contain more abundant spatiotemporal information than a single frame. Similar to the development history of image and video perception, dynamic 3D sequence perception starts to come into sight after inspiring research on static 3D data perception. This work proposes a spatiotemporal neural network for human segmentation with the dynamic LiDAR point clouds. It takes a sequence of depth images as input. It has a two-branch structure, i.e., the spatial segmentation branch and the temporal velocity estimation branch. The velocity estimation branch is designed to capture motion cues from the input sequence and then propagates them to the other branch. So that the segmentation branch segments humans according to both spatial and temporal features. These two branches are jointly learned on a generated dynamic point cloud data set for human recognition. Our works fill in the blank of dynamic point cloud perception with the spherical representation of point cloud and achieves high accuracy. The experiments indicate that the introduction of temporal feature benefits the segmentation of dynamic point cloud perception.

Deep Gait Relative Attribute Using a Signed Quadratic Contrastive Loss

Yuta Hayashi, Shehata Allam, Yasushi Makihara, Daigo Muramatsu, Yasushi Yagi

Responsive image

Auto-TLDR; Signal-Contrastive Loss for Gait Attributes Estimation

Similar

This paper presents a deep learning-based method to estimate gait attributes (e.g., stately, cool, relax, etc.). Similarly to the existing studies on relative attribute, human perception-based annotations on the gait attributes are given to pairs of gait videos (i.e., the first one is better, tie, and the second one is better), and the relative annotations are utilized to train a ranking model of the gait attribute. More specifically, we design a Siamese (i.e., two-stream) network which takes a pair of gait inputs and output gait attribute score for each. We then introduce a suitable loss function called a signed contrastive loss to train the network parameters with the relative annotation. Unlike the existing loss functions for learning to rank does not inherent a nice property of a quadratic contrastive loss, the proposed signed quadratic contrastive loss function inherents the nice property. The quantitative evaluation results reveal that the proposed method shows better or comparable accuracies of relative attribute prediction against the baseline methods.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

An Adaptive Fusion Model Based on Kalman Filtering and LSTM for Fast Tracking of Road Signs

Chengliang Wang, Xin Xie, Chao Liao

Responsive image

Auto-TLDR; Fusion of ThunderNet and Region Growing Detector for Road Sign Detection and Tracking

Slides Poster Similar

The detection and tracking of road signs plays a critical role in various autopilot application. Utilizing convolutional neural networks(CNN) mostly incurs a big run-time overhead in feature extraction and object localization. Although Klaman filter(KF) is a commonly-used tracker, it is likely to be impacted by omitted objects in the detection step. In this paper, we designed a high-efficient detector that combines ThunderNet and Region Growing Detector(RGD) to detect road signs, and built a fusion model of long short term memory network (LSTM) and KF in the state estimation and the color histogram. The experimental results demonstrate that the proposed method improved the state estimation accuracy by 6.4% and enhanced the Frames Per Second(FPS) to 41.

Semantic Segmentation for Pedestrian Detection from Motion in Temporal Domain

Guo Cheng, Jiang Yu Zheng

Responsive image

Auto-TLDR; Motion Profile: Recognizing Pedestrians along with their Motion Directions in a Temporal Way

Slides Poster Similar

In autonomous driving, state-of-the-art methods detect pedestrian through appearance in 2-D spatial images. However, these approaches are typically time-consuming because of the complexity of algorithms to cope with large variations in shape, pose, action, and illumination. They also fall short of capturing temporal continuity in motion trace. In a completely different approach, this work recognizes pedestrians along with their motion directions in a temporal way. By projecting a driving video to a 2-D temporal image called Motion Profile (MP), we can robustly distinguish pedestrian in motion and standing-still against smooth background motion. To ensure non-redundant data processing of deep network on a compact motion profile further, a novel temporal-shift memory (TSM) model is developed to perform deep learning of sequential input in linear processing time. In experiments containing various pedestrian motion from sensors such as video and LiDAR, we demonstrate that, with the data size around 3/720th of video volume, this motion-based method can reach the detecting rate of pedestrians at 90% in near and mid-range on the road. With a super-fast processing speed and good accuracy, this method is promising for intelligent vehicles.

Utilising Visual Attention Cues for Vehicle Detection and Tracking

Feiyan Hu, Venkatesh Gurram Munirathnam, Noel E O'Connor, Alan Smeaton, Suzanne Little

Responsive image

Auto-TLDR; Visual Attention for Object Detection and Tracking in Driver-Assistance Systems

Slides Poster Similar

Advanced Driver-Assistance Systems (ADAS) have been attracting attention from many researchers. Vision based sensors are the closest way to emulate human driver visual behavior while driving. In this paper, we explore possible ways to use visual attention (saliency) for object detection and tracking. We investigate: 1) How a visual attention map such as a subjectness attention or saliency map and an objectness attention map can facilitate region proposal generation in a 2-stage object detector; 2) How a visual attention map can be used for tracking multiple objects. We propose a neural network that can simultaneously detect objects as and generate objectness and subjectness maps to save computational power. We further exploit the visual attention map during tracking using a sequential Monte Carlo probability hypothesis density (PHD) filter. The experiments are conducted on KITTI and DETRAC datasets. The use of visual attention and hierarchical features has shown a considerable improvement of≈8% in object detection which effectively increased tracking performance by≈4% on KITTI dataset.

Fast Approximate Modelling of the Next Combination Result for Stopping the Text Recognition in a Video

Konstantin Bulatov, Nadezhda Fedotova, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; Stopping Video Stream Recognition of a Text Field Using Optimized Computation Scheme

Slides Poster Similar

In this paper, we consider a task of stopping the video stream recognition process of a text field, in which each frame is recognized independently and the individual results are combined together. The video stream recognition stopping problem is an under-researched topic with regards to computer vision, but its relevance for building high-performance video recognition systems is clear. Firstly, we describe an existing method of optimally stopping such a process based on a modelling of the next combined result. Then, we describe approximations and assumptions which allowed us to build an optimized computation scheme and thus obtain a method with reduced computational complexity. The methods were evaluated for the tasks of document text field recognition and arbitrary text recognition in a video. The experimental comparison shows that the introduced approximations do not diminish the quality of the stopping method in terms of the achieved combined result precision, while dramatically reducing the time required to make the stopping decision. The results were consistent for both text recognition tasks.

TSDM: Tracking by SiamRPN++ with a Depth-Refiner and a Mask-Generator

Pengyao Zhao, Quanli Liu, Wei Wang, Qiang Guo

Responsive image

Auto-TLDR; TSDM: A Depth-D Tracker for 3D Object Tracking

Slides Poster Similar

In a generic object tracking, depth (D) information provides informative cues for foreground-background separation and target bounding box regression. However, so far, few trackers have used depth information to play the important role aforementioned due to the lack of a suitable model. In this paper, a RGB-D tracker named TSDM is proposed, which is composed of a Mask-generator (M-g), SiamRPN++ and a Depth-refiner (D-r). The M-g generates the background masks, and updates them as the target 3D position changes. The D-r optimizes the target bounding box estimated by SiamRPN++, based on the spatial depth distribution difference between the target and the surrounding background. Extensive evaluation on the Princeton Tracking Benchmark and the Visual Object Tracking challenge shows that our tracker outperforms the state-of-the-art by a large margin while achieving 23 FPS. In addition, a light-weight variant can run at 31 FPS and thus it is practical for real world applications. Code and models of TSDM are available at https://github.com/lql-team/TSDM.

Lightweight Low-Resolution Face Recognition for Surveillance Applications

Yoanna Martínez-Díaz, Heydi Mendez-Vazquez, Luis S. Luevano, Leonardo Chang, Miguel Gonzalez-Mendoza

Responsive image

Auto-TLDR; Efficiency of Lightweight Deep Face Networks on Low-Resolution Surveillance Imagery

Slides Poster Similar

Typically, real-world requirements to deploy face recognition models in unconstrained surveillance scenarios demand to identify low-resolution faces with extremely low computational cost. In the last years, several methods based on complex deep learning models have been proposed with promising recognition results but at a high computational cost. Inspired by the compactness and computation efficiency of lightweight deep face networks and their high accuracy on general face recognition tasks, in this work we propose to benchmark two recently introduced lightweight face models on low-resolution surveillance imagery to enable efficient system deployment. In this way, we conduct a comprehensive evaluation on the two typical settings: LR-to-HR and LR-to-LR matching. In addition, we investigate the effect of using trained models with down-sampled synthetic data from high-resolution images, as well as the combination of different models, for face recognition on real low-resolution images. Experimental results show that the used lightweight face models achieve state-of-the-art results on low-resolution benchmarks with low memory footprint and computational complexity. Moreover, we observed that combining models trained with different degradations improves the recognition accuracy on low-resolution surveillance imagery, which is feasible due to their low computational cost.

Toward Building a Data-Driven System ForDetecting Mounting Actions of Black Beef Cattle

Yuriko Kawano, Susumu Saito, Nakano Teppei, Ikumi Kondo, Ryota Yamazaki, Hiromi Kusaka, Minoru Sakaguchi, Tetsuji Ogawa

Responsive image

Auto-TLDR; Cattle Mounting Action Detection Using Crowdsourcing and Pattern Recognition

Poster Similar

This paper tackles on building a pattern recognition system that detects whether a pair of Japanese black beefs captured in a given image region is in a “mounting” action, which is known to be a sign critically important to be detected for cattle farmers before artificial insemination. The “mounting” action refers to a cattle’s action where a cow bends over another cow usually when either cow is in estrus. Although a pattern recognition-based approach for detecting such an action would be appreciated as being low-cost and robust, it had not been discussed much due to the complexity of the system architecture, unavailability of datasets, etc. This study presents i) our image dataset construction technique that exploits both object detection algorithm and crowdsourcing for collecting cattle pair images with labels of either “mounting” or not; and ii) a system for detecting the mounting action from any given image of a cattle pair, developed based on the dataset. Starting with an algorithm for extracting regions of cattle pairs from a video frame based on intersection of single cattle regions, we then designed our crowdsourcing microtask in which crowd workers were given simple guidelines to annotate mounting-action-relevant labels to the extracted regions, to finally obtain a dataset. We also introduce our tandem-layered pattern recognition system trained with the dataset. The system is comprised of two serially-connected machine learning components, and is capable of more robustly detecting mounting actions even with a small amount of training data than a normal end-to-end neural network. Experimental comparisons demonstrated that our detection system was capable of detecting estrus with a precision rate of 80% and a recall rate of 76%.

Probability Guided Maxout

Claudio Ferrari, Stefano Berretti, Alberto Del Bimbo

Responsive image

Auto-TLDR; Probability Guided Maxout for CNN Training

Slides Poster Similar

In this paper, we propose an original CNN training strategy that brings together ideas from both dropout-like regularization methods and solutions that learn discriminative features. We propose a dropping criterion that, differently from dropout and its variants, is deterministic rather than random. It grounds on the empirical evidence that feature descriptors with larger $L2$-norm and highly-active nodes are strongly correlated to confident class predictions. Thus, our criterion guides towards dropping a percentage of the most active nodes of the descriptors, proportionally to the estimated class probability. We simultaneously train a per-sample scaling factor to balance the expected output across training and inference. This further allows us to keep high the descriptor's L2-norm, which we show enforces confident predictions. The combination of these two strategies resulted in our ``Probability Guided Maxout'' solution that acts as a training regularizer. We prove the above behaviors by reporting extensive image classification results on the CIFAR10, CIFAR100, and Caltech256 datasets.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

Reducing False Positives in Object Tracking with Siamese Network

Takuya Ogawa, Takashi Shibata, Shoji Yachida, Toshinori Hosoi

Responsive image

Auto-TLDR; Robust Long-Term Object Tracking with Adaptive Search based on Motion Models

Slides Poster Similar

We have developed a robust long-term object tracking method that resolves the fundamental cause of the drift and loss of a target in visual object tracking. The proposed method consists of “sampling area extension”, which prevents a tracking result from drifting to other objects by learning false positive samples in advance (before they enter the search region of the target), and “adaptive search based on motion models”, which prevents a tracking result from drifting to other objects and avoids the loss of the target by using not only appearance features but also motion models to adaptively search for the target. Experiments conducted on long-term tracking dataset showed that our first technique improved robustness by 16.6% while the second technique improved robustness by 15.3%. By combining both, our method achieved 21.7% and 9.1% improvement for the robustness and precision, and the processing speed became 3.3 times faster. Additional experiments showed that our method achieved the top robustness among state-of-the-art methods on three long-term tracking datasets. These findings demonstrate that our method is effective for long-term object tracking and that its performance and speed are promising for use in practical applications of various technologies underlying object tracking.

Video Lightening with Dedicated CNN Architecture

Li-Wen Wang, Wan-Chi Siu, Zhi-Song Liu, Chu-Tak Li, P. K. Daniel Lun

Responsive image

Auto-TLDR; VLN: Video Lightening Network for Driving Assistant Systems in Dark Environment

Slides Poster Similar

Darkness brings us uncertainty, worry and low confidence. This is a problem not only applicable to us walking in a dark evening but also for drivers driving a car on the road with very dim or even without lighting condition. To address this problem, we propose a new CNN structure named as Video Lightening Network (VLN) that regards the low-light enhancement as a residual learning task, which is useful as reference to indirectly lightening the environment, or for vision-based application systems, such as driving assistant systems. The VLN consists of several Lightening Back-Projection (LBP) and Temporal Aggregation (TA) blocks. Each LBP block enhances the low-light frame by domain transfer learning that iteratively maps the frame between the low- and normal-light domains. A TA block handles the motion among neighboring frames by investigating the spatial and temporal relationships. Several TAs work in a multi-scale way, which compensates the motions at different levels. The proposed architecture has a consistent enhancement for different levels of illuminations, which significantly increases the visual quality even in the extremely dark environment. Extensive experimental results show that the proposed approach outperforms other methods under both objective and subjective metrics.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Cross-People Mobile-Phone Based Airwriting Character Recognition

Yunzhe Li, Hui Zheng, He Zhu, Haojun Ai, Xiaowei Dong

Responsive image

Auto-TLDR; Cross-People Airwriting Recognition via Motion Sensor Signal via Deep Neural Network

Slides Poster Similar

Airwriting using mobile phones has many applications in human-computer interaction. However, the recognition of airwriting character needs a lot of training data from user, which brings great difficulties to the pratical application. The model learnt from a specific person often cannot yield satisfied results when used on another person. The data gap between people is mainly caused by the following factors: personal writing styles, mobile phone sensors, and ways to hold mobile phones. To address the cross-people problem, we propose a deep neural network(DNN) that combines convolutional neural network(CNN) and bilateral long short-term memory(BLSTM). In each layer of the network, we also add an AdaBN layer which is able to increase the generalization ability of the DNN. Different from the original AdaBN method, we explore the feasibility for semi-supervised learning. We implement it to our design and conduct comprehensive experiments. The evaluation results show that our system can achieve an accuracy of 99% for recognition and an improvement of 10% on average for transfer learning between various factors such as people, devices and postures. To the best of our knowledge, our work is the first to implement cross-people airwriting recognition via motion sensor signal, which is a fundamental step towards ubiquitous sensing.

AttendAffectNet: Self-Attention Based Networks for Predicting Affective Responses from Movies

Thi Phuong Thao Ha, Bt Balamurali, Herremans Dorien, Roig Gemma

Responsive image

Auto-TLDR; AttendAffectNet: A Self-Attention Based Network for Emotion Prediction from Movies

Slides Poster Similar

In this work, we propose different variants of the self-attention based network for emotion prediction from movies, which we call AttendAffectNet. We take both audio and video into account and incorporate the relation among multiple modalities by applying self-attention mechanism in a novel manner into the extracted features for emotion prediction. We compare it to the typically temporal integration of the self-attention based model, which in our case, allows to capture the relation of temporal representations of the movie while considering the sequential dependencies of emotion responses. We demonstrate the effectiveness of our proposed architectures on the extended COGNIMUSE dataset [1], [2] and the MediaEval 2016 Emotional Impact of Movies Task [3], which consist of movies with emotion annotations. Our results show that applying the self-attention mechanism on the different audio-visual features, rather than in the time domain, is more effective for emotion prediction. Our approach is also proven to outperform state-of-the-art models for emotion prediction.

Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster Similar

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

Uncertainty-Aware Data Augmentation for Food Recognition

Eduardo Aguilar, Bhalaji Nagarajan, Rupali Khatun, Marc Bolaños, Petia Radeva

Responsive image

Auto-TLDR; Data Augmentation for Food Recognition Using Epistemic Uncertainty

Slides Poster Similar

Food recognition has recently attracted attention of many researchers. However, high food ambiguity, inter-class variability and intra-class similarity define a real challenge for the Deep learning and Computer Vision algorithms. In order to improve their performance, it is necessary to better understand what the model learns and, from this, to determine the type of data that should be additionally included for being the most beneficial to the training procedure. In this paper, we propose a new data augmentation strategy that estimates and uses the epistemic uncertainty to guide the model training. The method follows an active learning framework, where the new synthetic images are generated from the hard to classify real ones present in the training data based on the epistemic uncertainty. Hence, it allows the food recognition algorithm to focus on difficult images in order to learn their discriminatives features. On the other hand, avoiding data generation from images that do not contribute to the recognition makes it faster and more efficient. We show that the proposed method allows to improve food recognition and provides a better trade-off between micro- and macro-recall measures.

Object Detection Model Based on Scene-Level Region Proposal Self-Attention

Yu Quan, Zhixin Li, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Exploiting Semantic Informations for Object Detection

Slides Poster Similar

The improvement of object detection performance is mostly focused on the extraction of local information near the region of interest in the image, which results in detection performance in this area being unable to achieve the desired effect. First, a depth-wise separable convolution network(D_SCNet-127 R-CNN) is built on the backbone network. Considering the importance of scene and semantic informations for visual recognition, the feature map is sent into the branch of the semantic segmentation module, region proposal network module, and the region proposal self-attention module to build the network of scene-level and region proposal self-attention module. Second, a deep reinforcement learning was utilized to achieve accurate positioning of border regression, and the calculation speed of the whole model was improved through implementing a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental verification on MSCOCO17, VOC12, and Cityscapes datasets shows that the proposed method has good validity and scalability.

Polarimetric Image Augmentation

Marc Blanchon, Fabrice Meriaudeau, Olivier Morel, Ralph Seulin, Desire Sidibe

Responsive image

Auto-TLDR; Polarimetric Augmentation for Deep Learning in Robotics Applications

Poster Similar

This paper deals with new augmentation methods for an unconventional imaging modality sensitive to the physics of the observed scene called polarimetry. In nature, polarized light is obtained by reflection or scattering. Robotics applications in urban environments are subject to many obstacles that can be specular and therefore provide polarized light. These areas are prone to segmentation errors using standard modalities but could be solved using information carried by the polarized light. Deep Convolutional Neural Networks (DCNNs) have shown excellent segmentation results, but require a significant amount of data to achieve best performances. The lack of data is usually overcomed by using augmentation methods. However, unlike RGB images, polarization images are not only scalar (intensity) images and standard augmentation techniques cannot be applied straightforwardly. We propose enhancing deep learning models through a regularized augmentation procedure applied to polarimetric data in order to characterize scenes more effectively under challenging conditions. We subsequently observe an average of 18.1% improvement in IoU between not augmented and regularized training procedures on real world data.