Hassan Foroosh

Papers from this author

CCA: Exploring the Possibility of Contextual Camouflage Attack on Object Detection

Shengnan Hu, Yang Zhang, Sumit Laha, Ankit Sharma, Hassan Foroosh
Track 3: Computer Vision Robotics and Intelligent Systems
Tue 12 Jan 2021 at 17:00 in session PS T3.3

Responsive image

Auto-TLDR; Contextual camouflage attack for object detection

Underline Similar papers

Deep neural network based object detection has become the cornerstone of many real-world applications. Along with this success comes concerns about its vulnerability to malicious attacks. To gain more insight into this issue, we propose a contextual camouflage attack (CCA for short) algorithm to influence the performance of object detectors. In this paper, we use an evolutionary search strategy and adversarial machine learning in interactions with a photo-realistic simulated environment to find camouflage patterns that are effective over a huge variety of object locations, camera poses, and lighting conditions. The proposed camouflages are validated effective to most of the state-of-the-art object detectors.

Improving Image Matching with Varied Illumination

Sarah Braeger, Hassan Foroosh
Track 5: Image and Signal Processing
Thu 14 Jan 2021 at 16:00 in session PS T5.6

Responsive image

Auto-TLDR; Optimizing Feature Matching for Stereo Image Pairs by Stereo Illumination

Underline Similar papers

We present a method to maximize feature matching performance across stereo image pairs by varying illumination. We perform matching between views per lighting condition, finding unique SIFT correspondences for each condition. These feature matches are then collected together into a single set, selecting those features which present the highest quality match. Instead of capturing each view under each illumination, we approximate lighting changes with a pretrained relighting convo- lutional neural network which only requires each view captured under a single specified lighting condition. We then collect the best of these feature matches over all lighting conditions offered by the relighting network. We further present an optimization to limit the number of lighting conditions evaluated to gain a specified number of matches. Our method is evaluated on a set of indoor scenes excluded from training the network with comparison to features extracted from pretrained VGG16. Our method offers an average 5.5× improvement in number of correct matches while retaining similar precision than by the original lit image pair per scene alone.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh
Track 3: Computer Vision Robotics and Intelligent Systems
Thu 14 Jan 2021 at 16:00 in session PS T3.9

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Underline Similar papers

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Near-Infrared Depth-Independent Image Dehazing using Haar Wavelets

Sumit Laha, Ankit Sharma, Shengnan Hu, Hassan Foroosh
Track 5: Image and Signal Processing
Thu 14 Jan 2021 at 16:00 in session PS T5.6

Responsive image

Auto-TLDR; A fusion algorithm for haze removal using Haar wavelets

Underline Similar papers

We propose a fusion algorithm for haze removal that combines color information from an RGB image and edge information extracted from its corresponding NIR image using Haar wavelets. The proposed algorithm is based on the key observation that NIR edge features are more prominent in the hazy regions of the image than the RGB edge features in those same regions. To combine the color and edge information, we introduce a haze-weight map which proportionately distributes the color and edge information during the fusion process. Because NIR images are, intrinsically, nearly haze-free, our work makes no assumptions like existing works that rely on a scattering model and essentially designing a depth-independent method. This helps in minimizing artifacts and gives a more realistic sense to the restored haze-free image. Extensive experiments show that the proposed algorithm is both qualitatively and quantitatively better on several key metrics when compared to existing state-of-the-art methods.