IPN Hand: A Video Dataset and Benchmark for Real-Time Continuous Hand Gesture Recognition

Gibran Benitez-Garcia, Jesus Olivares-Mercado, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; IPN Hand: A Benchmark Dataset for Continuous Hand Gesture Recognition

Slides Poster

Continuous hand gesture recognition (HGR) is an essential part of human-computer interaction with a wide range of applications in the automotive sector, consumer electronics, home automation, and others. In recent years, accurate and efficient deep learning models have been proposed for HGR. However, in the research community, the current publicly available datasets lack real-world elements needed to build responsive and efficient HGR systems. In this paper, we introduce a new benchmark dataset named IPN Hand with sufficient size, variation, and real-world elements able to train and evaluate deep neural networks. This dataset contains more than 4 000 gesture samples and 800 000 RGB frames from 50 distinct subjects. We design 13 different static and dynamic gestures focused on interaction with touchless screens. We especially consider the scenario when continuous gestures are performed without transition states, and when subjects perform natural movements with their hands as non-gesture actions. Gestures were collected from about 30 diverse scenes, with real-world variation in background and illumination. With our dataset, the performance of three 3D-CNN models is evaluated on the tasks of isolated and continuous real-time HGR. Furthermore, we analyze the possibility of increasing the recognition accuracy by adding multiple modalities derived from RGB frames, i.e., optical flow and semantic segmentation, while keeping the real-time performance of the 3D-CNN model. Our empirical study also provides a comparison with the publicly available nvGesture (NVIDIA) dataset. The experimental results show that the state-of-the-art ResNext-101 model decreases about 30% accuracy when using our real-world dataset, demonstrating that the IPN Hand dataset can be used as a benchmark, and may help the community to step forward in the continuous HGR.

Similar papers

Recognizing American Sign Language Nonmanual Signal Grammar Errors in Continuous Videos

Elahe Vahdani, Longlong Jing, Ying-Li Tian, Matt Huenerfauth

Responsive image

Auto-TLDR; ASL-HW-RGBD: Recognizing Grammatical Errors in Continuous Sign Language

Slides Poster Similar

As part of the development of an educational tool that can help students achieve fluency in American Sign Language (ASL) through independent and interactive practice with immediate feedback, this paper introduces a near real-time system to recognize grammatical errors in continuous signing videos without necessarily identifying the entire sequence of signs. Our system automatically recognizes if a performance of ASL sentences contains grammatical errors made by ASL students. We first recognize the ASL grammatical elements including both manual gestures and nonmanual signals independently from multiple modalities (i.e. hand gestures, facial expressions, and head movements) by 3D-ResNet networks. Then the temporal boundaries of grammatical elements from different modalities are examined to detect ASL grammatical mistakes by using a sliding window-based approach. We have collected a dataset of continuous sign language, ASL-HW-RGBD, covering different aspects of ASL grammars for training and testing. Our system is able to recognize grammatical elements on ASL-HW-RGBD from manual gestures, facial expressions, and head movements and successfully detect 8 ASL grammatical mistakes.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

Continuous Sign Language Recognition with Iterative Spatiotemporal Fine-Tuning

Kenessary Koishybay, Medet Mukushev, Anara Sandygulova

Responsive image

Auto-TLDR; A Deep Neural Network for Continuous Sign Language Recognition with Iterative Gloss Recognition

Slides Poster Similar

This paper aims to develop a deep neural network for Continuous Sign Language Recognition (CSLR) with iterative Gloss Recognition (GR) fine-tuning. CSLR has been a popular research field in the last years and iterative optimization methods are well established. This paper introduces our proposed architecture involving Spatiotemporal feature-extraction model to segment useful ``gloss-unit" features and BiLSTM with CTC as a sequence model. Spatiotemporal Feature Extractor is used for both image features extraction and sequence length reduction. To this end, we compare different architectures for feature extraction and sequence model. In addition, we iteratively fine-tune feature extractor on gloss-unit video segments with alignments from the end2end model. During the iterative training, we use novel alignment correction technique, which is based on minimum transformations of Levenshtein distance. All the experiments were conducted on the RWTH-PHOENIX-Weather-2014 dataset.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

Temporal Binary Representation for Event-Based Action Recognition

Simone Undri Innocenti, Federico Becattini, Federico Pernici, Alberto Del Bimbo

Responsive image

Auto-TLDR; Temporal Binary Representation for Gesture Recognition

Slides Poster Similar

In this paper we present an event aggregation strategy to convert the output of an event camera into frames processable by traditional Computer Vision algorithms. The proposed method first generates sequences of intermediate binary representations, which are then losslessly transformed into a compact format by simply applying a binary-to-decimal conversion. This strategy allows us to encode temporal information directly into pixel values, which are then interpreted by deep learning models. We apply our strategy, called Temporal Binary Representation, to the task of Gesture Recognition, obtaining state of the art results on the popular DVS128 Gesture Dataset. To underline the effectiveness of the proposed method compared to existing ones, we also collect an extension of the dataset under more challenging conditions on which to perform experiments.

Depth Videos for the Classification of Micro-Expressions

Ankith Jain Rakesh Kumar, Bir Bhanu, Christopher Casey, Sierra Cheung, Aaron Seitz

Responsive image

Auto-TLDR; RGB-D Dataset for the Classification of Facial Micro-expressions

Slides Poster Similar

Facial micro-expressions are spontaneous, subtle, involuntary muscle movements occurring briefly on the face. The spotting and recognition of these expressions are difficult due to the subtle behavior, and the time duration of these expressions is about half a second, which makes it difficult for humans to identify them. These micro-expressions have many applications in our daily life, such as in the field of online learning, game playing, lie detection, and therapy sessions. Traditionally, researchers use RGB images/videos to spot and classify these micro-expressions, which pose challenging problems, such as illumination, privacy concerns and pose variation. The use of depth videos solves these issues to some extent, as the depth videos are not susceptible to the variation in illumination. This paper describes the collection of a first RGB-D dataset for the classification of facial micro-expressions into 6 universal expressions: Anger, Happy, Sad, Fear, Disgust, and Surprise. This paper shows the comparison between the RGB and Depth videos for the classification of facial micro-expressions. Further, a comparison of results shows that depth videos alone can be used to classify facial micro-expressions correctly in a decision tree structure by using the traditional and deep learning approaches with good classification accuracy. The dataset will be released to the public in the near future.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Attention-Oriented Action Recognition for Real-Time Human-Robot Interaction

Ziyang Song, Ziyi Yin, Zejian Yuan, Chong Zhang, Wanchao Chi, Yonggen Ling, Shenghao Zhang

Responsive image

Auto-TLDR; Attention-Oriented Multi-Level Network for Action Recognition in Interaction Scenes

Slides Poster Similar

Despite the notable progress made in action recognition tasks, not much work has been done in action recognition specifically for human-robot interaction. In this paper, we deeply explore the characteristics of the action recognition task in interaction scenes and propose an attention-oriented multi-level network framework to meet the need for real-time interaction. Specifically, a Pre-Attention network is employed to roughly focus on the interactor in the scene at low resolution firstly and then perform fine-grained pose estimation at high resolution. The other compact CNN receives the extracted skeleton sequence as input for action recognition, utilizing attention-like mechanisms to capture local spatial-temporal patterns and global semantic information effectively. To evaluate our approach, we construct a new action dataset specially for the recognition task in interaction scenes. Experimental results on our dataset and high efficiency (112 fps at 640 x 480 RGBD) on the mobile computing platform (Nvidia Jetson AGX Xavier) demonstrate excellent applicability of our method on action recognition in real-time human-robot interaction.

Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows

Peng-Yuan Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Yi-Ping Hung

Responsive image

Auto-TLDR; 3D Convolutional Neural Network for Activity Recognition with FPV Videos

Slides Poster Similar

First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32x32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.

Late Fusion of Bayesian and Convolutional Models for Action Recognition

Camille Maurice, Francisco Madrigal, Frederic Lerasle

Responsive image

Auto-TLDR; Fusion of Deep Neural Network and Bayesian-based Approach for Temporal Action Recognition

Slides Poster Similar

The activities we do in our daily-life are generally carried out as a succession of atomic actions, following a logical order. During a video sequence, actions usually follow a logical order. In this paper, we propose a hybrid approach resulting from the fusion of a deep learning neural network with a Bayesian-based approach. The latter models human-object interactions and transition between actions. The key idea is to combine both approaches in the final prediction. We validate our strategy in two public datasets: CAD-120 and Watch-n-Patch. We show that our fusion approach yields performance gains in accuracy of respectively +4\% and +6\% over a baseline approach. Temporal action recognition performances are clearly improved by the fusion, especially when classes are imbalanced.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

Motion Complementary Network for Efficient Action Recognition

Ke Cheng, Yifan Zhang, Chenghua Li, Jian Cheng, Hanqing Lu

Responsive image

Auto-TLDR; Efficient Motion Complementary Network for Action Recognition

Slides Poster Similar

Both two-stream ConvNet and 3D ConvNet are widely used in action recognition. However, both methods are not efficient for deployment: calculating optical flow is very slow, while 3D convolution is computationally expensive. Our key insight is that the motion information from optical flow maps is complementary to the motion information from 3D ConvNet. Instead of simply combining these two methods, we propose two novel techniques to enhance the performance with less computational cost: \textit{fixed-motion-accumulation} and \textit{balanced-motion-policy}. With these two techniques, we propose a novel framework called Efficient Motion Complementary Network(EMC-Net) that enjoys both high efficiency and high performance. We conduct extensive experiments on Kinetics, UCF101, and Jester datasets. We achieve notably higher performance while consuming 4.7$\times$ less computation than I3D, 11.6$\times$ less computation than ECO, 17.8$\times$ less computation than R(2+1)D. On Kinetics dataset, we achieve 2.6\% better performance than the recent proposed TSM with 1.4$\times$ fewer FLOPs and 10ms faster on K80 GPU.

Vision-Based Multi-Modal Framework for Action Recognition

Djamila Romaissa Beddiar, Mourad Oussalah, Brahim Nini

Responsive image

Auto-TLDR; Multi-modal Framework for Human Activity Recognition Using RGB, Depth and Skeleton Data

Slides Poster Similar

Human activity recognition plays a central role in the development of intelligent systems for video surveillance, public security, health care and home monitoring, where detection and recognition of activities can improve the quality of life and security of humans. Typically, automated, intuitive and real-time systems are required to recognize human activities and identify accurately unusual behaviors in order to prevent dangerous situations. In this work, we explore the combination of three modalities (RGB, depth and skeleton data) to design a robust multi-modal framework for vision-based human activity recognition. Especially, spatial information, body shape/posture and temporal evolution of actions are highlighted using illustrative representations obtained from a combination of dynamic RGB images, dynamic depth images and skeleton data representations. Therefore, each video is represented with three images that summarize the ongoing action. Our framework takes advantage of transfer learning from pre trained models to extract significant features from these newly created images. Next, we fuse extracted features using Canonical Correlation Analysis and train a Long Short-Term Memory network to classify actions from visual descriptive images. Experimental results demonstrated the reliability of our feature-fusion framework that allows us to capture highly significant features and enables us to achieve the state-of-the-art performance on the public UTD-MHAD and NTU RGB+D datasets.

Modeling Long-Term Interactions to Enhance Action Recognition

Alejandro Cartas, Petia Radeva, Mariella Dimiccoli

Responsive image

Auto-TLDR; A Hierarchical Long Short-Term Memory Network for Action Recognition in Egocentric Videos

Slides Poster Similar

In this paper, we propose a new approach to understand actions in egocentric videos that exploit the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical Long Short-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks, without relying on motion information.

Single View Learning in Action Recognition

Gaurvi Goyal, Nicoletta Noceti, Francesca Odone

Responsive image

Auto-TLDR; Cross-View Action Recognition Using Domain Adaptation for Knowledge Transfer

Slides Poster Similar

Viewpoint is an essential aspect of how an action is visually perceived, with the motion appearing substantially different for some viewpoint pairs. Data driven action recognition algorithms compensate for this by including a variety of viewpoints in their training data, adding to the cost of data acquisition as well as training. We propose a novel methodology that leverages deeply pretrained features to learn actions from a single viewpoint using domain adaptation for knowledge transfer. We demonstrate the effectiveness of this pipeline on 3 different datasets: IXMAS, MoCA and NTU RGBD+, and compare with both classical and deep learning methods. Our method requires low training data and demonstrates unparalleled cross-view action recognition accuracies for single view learning.

Feature-Supervised Action Modality Transfer

Fida Mohammad Thoker, Cees Snoek

Responsive image

Auto-TLDR; Cross-Modal Action Recognition and Detection in Non-RGB Video Modalities by Learning from Large-Scale Labeled RGB Data

Slides Poster Similar

This paper strives for action recognition and detection in video modalities like RGB, depth maps or 3D-skeleton sequences when only limited modality-specific labeled examples are available. For the RGB, and derived optical-flow, modality many large-scale labeled datasets have been made available. They have become the de facto pre-training choice when recognizing or detecting new actions from RGB datasets that have limited amounts of labeled examples available. Unfortunately, large-scale labeled action datasets for other modalities are unavailable for pre-training. In this paper, our goal is to recognize actions from limited examples in non-RGB video modalities, by learning from large-scale labeled RGB data. To this end, we propose a two-step training process: (i) we extract action representation knowledge from an RGB-trained teacher network and adapt it to a non-RGB student network. (ii) we then fine-tune the transfer model with available labeled examples of the target modality. For the knowledge transfer we introduce feature-supervision strategies, which rely on unlabeled pairs of two modalities (the RGB and the target modality) to transfer feature level representations from the teacher to the the student network. Ablations and generalizations with two RGB source datasets and two non-RGB target datasets demonstrate that an optical-flow teacher provides better action transfer features than RGB for both depth maps and 3D-skeletons, even when evaluated on a different target domain, or for a different task. Compared to alternative cross-modal action transfer methods we show a good improvement in performance especially when labeled non-RGB examples to learn from are scarce.

Estimation of Clinical Tremor Using Spatio-Temporal Adversarial AutoEncoder

Li Zhang, Vidya Koesmahargyo, Isaac Galatzer-Levy

Responsive image

Auto-TLDR; ST-AAE: Spatio-temporal Adversarial Autoencoder for Clinical Assessment of Hand Tremor Frequency and Severity

Slides Poster Similar

Collecting sufficient well-labeled training data is a challenging task in many clinical applications. Besides the tremendous efforts required for data collection, clinical assessments are also impacted by raters’ variabilities, which may be significant even among experienced clinicians. The high demands of reproducible and scalable data-driven approaches in these areas necessitates relevant research on learning with limited data. In this work, we propose a spatio-temporal adversarial autoencoder (ST-AAE) for clinical assessment of hand tremor frequency and severity. The ST-AAE integrates spatial and temporal information simultaneously into the original AAE, taking optical flows as inputs. Using only optical flows, irrelevant background or static objects from RGB frames are largely eliminated, so that the AAE is directed to effectively learn key feature representations of the latent space from tremor movements. The ST-AAE was evaluated with both volunteer and clinical data. The volunteer results showed that the ST-AAE improved model performance significantly by 15% increase on accuracy. Leave-one-out (on subjects) cross validation was used to evaluate the accuracy for all the 3068 video segments from 28 volunteers. The weighted average of the AUCs of ROCs is 0.97. The results demonstrated that the ST-AAE model, trained with a small number of subjects, can be generalized well to different subjects. In addition, the model trained only by volunteer data was also evaluated with 32 clinical videos from 9 essential tremor patients, the model predictions correlate well with the clinical ratings: correlation coefficient r = 0.91 and 0.98 for in-person ratings and video watching ratings, respectively.

Deep Real-Time Hand Detection Using CFPN on Embedded Systems

Pirdiansyah Hendri, Jun-Wei Hsieh, Ping Yang Chen

Responsive image

Auto-TLDR; Concatenated Feature Pyramid Network for Small Hand Detection on Embedded Devices

Slides Poster Similar

Real-time HI (Human Interface) systems need accurate and efficient hand detection models to meet the limited resources in budget, dimension, memory, computing, and electric power. In recent years, object detection became a less challenging task with the latest deep CNN-based state-of-the-art models, i.e., RCNN, SSD, and YOLO; however, these models cannot provide the desired efficiency and accuracy for HI systems on embedded devices due to their complex time-consuming architecture. In addition, the detection of small hands (<30x30 pixels) is still a challenging task for all the above existing methods. Thus, we propose a shallow model named Concatenated Feature Pyramid Network (CFPN) to provide above mentioned performance for small hand detection. The superiority of CFPN is confirmed on a HandFlow dataset with mAP:0.5 of 95.6 and FPS of 33 on Nvidia TX2. The COCO dataset is also used to compare with other state-of-the-art method and shows the highest efficiency and accuracy with the proposed CFPN model. Thus we conclude that the proposed model is useful for real-life small hand detection on embedded devices.

TinyVIRAT: Low-Resolution Video Action Recognition

Ugur Demir, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; TinyVIRAT: A Progressive Generative Approach for Action Recognition in Videos

Slides Poster Similar

The existing research in action recognition is mostly focused on high-quality videos where the action is distinctly visible. In real-world surveillance environments, the actions in videos are captured at a wide range of resolutions. Most activities occur at a distance with a small resolution and recognizing such activities is a challenging problem. In this work, we focus on recognizing tiny actions in videos. We introduce a benchmark dataset, TinyVIRAT, which contains natural low-resolution activities. The actions in TinyVIRAT videos have multiple labels and they are extracted from surveillance videos which makes them realistic and more challenging. We propose a novel method for recognizing tiny actions in videos which utilizes a progressive generative approach to improve the quality of low-resolution actions. The proposed method also consists of a weakly trained attention mechanism which helps in focusing on the activity regions in the video. We perform extensive experiments to benchmark the proposed TinyVIRAT dataset and observe that the proposed method significantly improves the action recognition performance over baselines. We also evaluate the proposed approach on synthetically resized action recognition datasets and achieve state-of-the-art results when compared with existing methods. The dataset and code will be publicly available.

Feasibility Study of Using MyoBand for Learning Electronic Keyboard

Sharmila Mani, Madhav Rao

Responsive image

Auto-TLDR; Autonomous Finger-Based Music Instrument Learning using Electromyography Using MyoBand and Machine Learning

Slides Poster Similar

Learning musical instrument like piano or electronic keyboard on average takes a decade time. Currently, musical instrument learning requires continuous supervision from the tutor, and self learning to reach expert level is considered impossible. On the other side, it often becomes unrealistic to stay connected with the music tutor for a long time and many learners stop halfway. To address this specific issue, online distance learning platform is implemented for music learning system, yet it does not support self learning, remains tutor dependent, and is not a scalable approach. In addition, there is no way for these platforms to verify whether user pressed a key note with the intended finger, which is significant for learning finger based musical instruments. To overcome this, an autonomous system to evaluate and guide in the learning process by continuously tracking finger movements via a non-camera based solution is proposed. Finger press triggers the muscle movements which are detected at the surface of the forearm in the form of surface Electromyography (sEMG) signals. The paper proposes tracking of finger press on an electronic keyboard using MyoBand [1] wearable device that provided 8 channels of sEMG signals. A machine learning (ML) approach was considered with eleven time and frequency domain features of sEMG signals, to classify musical note played by the instrument on corresponding finger press. The feature set was further standardized using standard scaler approach, and vector dimensions were reduced by Linear Discriminant Analysis (LDA) method. The resulting reduced dimension data was applied on Random Forest (RF) classifier to report best classification accuracy for our application. For training the RF model, several trails of 10 seconds sEMG signals were collected using wearable MyoBand device. Experiments involved single finger press to render a note in the musical instrument, and multiple finger press to define chord sequence on an electronic musical keyboard. Further analysis was performed to maximize the classification accuracy over the number of trials and optimize the position of electrodes for successful identification of musical note played. The proposed method achieves a classification accuracy of 74.25% for 5 musical note played on an electronic keyboard instrument with 4 MyoBand electrodes, and an accuracy of 95.83% with one electrode for identifying between four musical events including two major chords and two musical notes

Exploiting the Logits: Joint Sign Language Recognition and Spell-Correction

Christina Runkel, Stefan Dorenkamp, Hartmut Bauermeister, Michael Möller

Responsive image

Auto-TLDR; A Convolutional Neural Network for Spell-correction in Sign Language Videos

Slides Poster Similar

Machine learning techniques have excelled in the automatic semantic analysis of images, reaching human-level performances on challenging bechmarks. Yet, the semantic analysis of videos remains challenging due to the significantly higher dimensionality of the input data, respectively, the significantly higher need for annotated training examples. By studying the automatic recognition of German sign language videos, we demonstrate that on the relatively scarce training data of 2.800 videos, modern deep learning architectures for video analysis (such as ResNeXt) along with transfer learning on large gesture recognition tasks, can achieve about 75% character accuracy. Considering that this leaves us with a probability of under 25% that a five letter word is spelled correctly, spell-correction systems are crucial for producing readable outputs. The contribution of this paper is to propose a convolutional neural network for spell-correction that expects the softmax outputs of the character recognition network (instead of a misspelled word) as an input. We demonstrate that purely learning on softmax inputs in combination with scarce training data yields overfitting as the network learns the inputs by heart. In contrast, training the network on several variants of the logits of the classification output i.e. scaling by a constant factor, adding of random noise, mixing of softmax and hardmax inputs or purely training on hardmax inputs, leads to better generalization while benefitting from the significant information hidden in these outputs (that have 98% top-5 accuracy), yielding a readable text despite the comparably low character accuracy.

Learning Dictionaries of Kinematic Primitives for Action Classification

Alessia Vignolo, Nicoletta Noceti, Alessandra Sciutti, Francesca Odone, Giulio Sandini

Responsive image

Auto-TLDR; Action Understanding using Visual Motion Primitives

Slides Poster Similar

This paper proposes a method based on visual motion primitives to address the problem of action understanding. The approach builds in an unsupervised way a dictionary of kinematic primitives from a set of sub-movements obtained by segmenting the velocity profile of an action on the basis of local minima derived directly from the optical flow. The dictionary is then used to describe each sub-movement as a linear combination of atoms using sparse coding. The descriptive capability of the proposed motion representation is experimentally validated on the MoCA dataset, a collection of synchronized multi-view videos and motion capture data of cooking activities. The results show that the approach, despite its simplicity, has a good performance in action classification, especially when the motion primitives are combined over time. Also, the method is proved to be tolerant to view point changes, and can thus support cross-view action recognition. Overall, the method may be seen as a backbone of a general approach to action understanding, with potential applications in robotics.

2D Deep Video Capsule Network with Temporal Shift for Action Recognition

Théo Voillemin, Hazem Wannous, Jean-Philippe Vandeborre

Responsive image

Auto-TLDR; Temporal Shift Module over Capsule Network for Action Recognition in Continuous Videos

Slides Similar

Action recognition in continuous video streams is a growing field since the past few years. Deep learning techniques and in particular Convolutional Neural Networks (CNNs) achieved good results in this topic. However, intrinsic CNNs limitations begin to cap the results since 2D CNN cannot capture temporal information and 3D CNN are to much resource demanding for real-time applications. Capsule Network, evolution of CNN, already proves its interesting benefits on small and low informational datasets like MNIST but yet its true potential has not emerged. In this paper we tackle the action recognition problem by proposing a new architecture combining Temporal Shift module over deep Capsule Network. Temporal Shift module permits us to insert temporal information over 2D Capsule Network with a zero computational cost to conserve the lightness of 2D capsules and their ability to connect spatial features. Our proposed approach outperforms or brings near state-of-the-art results on color and depth information on public datasets like First Person Hand Action and DHG 14/28 with a number of parameters 10 to 40 times less than existing approaches.

Towards Practical Compressed Video Action Recognition: A Temporal Enhanced Multi-Stream Network

Bing Li, Longteng Kong, Dongming Zhang, Xiuguo Bao, Di Huang, Yunhong Wang

Responsive image

Auto-TLDR; TEMSN: Temporal Enhanced Multi-Stream Network for Compressed Video Action Recognition

Slides Poster Similar

Current compressed video action recognition methods are mainly based on completely received compressed videos. However, in real transmission, the compressed video packets are usually disorderly received and lost due to network jitters or congestion. It is of great significance to recognize actions in early phases with limited packets, e.g. forecasting the potential risks from videos quickly. In this paper, we proposed a Temporal Enhanced Multi-Stream Network (TEMSN) for practical compressed video action recognition. First, we use three compressed modalities as complementary cues and build a multi-stream network to capture the rich information from compressed video packets. Second, we design a temporal enhanced module based on Encoder-Decoder structure applied on each stream to infer the missing packets, and generate more complete action dynamics. Thanks to the rich modalities and temporal enhancement, our approach is able to better modeling the action with limited compressed packets. Experiments on HMDB-51 and UCF-101 dataset validate its effectiveness and efficiency.

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

Image Sequence Based Cyclist Action Recognition Using Multi-Stream 3D Convolution

Stefan Zernetsch, Steven Schreck, Viktor Kress, Konrad Doll, Bernhard Sick

Responsive image

Auto-TLDR; 3D-ConvNet: A Multi-stream 3D Convolutional Neural Network for Detecting Cyclists in Real World Traffic Situations

Slides Poster Similar

In this article, we present an approach to detect basic movements of cyclists in real world traffic situations based on image sequences, optical flow (OF) sequences, and past positions using a multi-stream 3D convolutional neural network (3D-ConvNet) architecture. To resolve occlusions of cyclists by other traffic participants or road structures, we use a wide angle stereo camera system mounted at a heavily frequented public intersection. We created a large dataset consisting of 1,639 video sequences containing cyclists, recorded in real world traffic, resulting in over 1.1 million samples. Through modeling the cyclists' behavior by a state machine of basic cyclist movements, our approach takes every situation into account and is not limited to certain scenarios. We compare our method to an approach solely based on position sequences. Both methods are evaluated taking into account frame wise and scene wise classification results of basic movements, and detection times of basic movement transitions, where our approach outperforms the position based approach by producing more reliable detections with shorter detection times. Our code and parts of our dataset are made publicly available.

Identity-Aware Facial Expression Recognition in Compressed Video

Xiaofeng Liu, Linghao Jin, Xu Han, Jun Lu, Jonghye Woo, Jane You

Responsive image

Auto-TLDR; Exploring Facial Expression Representation in Compressed Video with Mutual Information Minimization

Slides Similar

This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a novel collaborative min-min game for mutual information (MI) minimization in latent space. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$\times$ faster inference with compressed data.

MixTConv: Mixed Temporal Convolutional Kernels for Efficient Action Recognition

Kaiyu Shan, Yongtao Wang, Zhi Tang, Ying Chen, Yangyan Li

Responsive image

Auto-TLDR; Mixed Temporal Convolution for Action Recognition

Slides Poster Similar

To efficiently extract spatiotemporal features of video for action recognition, most state-of-the-art methods integrate 1D temporal convolution into a conventional 2D CNN backbone. However, they all exploit 1D temporal convolution of fixed kernel size (i.e., 3) in the network building block, thus have suboptimal temporal modeling capability to handle both long term and short-term actions. To address this problem, we first investigate the impacts of different kernel sizes for the 1D temporal convolutional filters. Then, we propose a simple yet efficient operation called Mixed Temporal Convolution (MixTConv) in methodology, which consists of multiple depthwise 1D convolutional filters with different kernel sizes. By plugging MixTConv into the conventional 2D CNN backbone ResNet-50, we further propose an efficient and effective network architecture named MSTNet for action recognition, and achieve state-of-the-art results on multiple large-scale benchmarks.

Anomaly Detection, Localization and Classification for Railway Inspection

Riccardo Gasparini, Andrea D'Eusanio, Guido Borghi, Stefano Pini, Giuseppe Scaglione, Simone Calderara, Eugenio Fedeli, Rita Cucchiara

Responsive image

Auto-TLDR; Anomaly Detection and Localization using thermal images in the lowlight environment

Slides Similar

The ability to detect, localize and classify objects that are anomalies is a challenging task in the computer vision community. In this paper, we tackle these tasks developing a framework to automatically inspect the railway during the night. Specifically, it is able to predict the presence, the image coordinates and the class of obstacles. To deal with the lowlight environment, the framework is based on thermal images and consists of three different modules that address the problem of detecting anomalies, predicting their image coordinates and classifying them. Moreover, due to the absolute lack of publicly released datasets collected in the railway context for anomaly detection, we introduce a new multi-modal dataset, acquired from a rail drone, used to evaluate the proposed framework. Experimental results confirm the accuracy of the framework and its suitability, in terms of computational load, performance, and inference time, to be implemented on a self-powered inspection system.

Human or Machine? It Is Not What You Write, but How You Write It

Luis Leiva, Moises Diaz, M.A. Ferrer, RĂ©jean Plamondon

Responsive image

Auto-TLDR; Behavioral Biometrics via Handwritten Symbols for Identification and Verification

Slides Poster Similar

Online fraud often involves identity theft. Since most security measures are weak or can be spoofed, we investigate a more nuanced and less explored avenue: behavioral biometrics via handwriting movements. This kind of data can be used to verify if a legitimate user is operating a device or a computer application, so it is important to distinguish between human and machine-generated movements reliably. For this purpose, we study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay.

3D Attention Mechanism for Fine-Grained Classification of Table Tennis Strokes Using a Twin Spatio-Temporal Convolutional Neural Networks

Pierre-Etienne Martin, Jenny Benois-Pineau, Renaud PĂ©teri, Julien Morlier

Responsive image

Auto-TLDR; Attentional Blocks for Action Recognition in Table Tennis Strokes

Slides Poster Similar

The paper addresses the problem of recognition of actions in video with low inter-class variability such as Table Tennis strokes. Two stream, "twin" convolutional neural networks are used with 3D convolutions both on RGB data and optical flow. Actions are recognized by classification of temporal windows. We introduce 3D attention modules and examine their impact on classification efficiency. In the context of the study of sportsmen performances, a corpus of the particular actions of table tennis strokes is considered. The use of attention blocks in the network speeds up the training step and improves the classification scores up to 5% with our twin model. We visualize the impact on the obtained features and notice correlation between attention and player movements and position. Score comparison of state-of-the-art action classification method and proposed approach with attentional blocks is performed on the corpus. Proposed model with attention blocks outperforms previous model without them and our baseline.

Developing Motion Code Embedding for Action Recognition in Videos

Maxat Alibayev, David Andrea Paulius, Yu Sun

Responsive image

Auto-TLDR; Motion Embedding via Motion Codes for Action Recognition

Slides Poster Similar

We propose a motion embedding strategy via the motion codes that is a vectorized representation of motions based on their salient mechanical attributes. We show that our motion codes can provide robust motion representation. We train a deep neural network model that learns to embed demonstration videos into motion codes. We integrate the extracted features from the motion embedding model into the current state-of-the-art action recognition model. The obtained model achieved higher accuracy than the baseline on a verb classification task from egocentric videos in EPIC-KITCHENS dataset.

Spatial Bias in Vision-Based Voice Activity Detection

Kalin Stefanov, Mohammad Adiban, Giampiero Salvi

Responsive image

Auto-TLDR; Spatial Bias in Vision-based Voice Activity Detection in Multiparty Human-Human Interactions

Poster Similar

We present models for automatic vision-based voice activity detection (VAD) in multiparty human-human interactions that are aimed at complementing the acoustic VAD methods. We provide evidence that this type of vision-based VAD models are susceptible to spatial bias in the datasets. The physical settings of the interaction, usually constant throughout data acquisition, determines the distribution of head poses of the participants. Our results show that when the head pose distributions are significantly different in the training and test sets, the performance of the models drops significantly. This suggests that previously reported results on datasets with a fixed physical configuration may overestimate the generalization capabilities of this type of models. We also propose a number of possible remedies to the spatial bias, including data augmentation, input masking and dynamic features, and provide an in-depth analysis of the visual cues used by our models.

A Detection-Based Approach to Multiview Action Classification in Infants

Carolina Pacheco, Effrosyni Mavroudi, Elena Kokkoni, Herbert Tanner, Rene Vidal

Responsive image

Auto-TLDR; Multiview Action Classification for Infants in a Pediatric Rehabilitation Environment

Slides Similar

Activity recognition in children and infants is important in applications such as safety monitoring, behavior assessment, and child-robot interaction, among others. However, it differs from activity recognition in adults not only because body poses and proportions are different, but also because of the way in which actions are performed. This paper addresses the problem of infant action classification (up to 2 years old) in challenging conditions. The actions are performed in a pediatric rehabilitation environment in which not only infants but also robots and adults are present, with the infant being one of the smallest actors in the scene. We propose a multiview action classification system based on Faster R-CNN and LSTM networks, which fuses information from different views by using learnable fusion coefficients derived from detection confidence scores. The proposed system is view-independent, learns features that are close to view-invariant, and can handle new or missing views at test time. Our approach outperforms the state-of-the-art baseline model for this dataset by 11.4% in terms of average classification accuracy in four classes (crawl, sit, stand and walk). Moreover, experiments in a extended dataset from 6 subjects (8 to 24 months old) show that the proposed fusion strategy outperforms the best post-processing fusion strategy by 2.5% and 6.8% average classification accuracy in Leave One Super-session Out and Leave One Subject Out cross-validation, respectively.

IPT: A Dataset for Identity Preserved Tracking in Closed Domains

Thomas Heitzinger, Martin Kampel

Responsive image

Auto-TLDR; Identity Preserved Tracking Using Depth Data for Privacy and Privacy

Slides Poster Similar

We present a public dataset for Identity Preserved Tracking (IPT) consisting of sequences of depth data recorded using an Orbbec Astra depth sensor. The dataset features sequences in ten different locations with a high amount of background variation and is designed to be applicable to a wide range of tasks. Its labeling is versatile, allowing for tracking in either 3d space or image coordinates. Next to frame-by-frame 3d and inferred bounding box labeling we provide supplementary annotation of camera poses and room layouts, split in multiple semantically distinct categories. Intended use-cases are applications where both a high level understanding of scene understanding and privacy are central points of consideration, such as active and assisted living (AAL), security and industrial safety. Compared to similar public datasets IPT distinguishes itself with its sequential data format, 3d instance labeling and room layout annotation. We present baseline object detection results in image coordinates using a YOLOv3 network architecture and implement a background model suitable for online tracking applications to increase detection accuracy. Additionally we propose a novel volumetric non-maximum suppression (V-NMS) approach, taking advantage of known room geometry. Last we provide baseline person tracking results utilizing Multiple Object Tracking Challenge (MOTChallenge) evaluation metrics of the CVPR19 benchmark.

Concept Embedding through Canonical Forms: A Case Study on Zero-Shot ASL Recognition

Azamat Kamzin, Apurupa Amperyani, Prasanth Sukhapalli, Ayan Banerjee, Sandeep Gupta

Responsive image

Auto-TLDR; A canonical form of gestures in American Sign Language

Slides Poster Similar

In the recognition problem, a canonical form that expresses the spatio-temporal relation of concepts for a given class can potentially increase accuracy. Concepts are defined as attributes that can be recognized using a soft matching paradigm. We consider the specific case study of American Sign Language (ASL) to show that canonical forms of classes can be used to recognize unseen gestures. There are several advantages of a canonical form of gestures including translation between gestures, gesture-based searching, and automated transcription of gestures into any spoken language. We applied our technique to two independently collected datasets: a) IMPACT Lab dataset: 23 ASL gestures each executed three times from 130 first time ASL learners as training data and b) ASLTEXT dataset: 190 gestures each executed six times on an average. Our technique was able to recognize 19 arbitrarily chosen previously unseen gestures in the IMPACT dataset from seven individuals who are not a part of 130 and 34 unseen gestures from the ASLTEXT dataset without any retraining. Our normalized accuracy on ASLTEXT dataset is 66 % which is 13.6 % higher than state-of-art technique.

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

Conditional-UNet: A Condition-Aware Deep Model for Coherent Human Activity Recognition from Wearables

Liming Zhang, Wenbin Zhang, Nathalie Japkowicz

Responsive image

Auto-TLDR; Coherent Human Activity Recognition from Multi-Channel Time Series Data

Slides Poster Similar

Recognizing human activities from multi-channel time series data collected from wearable sensors is ever more practical in real-world applications. For those applications, a challenge comes from coherent activities and body movements, like moving head during walking or sitting, because signals of different movements are mixed and interfered with each other. A basic multi-label classification is typically assuming independence within multiple activities, which is over-simplified and reduces modeling power even using those state-of-the-art deep methods. In this paper, we investigate this new problem, so-called ``Coherent Human Activity Recognition (Co-HAR)'', which keeps the complete conditional dependency of multiple labels. Additionally, we consider such Co-HAR as a dense labelling problem that classifies each sample on a time step with multiple coherent labels to provide high-fidelity and duration-varied support to high-precision applications. To explicitly model conditional dependency, a novel condition-aware deep architecture ``Conditional-UNet'' is developed to allow multiple dense labeling for Co-HAR. We also contribute a first-of-its-kind Co-HAR dataset for head gesture recognition in coherence with a user's walking or sitting to research communities. Experiments on this dataset show that our model outperforms existing deep methods, and especially achieve up to 92% accuracy on head gesture classification in coherence.

Motion U-Net: Multi-Cue Encoder-Decoder Network for Motion Segmentation

Gani Rahmon, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; Motion U-Net: A Deep Learning Framework for Robust Moving Object Detection under Challenging Conditions

Slides Poster Similar

Detection of moving objects is a critical first step in many computer vision applications. Several algorithms for motion and change detection were proposed. However, many of these approaches lack the ability to handle challenging real-world scenarios. Recently, deep learning approaches started to produce impressive solutions to computer vision tasks, particularly for detection and segmentation. Many existing deep learning networks proposed for moving object detection rely only on spatial appearance cues. In this paper, we propose a novel multi-cue and multi-stream network, Motion U-Net (MU-Net), which integrates motion, change, and appearance cues using a deep learning framework for robust moving object detection under challenging conditions. The proposed network consists of a two-stream encoder module followed by feature concatenation and a decoder module. Motion and change cues are computed through our tensor-based motion estimation and a multi-modal background subtraction modules. The proposed system was tested and evaluated on the change detection challenge datasets (CDnet-2014) and compared to state-of-the-art methods. On CDnet-2014 dataset, our approach reaches an average overall F-measure of 0.9852 and outperforms all current state-of-the-art methods. The network was also tested on the unseen SBI-2015 dataset and produced promising results.

Attention-Driven Body Pose Encoding for Human Activity Recognition

Bappaditya Debnath, Swagat Kumar, Marry O'Brien, Ardhendu Behera

Responsive image

Auto-TLDR; Attention-based Body Pose Encoding for Human Activity Recognition

Slides Poster Similar

This article proposes a novel attention-based body pose encoding for human activity recognition. Most of the existing human activity recognition approaches based on 3D pose data often enrich the input data using additional handcrafted representations such as velocity, super normal vectors, pairwise relations, and so on. The enriched data complements the 3D body joint position data and improves the model performance. In this paper, we propose a novel approach that learns enhanced feature representations from a given sequence of 3D body joints. To achieve this, the approach exploits two body pose streams: 1) a spatial stream which encodes the spatial relationship between various body joints at each time point to learn spatial structure involving the spatial distribution of different body joints 2) a temporal stream that learns the temporal variation of individual body joints over the entire sequence duration to present a temporally enhanced representation. Afterwards, these two pose streams are fused with a multi-head attention mechanism. We also capture the contextual information from the RGB video stream using a deep Convolutional Neural Network (CNN) model combined with a multi-head attention and a bidirectional Long Short-Term Memory (LSTM) network. Finally, the RGB video stream is combined with the fused body pose stream to give a novel end-to-end deep model for effective human activity recognition. The proposed model is evaluated on three datasets including the challenging NTU-RGBD dataset and achieves state-of-the-art results.

A Prototype-Based Generalized Zero-Shot Learning Framework for Hand Gesture Recognition

Jinting Wu, Yujia Zhang, Xiao-Guang Zhao

Responsive image

Auto-TLDR; Generalized Zero-Shot Learning for Hand Gesture Recognition

Slides Poster Similar

Hand gesture recognition plays a significant role in human-computer interaction for understanding various human gestures and their intent. However, most prior works can only recognize gestures of limited labeled classes and fail to adapt to new categories. The task of Generalized Zero-Shot Learning (GZSL) for hand gesture recognition aims to address the above issue by leveraging semantic representations and detecting both seen and unseen class samples. In this paper, we propose an end-to-end prototype-based GZSL framework for hand gesture recognition which consists of two branches. The first branch is a prototype-based detector that learns gesture representations and determines whether an input sample belongs to a seen or unseen category. The second branch is a zero-shot label predictor which takes the features of unseen classes as input and outputs predictions through a learned mapping mechanism between the feature and the semantic space. We further establish a hand gesture dataset that specifically targets this GZSL task, and comprehensive experiments on this dataset demonstrate the effectiveness of our proposed approach on recognizingQuestionnaire both seen and unseen gestures.

Gabriella: An Online System for Real-Time Activity Detection in Untrimmed Security Videos

Mamshad Nayeem Rizve, Ugur Demir, Praveen Praveen Tirupattur, Aayush Jung Rana, Kevin Duarte, Ishan Rajendrakumar Dave, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; Gabriella: A Real-Time Online System for Activity Detection in Surveillance Videos

Slides Similar

Activity detection in surveillance videos is a difficult problem due to multiple factors such as large field of view, presence of multiple activities, varying scales and viewpoints, and its untrimmed nature. The existing research in activity detection is mainly focused on datasets, such as UCF-101, JHMDB, THUMOS, and AVA, which partially address these issues. The requirement of processing the surveillance videos in real-time makes this even more challenging. In this work we propose Gabriella, a real-time online system to perform activity detection on untrimmed surveillance videos. The proposed method consists of three stages: tubelet extraction, activity classification, and online tubelet merging. For tubelet extraction, we propose a localization network which takes a video clip as input and spatio-temporally detects potential foreground regions at multiple scales to generate action tubelets. We propose a novel Patch-Dice loss to handle large variations in actor size. Our online processing of videos at a clip level drastically reduces the computation time in detecting activities. The detected tubelets are assigned activity class scores by the classification network and merged together using our proposed Tubelet-Merge Action-Split (TMAS) algorithm to form the final action detections. The TMAS algorithm efficiently connects the tubelets in an online fashion to generate action detections which are robust against varying length activities. We perform our experiments on the VIRAT and MEVA (Multiview Extended Video with Activities) datasets and demonstrate the effectiveness of the proposed approach in terms of speed ($\sim$100 fps) and performance with state-of-the-art results. The code and models will be made publicly available.

SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

Raphael Memmesheimer, Nick Theisen, Dietrich Paulus

Responsive image

Auto-TLDR; One-Shot Action Recognition using Metric Learning

Slides Similar

Recognizing an activity with a single reference sample using metric learning approaches is a promising research field. The majority of few-shot methods focus on object recognition or face-identification. We propose a metric learning approach to reduce the action recognition problem to a nearest neighbor search in embedding space. We encode signals into images and extract features using a deep residual CNN. Using triplet loss, we learn a feature embedding. The resulting encoder transforms features into an embedding space in which closer distances encode similar actions while higher distances encode different actions. Our approach is based on a signal level formulation and remains flexible across a variety of modalities. It further outperforms the baseline on the large scale NTU RGB+D 120 dataset for the One-Shot action recognition protocol by \ntuoneshotimpro%. With just 60% of the training data, our approach still outperforms the baseline approach by \ntuoneshotimproreduced%. With 40% of the training data, our approach performs comparably well as the second follow up. Further, we show that our approach generalizes well in experiments on the UTD-MHAD dataset for inertial, skeleton and fused data and the Simitate dataset for motion capturing data. Furthermore, our inter-joint and inter-sensor experiments suggest good capabilities on previously unseen setups.

Learnable Higher-Order Representation for Action Recognition

Jie Shao, Xiangyang Xue

Responsive image

Auto-TLDR; Learningable Higher-Order Operations for Spatiotemporal Dynamics in Video Recognition

Similar

Capturing spatiotemporal dynamics is an essential topic in video recognition. In this paper, we present learnable higher-order operations as a generic family of building blocks for capturing spatiotemporal dynamics from RGB input video space. Similar to higher-order functions, the weights of higher-order operations are themselves derived from the data with learnable parameters. Classical architectures such as residual learning and network-in-network are first-order operations where weights are directly learned from the data. Higher-order operations make it easier to capture context-sensitive patterns, such as motion. Self-attention models are also higher-order operations, but the attention weights are mostly computed from an affine operation or dot product. The learnable higher-order operations can be more generic and flexible. Experimentally, we show that on the task of video recognition, our higher-order models can achieve results on par with or better than the existing state-of-the-art methods on Something-Something (V1 and V2), Kinetics and Charades datasets.

Real Time Fencing Move Classification and Detection at Touch Time During a Fencing Match

Cem Ekin Sunal, Chris G. Willcocks, Boguslaw Obara

Responsive image

Auto-TLDR; Fencing Body Move Classification and Detection Using Deep Learning

Slides Similar

Fencing is a fast-paced sport played with swords which are Epee, Foil, and Saber. However, such fast-pace can cause referees to make wrong decisions. Review of slow-motion camera footage in tournaments helps referees’ decision making, but it interrupts the match and may not be available for every organization. Motivated by the need for better decision making, analysis, and availability, we introduce the first fully-automated deep learning classification and detection system for fencing body moves at the moment a touch is made. This is an important step towards creating a fencing analysis system, with player profiling and decision tools that will benefit the fencing community. The proposed architecture combines You Only Look Once version three (YOLOv3) with a ResNet-34 classifier, trained on ImageNet settings to obtain 83.0\% test accuracy on the fencing moves. These results are exciting development in the sport, providing immediate feedback and analysis along with accessibility, hence making it a valuable tool for trainers and fencing match referees.

A Systematic Investigation on End-To-End Deep Recognition of Grocery Products in the Wild

Marco Leo, Pierluigi Carcagni, Cosimo Distante

Responsive image

Auto-TLDR; Automatic Recognition of Products on grocery shelf images using Convolutional Neural Networks

Slides Poster Similar

Automatic recognition of products on grocery shelf images is a new and attractive topic in computer vision and machine learning since, it can be exploited in different application areas. This paper introduces a complete end-to-end pipeline (without preliminary radiometric and spatial transformations usually involved while dealing with the considered issue) and it provides a systematic investigation of recent machine learning models based on convolutional neural networks for addressing the product recognition task by exploiting the proposed pipeline on a recent challenging grocery product dataset. The investigated models were never been used in this context: they derive from the successful and more generic object recognition task and have been properly tuned to address this specific issue. Besides, also ensembles of nets built by most advanced theoretical fundaments have been taken into account. Gathered classification results were very encouraging since the recognition accuracy has been improved up to 15\% with respect to the leading approaches in the state of art on the same dataset. A discussion about the pros and cons of the investigated solutions are discussed by paving the path towards new research lines.