Dynamic Resource-Aware Corner Detection for Bio-Inspired Vision Sensors

Sherif Abdelmonem Sayed Mohamed, Jawad Yasin, Mohammad-Hashem Haghbayan, Antonio Miele, Jukka Veikko Heikkonen, Hannu Tenhunen, Juha Plosila

Responsive image

Auto-TLDR; Three Layer Filtering-Harris Algorithm for Event-based Cameras in Real-Time

Slides

Event-based cameras are vision devices that transmit only brightness changes with low latency and ultra-low power consumption. Such characteristics make event-based cameras attractive in the field of localization and object tracking in resource-constrained systems. Since the number of generated events in such cameras is huge, the selection and filtering of the incoming events are beneficial from both increasing the accuracy of the features and reducing the computational load. In this paper, we present an algorithm to detect asynchronous corners form a stream of events in real-time on embedded systems. The algorithm is called the Three Layer Filtering-Harris or TLF-Harris algorithm. The algorithm is based on an events' filtering strategy whose purpose is 1) to increase the accuracy by deliberately eliminating some incoming events, i.e., noise and 2) to improve the real-time performance of the system, i.e., preserving a constant throughput in terms of input events per second, by discarding unnecessary events with a limited accuracy loss. An approximation of the Harris algorithm, in turn, is used to exploit its high-quality detection capability with a low-complexity implementation to enable seamless real-time performance on embedded computing platforms. The proposed algorithm is capable of selecting the best corner candidate among neighbors and achieves an average execution time savings of 59 % compared with the conventional Harris score. Moreover, our approach outperforms the competing methods, such as eFAST, eHarris, and FA-Harris, in terms of real-time performance, and surpasses Arc* in terms of accuracy.

Similar papers

Reducing-Over-Time Tree for Event-Based Data

Shane Harrigan, Sonya Coleman, Dermot Kerr, Pratheepan Yogarajah, Zheng Fang, Chengdong Wu

Responsive image

Auto-TLDR; Reducing-Over-Time Binary Tree Structure for Event-Based Vision Data

Slides Poster Similar

This paper presents a novel Reducing-Over-Time (ROT) binary tree structure for event-based vision data and subtypes of the tree structure. A framework is presented using ROT, that takes advantage of the self-balancing and self-pruning nature of the tree structure to extract spatial-temporal information. The ROT framework is paired with an established motion classification technique and performance is evaluated against other state-of-the-art techniques using four datasets. Additionally, the ROT framework as a processing platform is compared with other event-based vision processing platforms in terms of memory usage and is found to be one of the most memory efficient platforms available.

Edge-Aware Monocular Dense Depth Estimation with Morphology

Zhi Li, Xiaoyang Zhu, Haitao Yu, Qi Zhang, Yongshi Jiang

Responsive image

Auto-TLDR; Spatio-Temporally Smooth Dense Depth Maps Using Only a CPU

Slides Poster Similar

Dense depth maps play an important role in Computer Vision and AR (Augmented Reality). For CV applications, a dense depth map is the cornerstone of 3D reconstruction allowing real objects to be precisely displayed in the computer. And Dense depth maps can handle correct occlusion relationships between virtual content and real objects for better user experience in AR. However, the complicated computation limits the development of computing dense depth maps. We present a novel algorithm that produces low latency, spatio-temporally smooth dense depth maps using only a CPU. The depth maps exhibit sharp discontinuities at depth edges in low computational complexity ways. Our algorithm obtains the sparse SLAM reconstruction first, then extracts coarse depth edges from a down-sampled RGB image by morphology operations. Next, we thin the depth edges and align them with image edges. Finally, a Warm-Start initialization scheme and an improved optimization solver are adopted to accelerate convergence. We evaluate our proposal quantitatively and the result shows improvements on the accuracy of depth map with respect to other state-of-the-art and baseline techniques.

RISEdb: A Novel Indoor Localization Dataset

Carlos Sanchez Belenguer, Erik Wolfart, Álvaro Casado Coscollá, Vitor Sequeira

Responsive image

Auto-TLDR; Indoor Localization Using LiDAR SLAM and Smartphones: A Benchmarking Dataset

Slides Poster Similar

In this paper we introduce a novel public dataset for developing and benchmarking indoor localization systems. We have selected and 3D mapped a set of representative indoor environments including a large office building, a conference room, a workshop, an exhibition area and a restaurant. Our acquisition pipeline is based on a portable LiDAR SLAM backpack to map the buildings and to accurately track the pose of the user as it moves freely inside them. We introduce the calibration procedures that enable us to acquire and geo-reference live data coming from different independent sensors rigidly attached to the backpack. This has allowed us to collect long sequences of spherical and stereo images, together with all the sensor readings coming from a consumer smartphone and locate them inside the map with centimetre accuracy. The dataset addresses many of the limitations of existing indoor localization datasets regarding the scale and diversity of the mapped buildings; the number of acquired sequences under varying conditions; the accuracy of the ground-truth trajectory; the availability of a detailed 3D model and the availability of different sensor types. It enables the benchmarking of existing and the development of new indoor localization approaches, in particular for deep learning based systems that require large amounts of labeled training data.

Temporal Binary Representation for Event-Based Action Recognition

Simone Undri Innocenti, Federico Becattini, Federico Pernici, Alberto Del Bimbo

Responsive image

Auto-TLDR; Temporal Binary Representation for Gesture Recognition

Slides Poster Similar

In this paper we present an event aggregation strategy to convert the output of an event camera into frames processable by traditional Computer Vision algorithms. The proposed method first generates sequences of intermediate binary representations, which are then losslessly transformed into a compact format by simply applying a binary-to-decimal conversion. This strategy allows us to encode temporal information directly into pixel values, which are then interpreted by deep learning models. We apply our strategy, called Temporal Binary Representation, to the task of Gesture Recognition, obtaining state of the art results on the popular DVS128 Gesture Dataset. To underline the effectiveness of the proposed method compared to existing ones, we also collect an extension of the dataset under more challenging conditions on which to perform experiments.

A Lightweight Network to Learn Optical Flow from Event Data

Zhuoyan Li, Jiawei Shen

Responsive image

Auto-TLDR; A lightweight pyramid network with attention mechanism to learn optical flow from events data

Similar

Existing deep neural networks have found success in estimation of event-based optical flow, but are at the expense of complicated architectures. Moreover, few prior works discuss how to tackle with the noise problem of event camera, which would severely contaminate the data quality and make estimation an ill-posed problem. In this work, we present a lightweight pyramid network with attention mechanism to learn optical flow from events data. Specially, the network is designed according to two-well established principles: Laplacian pyramidal decomposition and channel attention mechanism. By integrating Laplacian pyramidal processing into CNN, the learning problem is simplified into several subproblems at each pyramid level, which can be handled by a relatively shallow network with few parameters. The channel attention block, embedded in each pyramid level, treats channels of feature map unequally and provides extra flexibility in suppressing background noises. The size of the proposed network is about only 5% of previous methods while our method still achieves state-of-the-art performance on the benchmark dataset. The experimental video samples of continuous flow estimation is presented at :https://github.com/xfleezy/blob.

Semantic Segmentation for Pedestrian Detection from Motion in Temporal Domain

Guo Cheng, Jiang Yu Zheng

Responsive image

Auto-TLDR; Motion Profile: Recognizing Pedestrians along with their Motion Directions in a Temporal Way

Slides Poster Similar

In autonomous driving, state-of-the-art methods detect pedestrian through appearance in 2-D spatial images. However, these approaches are typically time-consuming because of the complexity of algorithms to cope with large variations in shape, pose, action, and illumination. They also fall short of capturing temporal continuity in motion trace. In a completely different approach, this work recognizes pedestrians along with their motion directions in a temporal way. By projecting a driving video to a 2-D temporal image called Motion Profile (MP), we can robustly distinguish pedestrian in motion and standing-still against smooth background motion. To ensure non-redundant data processing of deep network on a compact motion profile further, a novel temporal-shift memory (TSM) model is developed to perform deep learning of sequential input in linear processing time. In experiments containing various pedestrian motion from sensors such as video and LiDAR, we demonstrate that, with the data size around 3/720th of video volume, this motion-based method can reach the detecting rate of pedestrians at 90% in near and mid-range on the road. With a super-fast processing speed and good accuracy, this method is promising for intelligent vehicles.

Benchmarking Cameras for OpenVSLAM Indoors

Kevin Chappellet, Guillaume Caron, Fumio Kanehiro, Ken Sakurada, Abderrahmane Kheddar

Responsive image

Auto-TLDR; OpenVSLAM: Benchmarking Camera Types for Visual Simultaneous Localization and Mapping

Slides Poster Similar

In this paper we benchmark different types of cameras and evaluate their performance in terms of reliable localization reliability and precision in Visual Simultaneous Localization and Mapping (vSLAM). Such benchmarking is merely found for visual odometry, but never for vSLAM. Existing studies usually compare several algorithms for a given camera. %This work is the first to handle the dual of the latter, i.e. comparing several cameras for a given SLAM algorithm. The evaluation methodology we propose is applied to the recent OpenVSLAM framework. The latter is versatile enough to natively deal with perspective, fisheye, 360 cameras in a monocular or stereoscopic setup, an in RGB or RGB-D modalities. Results in various sequences containing light variation and scenery modifications in the scene assess quantitatively the maximum localization rate for 360 vision. In the contrary, RGB-D vision shows the lowest localization rate, but highest precision when localization is possible. Stereo-fisheye trades-off with localization rates and precision between 360 vision and RGB-D vision. The dataset with ground truth will be made available in open access to allow evaluating other/future vSLAM algorithms with respect to these camera types.

Temporal Pulses Driven Spiking Neural Network for Time and Power Efficient Object Recognition in Autonomous Driving

Wei Wang, Shibo Zhou, Jingxi Li, Xiaohua Li, Junsong Yuan, Zhanpeng Jin

Responsive image

Auto-TLDR; Spiking Neural Network for Real-Time Object Recognition on Temporal LiDAR Pulses

Slides Poster Similar

Accurate real-time object recognition from sensory data has long been a crucial and challenging task for autonomous driving. Even though deep neural networks (DNNs) have been widely applied in this area, their considerable processing latency, power consumption as well as computational complexity have been challenging issues for real-time autonomous driving applications. In this paper, we propose an approach to address the real-time object recognition problem utilizing spiking neural networks (SNNs). The proposed SNN model works directly with raw temporal LiDAR pulses without the pulse-to-point cloud preprocessing procedure, which can significantly reduce delay and power consumption. Being evaluated on various datasets derived from LiDAR and dynamic vision sensor (DVS), including Sim LiDAR, KITTI, and DVS-barrel, our proposed model has shown remarkable time and power efficiency, while achieving comparable recognition performance as the state-of-the-art methods. This paper highlights the SNN's great potentials in autonomous driving and related applications. To the best of our knowledge, this is the first attempt to use SNN to directly perform time and energy efficient object recognition on temporal LiDAR pulses in the setting of autonomous driving.

Online Object Recognition Using CNN-Based Algorithm on High-Speed Camera Imaging

Shigeaki Namiki, Keiko Yokoyama, Shoji Yachida, Takashi Shibata, Hiroyoshi Miyano, Masatoshi Ishikawa

Responsive image

Auto-TLDR; Real-Time Object Recognition with High-Speed Camera Imaging with Population Data Clearing and Data Ensemble

Slides Poster Similar

High-speed camera imaging (e.g., 1,000 fps) is effective to detect and recognize objects moving at high speeds because temporally dense images obtained by a high-speed camera can usually capture the best moment for object detection and recognition. However, the latest recognition algorithms, with their high complexity, are difficult to utilize in real-time applications involving high-speed cameras because a vast amount of images need to be processed with no latency. To tackle this problem, we propose a novel framework for real-time object recognition with high-speed camera imaging. The proposed framework has the key processes of population data cleansing and data ensemble. Population data cleansing improves the recognition accuracy by quantifying the recognizability and by excluding part of the images prior to the recognition process, while data ensemble improves the robustness of object recognition by merging the class probabilities with multiple images of the same object. Experimental results with a real dataset show that our framework is more effective than existing methods.

Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem Formulation

Dimche Kostadinov, Davide Scarammuza

Responsive image

Auto-TLDR; Unsupervised Representation Learning from Local Event Data for Pattern Recognition

Slides Poster Similar

Event-based cameras record asynchronous streamof per-pixel brightness changes. As such, they have numerous advantages over the common frame-based cameras, including high temporal resolution, high dynamic range, and no motion blur. Due to the asynchronous nature, efficient learning of compact representation for event data is challenging. While the extend to which the spatial and temporal event "information" is useful for pattern recognition tasks is not fully explored. In this paper, we focus on single layer architectures. We analyze the performance of two general problem formulations,i.e., the direct and the inverse, for unsupervised feature learning from local event data,i.e., local volumes of events that are described in space and time. We identify and show the main advantages of each approach. Theoretically, we analyze guarantees for local optimal solution, possibility for asynchronous and parallel parameter update as well as the computational complexity. We present numerical experiments for the task of object recognition, where we evaluate the solution under the direct and the inverse problem.We give a comparison with the state-of-the-art methods. Our empirical results highlight the advantages of the both approaches for representation learning from event data. Moreover, we show improvements of up to 9% in the recognition accuracy compared to the state-of-the-art methods from the same class of methods.

Detecting Anomalies from Video-Sequences: A Novel Descriptor

Giulia Orrù, Davide Ghiani, Maura Pintor, Gian Luca Marcialis, Fabio Roli

Responsive image

Auto-TLDR; Trit-based Measurement of Group Dynamics for Crowd Behavior Analysis and Anomaly Detection

Slides Poster Similar

We present a novel descriptor for crowd behavior analysis and anomaly detection. The goal is to measure by appropriate patterns the speed of formation and disintegration of groups in the crowd. This descriptor is inspired by the concept of one-dimensional local binary patterns: in our case, such patterns depend on the number of group observed in a time window. An appropriate measurement unit, named "trit" (trinary digit), represents three possible dynamic states of groups on a certain frame. Our hypothesis is that abrupt variations of the groups' number may be due to an anomalous event that can be accordingly detected, by translating these variations on temporal trit-based sequence of strings which are significantly different from the one describing the "no-anomaly" one. Due to the peculiarity of the rationale behind this work, relying on the number of groups, three different methods of people group's extraction are compared. Experiments are carried out on the Motion-Emotion benchmark data set. Reported results point out in which cases the trit-based measurement of group dynamics allows us to detect the anomaly. Besides the promising performance of our approach, we show how it is correlated with the anomaly typology and the camera's perspective to the crowd's flow (frontal, lateral).

Learning to Segment Dynamic Objects Using SLAM Outliers

Dupont Romain, Mohamed Tamaazousti, Hervé Le Borgne

Responsive image

Auto-TLDR; Automatic Segmentation of Dynamic Objects Using SLAM Outliers Using Consensus Inversion

Slides Poster Similar

We present a method to automatically learn to segment dynamic objects using SLAM outliers. It requires only one monocular sequence per dynamic object for training and consists in localizing dynamic objects using SLAM outliers, creating their masks, and using these masks to train a semantic segmentation network. We integrate the trained network in ORB-SLAM 2 and LDSO. At runtime we remove features on dynamic objects, making the SLAM unaffected by them. We also propose a new stereo dataset and new metrics to evaluate SLAM robustness. Our dataset includes consensus inversions, i.e., situations where the SLAM uses more features on dynamic objects that on the static background. Consensus inversions are challenging for SLAM as they may cause major SLAM failures. Our approach performs better than the State-of-the-Art on the TUM RGB-D dataset in monocular mode and on our dataset in both monocular and stereo modes.

Localization of Unmanned Aerial Vehicles in Corridor Environments Using Deep Learning

Ram Padhy, Shahzad Ahmad, Sachin Verma, Sambit Bakshi, Pankaj Kumar Sa

Responsive image

Auto-TLDR; A monocular vision assisted localization algorithm for indoor corridor environments

Slides Poster Similar

We propose a monocular vision assisted localization algorithm, that will help a UAV navigate safely in indoor corridor environments. Always, the aim is to navigate the UAV through a corridor in the forward direction by keeping it at the center with no orientation either to the left or right side. The algorithm makes use of the RGB image, captured from the UAV front camera, and passes it through a trained Deep Neural Network (DNN) to predict the position of the UAV as either on the left or center or right side of the corridor. Depending upon the divergence of the UAV with respect to an imaginary central line, known as the central bisector line (CBL) of the corridor, a suitable command is generated to bring the UAV to the center. When the UAV is at the center of the corridor, a new image is passed through another trained DNN to predict the orientation of the UAV with respect to the CBL of the corridor. If the UAV is either left or right tilted, an appropriate command is generated to rectify the orientation. We also propose a new corridor dataset, named UAVCorV1, which contains images as captured by the UAV front camera when the UAV is at all possible locations of a variety of corridors. An exhaustive set of experiments in different corridors reveal the efficacy of the proposed algorithm.

Mobile Augmented Reality: Fast, Precise, and Smooth Planar Object Tracking

Dmitrii Matveichev, Daw-Tung Lin

Responsive image

Auto-TLDR; Planar Object Tracking with Sparse Optical Flow Tracking and Descriptor Matching

Slides Poster Similar

We propose an innovative method for combining sparse optical flow tracking and descriptor matching algorithms. The proposed approach solves the following problems that are inherent to keypoint-based and optical flow based tracking algorithms: spatial jitter, extreme scale transformation, extreme perspective transformation, degradation in the number of tracking points, and drifting of tracking points. Our algorithm provides smooth object-position tracking under six degrees of freedom transformations with a small computational cost for providing a high-quality real-time AR experience on mobile platforms. We experimentally demonstrate that our approach outperforms the state-of-the-art tracking algorithms while offering faster computational time. A mobile augmented reality (AR) application, which is developed using our approach, delivers planar object tracking with 30 FPS on modern mobile phones for a camera resolution of 1280$\times$720. Finally, we compare the performance of our AR application with that of the Vuforia-based AR application on the same planar objects database. The test results show that our AR application delivers better AR experience than Vuforia in terms of smooth transition of object-pose between video frames.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.

Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster Similar

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

Anomaly Detection, Localization and Classification for Railway Inspection

Riccardo Gasparini, Andrea D'Eusanio, Guido Borghi, Stefano Pini, Giuseppe Scaglione, Simone Calderara, Eugenio Fedeli, Rita Cucchiara

Responsive image

Auto-TLDR; Anomaly Detection and Localization using thermal images in the lowlight environment

Slides Similar

The ability to detect, localize and classify objects that are anomalies is a challenging task in the computer vision community. In this paper, we tackle these tasks developing a framework to automatically inspect the railway during the night. Specifically, it is able to predict the presence, the image coordinates and the class of obstacles. To deal with the lowlight environment, the framework is based on thermal images and consists of three different modules that address the problem of detecting anomalies, predicting their image coordinates and classifying them. Moreover, due to the absolute lack of publicly released datasets collected in the railway context for anomaly detection, we introduce a new multi-modal dataset, acquired from a rail drone, used to evaluate the proposed framework. Experimental results confirm the accuracy of the framework and its suitability, in terms of computational load, performance, and inference time, to be implemented on a self-powered inspection system.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

A Two-Step Approach to Lidar-Camera Calibration

Yingna Su, Yaqing Ding, Jian Yang, Hui Kong

Responsive image

Auto-TLDR; Closed-Form Calibration of Lidar-camera System for Ego-motion Estimation and Scene Understanding

Slides Poster Similar

Autonomous vehicles and robots are typically equipped with Lidar and camera. Hence, calibrating the Lidar-camera system is of extreme importance for ego-motion estimation and scene understanding. In this paper, we propose a two-step approach (coarse + fine) for the external calibration between a camera and a multiple-line Lidar. First, a new closed-form solution is proposed to obtain the initial calibration parameters. We compare our solution with the state-of-the-art SVD-based algorithm, and show the benefits of both the efficiency and stability. With the initial calibration parameters, the ICP-based calibration framework is used to register the point clouds which extracted from the camera and Lidar coordinate frames, respectively. Our method has been applied to two Lidar-camera systems: an HDL-64E Lidar-camera system, and a VLP-16 Lidar-camera system. Experimental results demonstrate that our method achieves promising performance and higher accuracy than two open-source methods.

Unsupervised Moving Object Detection through Background Models for PTZ Camera

Kimin Yun, Hyung-Il Kim, Kangmin Bae, Jongyoul Park

Responsive image

Auto-TLDR; Unsupervised Moving Object Detection in a PTZ Camera through Two Background Models

Slides Poster Similar

Moving object detection in a video plays an important role in many vision applications. Recently, moving object detection using appearance modeling based on a convolutional neural network has been actively developed. However, the CNN-based methods usually require the user's supervision of the first frame so that it becomes highly dependent on the training dataset. In contrast, the method of finding a foreground, which models a background occupying a large proportion in an image, can detect a moving object efficiently in an unsupervised manner. However, existing methods based on background modeling in a pan-tilt-zoom (PTZ) camera suffer many false positives or loss of moving objects due to the estimation error of camera motion. To overcome the aforementioned limitations, we propose a moving object detection method for a PTZ camera through two background models. In an unsupervised way, our method builds the two background models that have different roles: 1) a coarse background model for detecting large changes, and 2) a fine background model for detecting small changes. In more detail, the coarse background model builds a block-based Gaussian model, and the fine model builds a sample consensus model. Both models are adaptively updated according to the estimated camera motion in the video recorded by a PTZ camera. Then, each foreground result from two background models is incorporated to fill the moving object region. Through experiments, the proposed method achieves better performance than the state-of-the-art methods and operates in real-time without parallel processing. In addition, we showed the effectiveness of the proposed model through improved results of moving object detection through combination with the latest supervised method.

Holistic Grid Fusion Based Stop Line Estimation

Runsheng Xu, Faezeh Tafazzoli, Li Zhang, Timo Rehfeld, Gunther Krehl, Arunava Seal

Responsive image

Auto-TLDR; Fused Multi-Sensory Data for Stop Lines Detection in Intersection Scenarios

Slides Similar

Intersection scenarios provide the most complex traffic situations in Autonomous Driving and Driving Assistance Systems. Knowing where to stop in advance in an intersection is an essential parameter in controlling the longitudinal velocity of the vehicle. Most of the existing methods in literature solely use cameras to detect stop lines, which is typically not sufficient in terms of detection range. To address this issue, we propose a method that takes advantage of fused multi-sensory data including stereo camera and lidar as input and utilizes a carefully designed convolutional neural network architecture to detect stop lines. Our experiments show that the proposed approach can improve detection range compared to camera data alone, works under heavy occlusion without observing the ground markings explicitly, is able to predict stop lines for all lanes and allows detection at a distance up to 50 meters.

Approach for Document Detection by Contours and Contrasts

Daniil Tropin, Sergey Ilyuhin, Dmitry Nikolaev, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; A countor-based method for arbitrary document detection on a mobile device

Slides Poster Similar

This paper considers the task of arbitrary document detection performed on a mobile device. The classical contour-based approach often mishandles cases with occlusion, complex background, or blur. Region-based approach, which relies on the contrast between object and background, does not have limitations, however its known implementations are highly resource-consuming. We propose a modification of a countor-based method, in which the competing hypotheses of the contour location are ranked according to the contrast between the areas inside and outside the border. In the performed experiments such modification leads to the 40% decrease of alternatives ordering errors and 10% decrease of the overall number of detection errors. We updated state-of-the-art performance on the open MIDV-500 dataset and demonstrated competitive results with the state-of-the-art on the SmartDoc dataset.

Learning Defects in Old Movies from Manually Assisted Restoration

Arthur Renaudeau, Travis Seng, Axel Carlier, Jean-Denis Durou, Fabien Pierre, Francois Lauze, Jean-François Aujol

Responsive image

Auto-TLDR; U-Net: Detecting Defects in Old Movies by Inpainting Techniques

Slides Poster Similar

We propose to detect defects in old movies, as the first step of a larger framework of old movies restoration by inpainting techniques. The specificity of our work is to learn a film restorer's expertise from a pair of sequences, composed of a movie with defects, and the same movie which was semi-automatically restored with the help of a specialized software. In order to detect those defects with minimal human interaction and further reduce the time spent for a restoration, we feed a U-Net with consecutive defective frames as input to detect the unexpected variations of pixel intensity over space and time. Since the output of the network is a mask of defect location, we first have to create the dataset of mask frames on the basis of restored frames from the software used by the film restorer, instead of classical synthetic ground truth, which is not available. These masks are estimated by computing the absolute difference between restored frames and defectuous frames, combined with thresholding and morphological closing. Our network succeeds in automatically detecting real defects with more precision than the manual selection with an all-encompassing shape, including some the expert restorer could have missed for lack of time.

Visual Saliency Oriented Vehicle Scale Estimation

Qixin Chen, Tie Liu, Jiali Ding, Zejian Yuan, Yuanyuan Shang

Responsive image

Auto-TLDR; Regularized Intensity Matching for Vehicle Scale Estimation with salient object detection

Slides Poster Similar

Vehicle scale estimation with a single camera is a typical application for intelligent transportation and it faces the challenges from visual computing while intensity-based method and descriptor-based method should be balanced. This paper proposed a vehicle scale estimation method based on salient object detection to resolve this problem. The regularized intensity matching method is proposed in Lie Algebra to achieve robust and accurate scale estimation, and descriptor matching and intensity matching are combined to minimize the proposed loss function. The visual attention mechanism is designed to select image patches with texture and remove the occluded image patches. Then the weights are assigned to pixels from the selected image patches which alleviates the influence of noise-corrupted pixels. The experiments show that the proposed method significantly outperforms state-of-the-art methods with regard to the robustness and accuracy of vehicle scale estimation.

AV-SLAM: Autonomous Vehicle SLAM with Gravity Direction Initialization

Kaan Yilmaz, Baris Suslu, Sohini Roychowdhury, L. Srikar Muppirisetty

Responsive image

Auto-TLDR; VI-SLAM with AGI: A combination of three SLAM algorithms for autonomous vehicles

Slides Poster Similar

Simultaneous localization and mapping (SLAM) algorithms that are aimed at autonomous vehicles (AVs) are required to utilize sensor redundancies specific to AVs and enable accurate, fast and repeatable estimations of pose and path trajectories. In this work, we present a combination of three SLAM algorithms that utilize a different subset of available sensors such as inertial measurement unit (IMU), a gray-scale mono-camera, and a Lidar. Also, we propose a novel acceleration-based gravity direction initialization (AGI) method for the visual-inertial SLAM algorithm. We analyze the SLAM algorithms and initialization methods for pose estimation accuracy, speed of convergence and repeatability on the KITTI odometry sequences. The proposed VI-SLAM with AGI method achieves relative pose errors less than 2\%, convergence in half a minute or less and convergence time variability less than 3s, which makes it preferable for AVs.

Weight Estimation from an RGB-D Camera in Top-View Configuration

Marco Mameli, Marina Paolanti, Nicola Conci, Filippo Tessaro, Emanuele Frontoni, Primo Zingaretti

Responsive image

Auto-TLDR; Top-View Weight Estimation using Deep Neural Networks

Slides Poster Similar

The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on bodyweight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in its top section to replace classification with prediction inference. The performance of five state-of-art DNNs has been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.

Rotational Adjoint Methods for Learning-Free 3D Human Pose Estimation from IMU Data

Caterina Emilia Agelide Buizza, Yiannis Demiris

Responsive image

Auto-TLDR; Learning-free 3D Human Pose Estimation from Inertial Measurement Unit Data

Poster Similar

We present a new framework for learning-free 3D human pose estimation from Inertial Measurement Unit (IMU) data. The proposed method does not rely on a full motion sequence to calculate a pose for any particular time point and thus can operate in real-time. A cost function based only on joint rotations is used, removing the need for frequent transformations between rotations and 3D Cartesian coordinates. A Jacobian that preserves skeleton structure is derived using Adjoint methods from Variational Data Assimilation. To facilitate further research in IMU-based Motion Capture, we provide a dataset that combines RGB and depth images from an Intel RealSense camera, marker-based motion capture from an Optitrack system and Xsens IMU data. We have evaluated our method on both our dataset and the Total Capture dataset, showing an average error across 24 joints of 0.45 and 0.48 radians respectively.

P2D: A Self-Supervised Method for Depth Estimation from Polarimetry

Marc Blanchon, Desire Sidibe, Olivier Morel, Ralph Seulin, Daniel Braun, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Polarimetric Regularization for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to state-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.

Object Segmentation Tracking from Generic Video Cues

Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper

Responsive image

Auto-TLDR; A Light-Weight Variational Framework for Video Object Segmentation in Videos

Slides Poster Similar

We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence specific training of dedicated CNN architectures, we show the potential of a variational model, based on generic video information from motion and color. Such cues are usually required for tasks such as robot navigation or grasp estimation. We leverage them directly for video object segmentation and thus provide accurate segmentations at potentially very low extra cost. Our simple method can provide competitive results compared to the costly CNN-based methods with parameter tuning. Furthermore, we show that our approach can be combined with state-of-the-art CNN-based segmentations in order to improve over their respective results. We evaluate our method on the datasets DAVIS 16,17 and SegTrack v2.

Unconstrained Vision Guided UAV Based Safe Helicopter Landing

Arindam Sikdar, Abhimanyu Sahu, Debajit Sen, Rohit Mahajan, Ananda Chowdhury

Responsive image

Auto-TLDR; Autonomous Helicopter Landing in Hazardous Environments from Unmanned Aerial Images Using Constrained Graph Clustering

Slides Poster Similar

In this paper, we have addressed the problem of automated detection of safe zone(s) for helicopter landing in hazardous environments from images captured by an Unmanned Aerial Vehicle (UAV). The unconstrained motion of the image capturing drone (the UAV in our case) makes the problem further difficult. The solution pipeline consists of natural landmark detection and tracking, stereo-pair generation using constrained graph clustering, digital terrain map construction and safe landing zone detection. The main methodological contribution lies in mathematically formulating epipolar constraint and then using it in a Minimum Spanning Tree (MST) based graph clustering approach. We have also made publicly available AHL (Autonomous Helicopter Landing) dataset, a new aerial video dataset captured by a drone, with annotated ground-truths. Experimental comparisons with other competing clustering methods i) in terms of Dunn Index and Davies Bouldin Index as well as ii) for frame-level safe zone detection in terms of F-measure and confusion matrix clearly demonstrate the effectiveness of the proposed formulation.

An Adaptive Fusion Model Based on Kalman Filtering and LSTM for Fast Tracking of Road Signs

Chengliang Wang, Xin Xie, Chao Liao

Responsive image

Auto-TLDR; Fusion of ThunderNet and Region Growing Detector for Road Sign Detection and Tracking

Slides Poster Similar

The detection and tracking of road signs plays a critical role in various autopilot application. Utilizing convolutional neural networks(CNN) mostly incurs a big run-time overhead in feature extraction and object localization. Although Klaman filter(KF) is a commonly-used tracker, it is likely to be impacted by omitted objects in the detection step. In this paper, we designed a high-efficient detector that combines ThunderNet and Region Growing Detector(RGD) to detect road signs, and built a fusion model of long short term memory network (LSTM) and KF in the state estimation and the color histogram. The experimental results demonstrate that the proposed method improved the state estimation accuracy by 6.4% and enhanced the Frames Per Second(FPS) to 41.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

User-Independent Gaze Estimation by Extracting Pupil Parameter and Its Mapping to the Gaze Angle

Sang Yoon Han, Nam Ik Cho

Responsive image

Auto-TLDR; Gaze Point Estimation using Pupil Shape for Generalization

Slides Poster Similar

Since gaze estimation plays a crucial role in recognizing human intentions, it has been researched for a long time, and its accuracy is ever increasing. However, due to the wide variation in eye shapes and focusing abilities between the individuals, accuracies of most algorithms vary depending on each person in the test group, especially when the initial calibration is not well performed. To alleviate the user-dependency, we attempt to derive features that are general for most people and use them as the input to a deep network instead of using the images as the input. Specifically, we use the pupil shape as the core feature because it is directly related to the 3D eyeball rotation, and thus the gaze direction. While existing deep learning methods learn the gaze point by extracting various features from the image, we focus on the mapping function from the eyeball rotation to the gaze point by using the pupil shape as the input. It is shown that the accuracy of gaze point estimation also becomes robust for the uncalibrated points by following the characteristics of the mapping function. Also, our gaze network learns the gaze difference to facilitate the re-calibration process to fix the calibration-drift problem that typically occurs with glass-type or head-mount devices.

One Step Clustering Based on A-Contrario Framework for Detection of Alterations in Historical Violins

Alireza Rezaei, Sylvie Le Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, Marco Malagodi

Responsive image

Auto-TLDR; A-Contrario Clustering for the Detection of Altered Violins using UVIFL Images

Slides Poster Similar

Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of interventions necessary. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the ``Violins UVIFL imagery'' dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with the state of the art clustering methods shows improved overall precision and recall.

ID Documents Matching and Localization with Multi-Hypothesis Constraints

Guillaume Chiron, Nabil Ghanmi, Ahmad Montaser Awal

Responsive image

Auto-TLDR; Identity Document Localization in the Wild Using Multi-hypothesis Exploration

Slides Poster Similar

This paper presents an approach for spotting and accurately localizing identity documents in the wild. Contrary to blind solutions that often rely on borders and corners detection, the proposed approach requires a classification a priori along with a list of predefined models. The matching and accurate localization are performed using specific ID document features. This process is especially difficult due to the intrinsic variable nature of ID models (text fields, multi-pass printing with offset, unstable layouts, added artifacts, blinking security elements, non-rigid materials). We tackle the problem by putting different combinations of features in competition within a multi-hypothesis exploration where only the best document quadrilateral candidate is retained thanks to a custom visual similarity metric. The idea is to find, in a given context, at least one feature able to correctly crop the document. The proposed solution has been tested and has shown its benefits on both the MIDV-500 academic dataset and an industrial one supposedly more representative of a real-life application.

Video Analytics Gait Trend Measurement for Fall Prevention and Health Monitoring

Lawrence O'Gorman, Xinyi Liu, Md Imran Sarker, Mariofanna Milanova

Responsive image

Auto-TLDR; Towards Health Monitoring of Gait with Deep Learning

Slides Poster Similar

We design a video analytics system to measure gait over time and detect trend and outliers in the data. The purpose is for health monitoring, the thesis being that trend especially can lead to early detection of declining health and be used to prevent accidents such as falls in the elderly. We use the OpenPose deep learning tool for recognizing the back and neck angle features of walking people, and measure speed as well. Trend and outlier statistics are calculated upon time series of these features. A challenge in this work is lack of testing data of decaying gait. We first designed experiments to measure consistency of the system on a healthy population, then analytically altered this real data to simulate gait decay. Results on about 4000 gait samples of 50 people over 3 months showed good separation of healthy gait subjects from those with trend or outliers, and furthermore the trend measurement was able to detect subtle decay in gait not easily discerned by the human eye.

Video Anomaly Detection by Estimating Likelihood of Representations

Yuqi Ouyang, Victor Sanchez

Responsive image

Auto-TLDR; Video Anomaly Detection in the latent feature space using a deep probabilistic model

Slides Poster Similar

Video anomaly detection is a challenging task not only because it involves solving many sub-tasks such as motion representation, object localization and action recognition, but also because it is commonly considered as an unsupervised learning problem that involves detecting outliers. Traditionally, solutions to this task have focused on the mapping between video frames and their low-dimensional features, while ignoring the spatial connections of those features. Recent solutions focus on analyzing these spatial connections by using hard clustering techniques, such as K-Means, or applying neural networks to map latent features to a general understanding, such as action attributes. In order to solve video anomaly in the latent feature space, we propose a deep probabilistic model to transfer this task into a density estimation problem where latent manifolds are generated by a deep denoising autoencoder and clustered by expectation maximization. Evaluations on several benchmarks datasets show the strengths of our model, achieving outstanding performance on challenging datasets.

AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and Graphical Features

Maximilian Kraus, Seyed Majid Azimi, Emec Ercelik, Reza Bahmanyar, Peter Reinartz, Alois Knoll

Responsive image

Auto-TLDR; AerialMPTNet: A novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features

Slides Poster Similar

Multi-pedestrian tracking in aerial imagery has several applications such as large-scale event monitoring, disaster management, search-and-rescue missions, and as input into predictive crowd dynamic models. Due to the challenges such as the large number and the tiny size of the pedestrians (e.g., 4 x 4 pixels) with their similar appearances as well as different scales and atmospheric conditions of the images with their extremely low frame rates (e.g., 2 fps), current state-of-the-art algorithms including the deep learning-based ones are unable to perform well. In this paper, we propose AerialMPTNet, a novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features from a Siamese Neural Network, movement predictions from a Long Short-Term Memory, and pedestrian interconnections from a GraphCNN. In addition, to address the lack of diverse aerial multi-pedestrian tracking datasets, we introduce the Aerial Multi-Pedestrian Tracking (AerialMPT) dataset consisting of 307 frames and 44,740 pedestrians annotated. To the best of our knowledge, AerialMPT is the largest and most diverse dataset to this date and will be released publicly. We evaluate AerialMPTNet on AerialMPT and KIT AIS, and benchmark with several state-of-the-art tracking methods. Results indicate that AerialMPTNet significantly outperforms other methods on accuracy and time-efficiency.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Generic Merging of Structure from Motion Maps with a Low Memory Footprint

Gabrielle Flood, David Gillsjö, Patrik Persson, Anders Heyden, Kalle Åström

Responsive image

Auto-TLDR; A Low-Memory Footprint Representation for Robust Map Merge

Slides Poster Similar

With the development of cheap image sensors, the amount of available image data have increased enormously, and the possibility of using crowdsourced collection methods has emerged. This calls for development of ways to handle all these data. In this paper, we present new tools that will enable efficient, flexible and robust map merging. Assuming that separate optimisations have been performed for the individual maps, we show how only relevant data can be stored in a low memory footprint representation. We use these representations to perform map merging so that the algorithm is invariant to the merging order and independent of the choice of coordinate system. The result is a robust algorithm that can be applied to several maps simultaneously. The result of a merge can also be represented with the same type of low-memory footprint format, which enables further merging and updating of the map in a hierarchical way. Furthermore, the method can perform loop closing and also detect changes in the scene between the capture of the different image sequences. Using both simulated and real data — from both a hand held mobile phone and from a drone — we verify the performance of the proposed method.

Video Reconstruction by Spatio-Temporal Fusion of Blurred-Coded Image Pair

Anupama S, Prasan Shedligeri, Abhishek Pal, Kaushik Mitr

Responsive image

Auto-TLDR; Recovering Video from Motion-Blurred and Coded Exposure Images Using Deep Learning

Slides Poster Similar

Learning-based methods have enabled the recovery of a video sequence from a single motion-blurred image or a single coded exposure image. Recovering video from a single motion-blurred image is a very ill-posed problem and the recovered video usually has many artifacts. In addition to this, the direction of motion is lost and it results in motion ambiguity. However, it has the advantage of fully preserving the information in the static parts of the scene. The traditional coded exposure framework is better-posed but it only samples a fraction of the space-time volume, which is at best $50\%$ of the space-time volume. Here, we propose to use the complementary information present in the fully-exposed (blurred) image along with the coded exposure image to recover a high fidelity video without any motion ambiguity. Our framework consists of a shared encoder followed by an attention module to selectively combine the spatial information from the fully-exposed image with the temporal information from the coded image, which is then super-resolved to recover a non-ambiguous high-quality video. The input to our algorithm is a fully-exposed and coded image pair. Such an acquisition system already exists in the form of a Coded-two-bucket (C2B) camera. We demonstrate that our proposed deep learning approach using blurred-coded image pair produces much better results than those from just a blurred image or just a coded image.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Real-Time End-To-End Lane ID Estimation Using Recurrent Networks

Ibrahim Halfaoui, Fahd Bouzaraa, Onay Urfalioglu

Responsive image

Auto-TLDR; Real-Time, Vision-Only Lane Identification Using Monocular Camera

Slides Poster Similar

Acquiring information about the road lane structure is a crucial step for autonomous navigation. To this end, several approaches tackle this task from different perspectives such as lane marking detection or semantic lane segmentation.However, to the best of our knowledge, there is yet no purely vision based end-to-end solution to answer the precise question: How to estimate the relative number or "ID" of the current driven lane within a multi-lane road or a highway? In this work, we propose a real-time, vision-only (i.e. monocular camera) solution to the problem based on a dual left-right convention. We interpret this task as a classification problem by limiting the maximum number of lane candidates to eight. Our approach is designed to meet low-complexity specifications and limited runtime requirements. It harnesses the temporal dimension inherent to the input sequences to improve upon high complexity state-of-the-art models. We achieve more than 95% accuracy on a challenging test set with extreme conditions and different routes.

Gabriella: An Online System for Real-Time Activity Detection in Untrimmed Security Videos

Mamshad Nayeem Rizve, Ugur Demir, Praveen Praveen Tirupattur, Aayush Jung Rana, Kevin Duarte, Ishan Rajendrakumar Dave, Yogesh Rawat, Mubarak Shah

Responsive image

Auto-TLDR; Gabriella: A Real-Time Online System for Activity Detection in Surveillance Videos

Slides Similar

Activity detection in surveillance videos is a difficult problem due to multiple factors such as large field of view, presence of multiple activities, varying scales and viewpoints, and its untrimmed nature. The existing research in activity detection is mainly focused on datasets, such as UCF-101, JHMDB, THUMOS, and AVA, which partially address these issues. The requirement of processing the surveillance videos in real-time makes this even more challenging. In this work we propose Gabriella, a real-time online system to perform activity detection on untrimmed surveillance videos. The proposed method consists of three stages: tubelet extraction, activity classification, and online tubelet merging. For tubelet extraction, we propose a localization network which takes a video clip as input and spatio-temporally detects potential foreground regions at multiple scales to generate action tubelets. We propose a novel Patch-Dice loss to handle large variations in actor size. Our online processing of videos at a clip level drastically reduces the computation time in detecting activities. The detected tubelets are assigned activity class scores by the classification network and merged together using our proposed Tubelet-Merge Action-Split (TMAS) algorithm to form the final action detections. The TMAS algorithm efficiently connects the tubelets in an online fashion to generate action detections which are robust against varying length activities. We perform our experiments on the VIRAT and MEVA (Multiview Extended Video with Activities) datasets and demonstrate the effectiveness of the proposed approach in terms of speed ($\sim$100 fps) and performance with state-of-the-art results. The code and models will be made publicly available.

SAILenv: Learning in Virtual Visual Environments Made Simple

Enrico Meloni, Luca Pasqualini, Matteo Tiezzi, Marco Gori, Stefano Melacci

Responsive image

Auto-TLDR; SAILenv: A Simple and Customized Platform for Visual Recognition in Virtual 3D Environment

Slides Poster Similar

Recently, researchers in Machine Learning algorithms, Computer Vision scientists, engineers and others, showed a growing interest in 3D simulators as a mean to artificially create experimental settings that are very close to those in the real world. However, most of the existing platforms to interface algorithms with 3D environments are often designed to setup navigation-related experiments, to study physical interactions, or to handle ad-hoc cases that are not thought to be customized, sometimes lacking a strong photorealistic appearance and an easy-to-use software interface. In this paper, we present a novel platform, SAILenv, that is specifically designed to be simple and customizable, and that allows researchers to experiment visual recognition in virtual 3D scenes. A few lines of code are needed to interface every algorithm with the virtual world, and non-3D-graphics experts can easily customize the 3D environment itself, exploiting a collection of photorealistic objects. Our framework yields pixel-level semantic and instance labeling, depth, and, to the best of our knowledge, it is the only one that provides motion-related information directly inherited from the 3D engine. The client-server communication operates at a low level, avoiding the overhead of HTTP-based data exchanges. We perform experiments using a state-of-the-art object detector trained on real-world images, showing that it is able to recognize the photorealistic 3D objects of our environment. The computational burden of the optical flow compares favourably with the estimation performed using modern GPU-based convolutional networks or more classic implementations. We believe that the scientific community will benefit from the easiness and high-quality of our framework to evaluate newly proposed algorithms in their own customized realistic conditions.

NetCalib: A Novel Approach for LiDAR-Camera Auto-Calibration Based on Deep Learning

Shan Wu, Amnir Hadachi, Damien Vivet, Yadu Prabhakar

Responsive image

Auto-TLDR; Automatic Calibration of LiDAR and Cameras using Deep Neural Network

Slides Poster Similar

A fusion of LiDAR and cameras have been widely used in many robotics applications such as classification, segmentation, object detection, and autonomous driving. It is essential that the LiDAR sensor can measure distances accurately, which is a good complement to the cameras. Hence, calibrating sensors before deployment is a mandatory step. The conventional methods include checkerboards, specific patterns, or human labeling, which is trivial and human-labor extensive if we do the same calibration process every time. The main propose of this research work is to build a deep neural network that is capable of automatically finding the geometric transformation between LiDAR and cameras. The results show that our model manages to find the transformations from randomly sampled artificial errors. Besides, our work is open-sourced for the community to fully utilize the advances of the methodology for developing more the approach, initiating collaboration, and innovation in the topic.

Robust Visual Object Tracking with Two-Stream Residual Convolutional Networks

Ning Zhang, Jingen Liu, Ke Wang, Dan Zeng, Tao Mei

Responsive image

Auto-TLDR; Two-Stream Residual Convolutional Network for Visual Tracking

Slides Poster Similar

The current deep learning based visual tracking approaches have been very successful by learning the target classification and/or estimation model from a large amount of supervised training data in offline mode. However, most of them can still fail in tracking objects due to some more challenging issues such as dense distractor objects, confusing background, motion blurs, and so on. Inspired by the human ``visual tracking'' capability which leverages motion cues to distinguish the target from the background, we propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking, which successfully exploits both appearance and motion features for model update. Our TS-RCN can be integrated with existing deep learning based visual trackers. To further improve the tracking performance, we adopt a ``wider'' residual network ResNeXt as its feature extraction backbone. To the best of our knowledge, TS-RCN is the first end-to-end trainable two-stream visual tracking system, which makes full use of both appearance and motion features of the target. We have extensively evaluated the TS-RCN on most widely used benchmark datasets including VOT2018, VOT2019, and GOT-10K. The experiment results have successfully demonstrated that our two-stream model can greatly outperform the appearance based tracker, and it also achieves state-of-the-art performance. The tracking system can run at up to 38.1 FPS.

Motion and Region Aware Adversarial Learning for Fall Detection with Thermal Imaging

Vineet Mehta, Abhinav Dhall, Sujata Pal, Shehroz Khan

Responsive image

Auto-TLDR; Automatic Fall Detection with Adversarial Network using Thermal Imaging Camera

Slides Poster Similar

Automatic fall detection is a vital technology for ensuring health and safety of people. Home based camera systems for fall detection often put people's privacy at risk. Thermal cameras can partially/fully obfuscate facial features, thus preserving the privacy of a person. Another challenge is the less occurrence of falls in comparison to normal activities of daily living. As fall occurs rarely, it is non-trivial to learn algorithms due to class imbalance. To handle these problems, we formulate fall detection as an anomaly detection within an adversarial framework using thermal imaging camera. We present a novel adversarial network that comprise of two channel 3D convolutional auto encoders; one each handling video sequences and optical flow, which then reconstruct the thermal data and the optical flow input sequences. We introduce a differential constraint, a technique to track the region of interest and a joint discriminator to compute the reconstruction error. Larger reconstruction error indicates the occurrence of fall in a video sequence. The experiments on a publicly available thermal fall dataset show the superior results obtained in comparison to standard baseline.