Pratheepan Yogarajah

Papers from this author

Magnifying Spontaneous Facial Micro Expressions for Improved Recognition

Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurence Taggart, Pradeepa Samarasinghe

Responsive image

Auto-TLDR; Eulerian Video Magnification for Micro Expression Recognition

Slides Poster Similar

Building an effective automatic micro expression recognition (MER) system is becoming increasingly desirable in computer vision applications. However, it is also very challenging given the fine-grained nature of the expressions to be recognized. Hence, we investigate if amplifying micro facial muscle movements as a pre-processing phase, by employing Eulerian Video Magnification (EVM), can boost performance of Local Phase Quantization with Three Orthogonal Planes (LPQ-TOP) to achieve improved facial MER across various datasets. In addition, we examine the rate of increase for recognition to determine if it is uniform across datasets using EVM. Ultimately, we classify the extracted features using Support Vector Machines (SVM). We evaluate and compare the performance with various methods on seven different datasets namely CASME, CAS(ME)2, CASME2, SMIC-HS, SMIC-VIS, SMIC-NIR and SAMM. The results obtained demonstrate that EVM can enhance LPQ-TOP to achieve improved recognition accuracy on the majority of the datasets.

Reducing-Over-Time Tree for Event-Based Data

Shane Harrigan, Sonya Coleman, Dermot Kerr, Pratheepan Yogarajah, Zheng Fang, Chengdong Wu

Responsive image

Auto-TLDR; Reducing-Over-Time Binary Tree Structure for Event-Based Vision Data

Slides Poster Similar

This paper presents a novel Reducing-Over-Time (ROT) binary tree structure for event-based vision data and subtypes of the tree structure. A framework is presented using ROT, that takes advantage of the self-balancing and self-pruning nature of the tree structure to extract spatial-temporal information. The ROT framework is paired with an established motion classification technique and performance is evaluated against other state-of-the-art techniques using four datasets. Additionally, the ROT framework as a processing platform is compared with other event-based vision processing platforms in terms of memory usage and is found to be one of the most memory efficient platforms available.