Video Lightening with Dedicated CNN Architecture

Li-Wen Wang, Wan-Chi Siu, Zhi-Song Liu, Chu-Tak Li, P. K. Daniel Lun

Responsive image

Auto-TLDR; VLN: Video Lightening Network for Driving Assistant Systems in Dark Environment

Slides Poster

Darkness brings us uncertainty, worry and low confidence. This is a problem not only applicable to us walking in a dark evening but also for drivers driving a car on the road with very dim or even without lighting condition. To address this problem, we propose a new CNN structure named as Video Lightening Network (VLN) that regards the low-light enhancement as a residual learning task, which is useful as reference to indirectly lightening the environment, or for vision-based application systems, such as driving assistant systems. The VLN consists of several Lightening Back-Projection (LBP) and Temporal Aggregation (TA) blocks. Each LBP block enhances the low-light frame by domain transfer learning that iteratively maps the frame between the low- and normal-light domains. A TA block handles the motion among neighboring frames by investigating the spatial and temporal relationships. Several TAs work in a multi-scale way, which compensates the motions at different levels. The proposed architecture has a consistent enhancement for different levels of illuminations, which significantly increases the visual quality even in the extremely dark environment. Extensive experimental results show that the proposed approach outperforms other methods under both objective and subjective metrics.

Similar papers

Automatical Enhancement and Denoising of Extremely Low-Light Images

Yuda Song, Yunfang Zhu, Xin Du

Responsive image

Auto-TLDR; INSNet: Illumination and Noise Separation Network for Low-Light Image Restoring

Slides Poster Similar

Deep convolutional neural networks (DCNN) based methodologies have achieved remarkable performance on various low-level vision tasks recently. Restoring images captured at night is one of the trickiest low-level vision tasks due to its high-level noise and low-level intensity. We propose a DCNN-based methodology, Illumination and Noise Separation Network (INSNet), which performs both denoising and enhancement on these extremely low-light images. INSNet fully utilizes global-ware features and local-ware features using the modified network structure and image sampling scheme. Compared to well-designed complex neural networks, our proposed methodology only needs to add a bypass network to the existing network. However, it can boost the quality of recovered images dramatically but only increase the computational cost by less than 0.1%. Even without any manual settings, INSNet can stably restore the extremely low-light images to desired high-quality images.

Hierarchically Aggregated Residual Transformation for Single Image Super Resolution

Zejiang Hou, Sy Kung

Responsive image

Auto-TLDR; HARTnet: Hierarchically Aggregated Residual Transformation for Multi-Scale Super-resolution

Slides Poster Similar

Visual patterns usually appear at different scales/sizes in natural images. Multi-scale feature representation is of great importance for the single-image super-resolution(SISR) task to reconstruct image objects at different scales.However, such characteristic has been rarely considered by CNN-based SISR methods. In this work, we propose a novel build-ing block, i.e. hierarchically aggregated residual transformation(HART), to achieve multi-scale feature representation in each layer of the network. Within each HART block, we connect multiple convolutions in a hierarchical residual-like manner, which greatly expands the range of effective receptive fields and helps to detect image features at different scales. To theoretically understand the proposed HART block, we recast SISR as an optimal control problem and show that HART effectively approximates the classical4th-order Runge-Kutta method, which has the merit of small local truncation error for solving numerical ordinary differential equation. By cascading the proposed HART blocks, we establish our high-performing HARTnet. Comparedwith existing SR state-of-the-arts (including those in NTIRE2019 SR Challenge leaderboard), the proposed HARTnet demonstrates consistent PSNR/SSIM performance improvements on various benchmark datasets under different degradation models.Moreover, HARTnet can efficiently restore more faithful high-resolution images than comparative SR methods (cf. Figure 1).

Deep Fusion of RGB and NIR Paired Images Using Convolutional Neural Networks

琳 梅, Cheolkon Jung

Responsive image

Auto-TLDR; Deep Fusion of RGB and NIR paired images in low light condition using convolutional neural networks

Slides Poster Similar

In low light condition, the captured color (RGB) images are highly degraded by noise with severe texture loss. In this paper, we propose deep fusion of RGB and NIR paired images in low light condition using convolutional neural networks (CNNs). The proposed deep fusion network consists of three independent sub-networks: denoising, enhancing, and fusion. We build a denoising sub-network to eliminate noise from noisy RGB images. After denoising, we perform an enhancing sub-network to increase the brightness of low light RGB images. Since NIR image contains fine details, we fuse it with the Y channel of RGB image through a fusion sub-network. Experimental results demonstrate that the proposed method successfully fuses RGB and NIR images, and generates high quality fusion results containing textures and colors.

Dynamic Low-Light Image Enhancement for Object Detection Via End-To-End Training

Haifeng Guo, Yirui Wu, Tong Lu

Responsive image

Auto-TLDR; Object Detection using Low-Light Image Enhancement for End-to-End Training

Slides Poster Similar

Object detection based on convolutional neural networks is a hot research topic in computer vision. The illumination component in the image has a great impact on object detection, and it will cause a sharp decline in detection performance under low-light conditions. Using low-light image enhancement technique as a pre-processing mechanism can improve image quality and obtain better detection results.However, due to the complexity of low-light environments, the existing enhancement methods may have negative effects on some samples. Therefore, it is difficult to improve the overall detection performance in low-light conditions. In this paper, our goal is to use image enhancement to improve object detection performance rather than perceptual quality for humans. We propose a novel framework that combines low-light enhancement and object detection for end-to-end training. The framework can dynamically select different enhancement subnetworks for each sample to improve the performance of the detector. Our proposed method consists of two stage: the enhancement stage and the detection stage. The enhancement stage dynamically enhances the low-light images under the supervision of several enhancement methods and output corresponding weights. During the detection stage, the weights offers information on object classification to generate high-quality region proposals and in turn result in accurate detection. Our experiments present promising results, which show that the proposed method can significantly improve the detection performance in low-light environment.

Thermal Image Enhancement Using Generative Adversarial Network for Pedestrian Detection

Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben Amara

Responsive image

Auto-TLDR; Improving Visual Quality of Infrared Images for Pedestrian Detection Using Generative Adversarial Network

Slides Poster Similar

Infrared imaging has recently played an important role in a wide range of applications including surveillance, robotics and night vision. However, infrared cameras often suffer from some limitations, essentially about low-contrast and blurred details. These problems contribute to the loss of observation of target objects in infrared images, which could limit the feasibility of different infrared imaging applications. In this paper, we mainly focus on the problem of pedestrian detection on thermal images. Particularly, we emphasis the need for enhancing the visual quality of images beforehand performing the detection step. % to ensure effective results. To address that, we propose a novel thermal enhancement architecture based on Generative Adversarial Network, and composed of two modules contrast enhancement and denoising modules with a post-processing step for edge restoration in order to improve the overall quality. The effectiveness of the proposed architecture is assessed by means of visual quality metrics and better results are obtained compared to the original thermal images and to the obtained results by other existing enhancement methods. These results have been conduced on a subset of KAIST dataset. Using the same dataset, the impact of the proposed enhancement architecture has been demonstrated on the detection results by obtaining better performance with a significant margin using YOLOv3 detector.

Video Reconstruction by Spatio-Temporal Fusion of Blurred-Coded Image Pair

Anupama S, Prasan Shedligeri, Abhishek Pal, Kaushik Mitr

Responsive image

Auto-TLDR; Recovering Video from Motion-Blurred and Coded Exposure Images Using Deep Learning

Slides Poster Similar

Learning-based methods have enabled the recovery of a video sequence from a single motion-blurred image or a single coded exposure image. Recovering video from a single motion-blurred image is a very ill-posed problem and the recovered video usually has many artifacts. In addition to this, the direction of motion is lost and it results in motion ambiguity. However, it has the advantage of fully preserving the information in the static parts of the scene. The traditional coded exposure framework is better-posed but it only samples a fraction of the space-time volume, which is at best $50\%$ of the space-time volume. Here, we propose to use the complementary information present in the fully-exposed (blurred) image along with the coded exposure image to recover a high fidelity video without any motion ambiguity. Our framework consists of a shared encoder followed by an attention module to selectively combine the spatial information from the fully-exposed image with the temporal information from the coded image, which is then super-resolved to recover a non-ambiguous high-quality video. The input to our algorithm is a fully-exposed and coded image pair. Such an acquisition system already exists in the form of a Coded-two-bucket (C2B) camera. We demonstrate that our proposed deep learning approach using blurred-coded image pair produces much better results than those from just a blurred image or just a coded image.

SIDGAN: Single Image Dehazing without Paired Supervision

Pan Wei, Xin Wang, Lei Wang, Ji Xiang, Zihan Wang

Responsive image

Auto-TLDR; DehazeGAN: An End-to-End Generative Adversarial Network for Image Dehazing

Slides Poster Similar

Single image dehazing is challenging without scene airlight and transmission map. Most of existing dehazing algorithms tend to estimate key parameters based on manual designed priors or statistics, which may be invalid in some scenarios. Although deep learning-based dehazing methods provide an effective solution, most of them rely on paired training datasets, which are prohibitively difficult to be collected in real world. In this paper, we propose an effective end-to-end generative adversarial network for image dehazing, named DehazeGAN. The proposed DehazeGAN adopts a U-net architecture with a novel color-consistency loss derived from dark channel prior and perceptual loss, which can be trained in an unsupervised fashion without paired synthetic datasets. We create a RealHaze dataset for network training, including 4,000 outdoor hazy images and 4,000 haze-free images. Extensive experiments demonstrate that our proposed DehazeGAN achieves better performance than existing state-of-the-art methods on both synthetic datasets and real-world datasets in terms of PSNR, SSIM, and subjective visual experience.

DSPNet: Deep Learning-Enabled Blind Reduction of Speckle Noise

Yuxu Lu, Meifang Yang, Liu Wen

Responsive image

Auto-TLDR; Deep Blind DeSPeckling Network for Imaging Applications

Poster Similar

Blind reduction of speckle noise has become a long-standing unsolved problem in several imaging applications, such as medical ultrasound imaging, synthetic aperture radar (SAR) imaging, and underwater sonar imaging, etc. The unwanted noise could lead to negative effects on the reliable detection and recognition of objects of interest. From a statistical point of view, speckle noise could be assumed to be multiplicative, significantly different from the common additive Gaussian noise. The purpose of this study is to blindly reduce the speckle noise under non-ideal imaging conditions. The multiplicative relationship between latent sharp image and random noise will be first converted into an additive version through a logarithmic transformation. To promote imaging performance, we introduced the feature pyramid network (FPN) and atrous spatial pyramid pooling (ASPP), contributing to a more powerful deep blind DeSPeckling Network (named as DSPNet). In particular, DSPNet is mainly composed of two subnetworks, i.e., Log-NENet (i.e., noise estimation network in logarithmic domain) and Log-DNNet (i.e., denoising network in logarithmic domain). Log-NENet and Log-DNNet are, respectively, proposed to estimate noise level map and reduce random noise in logarithmic domain. The multi-scale mixed loss function is further proposed to improve the robust generalization of DSPNet. The proposed deep blind despeckling network is capable of reducing random noise and preserving salient image details. Both synthetic and realistic experiments have demonstrated the superior performance of our DSPNet in terms of quantitative evaluations and visual image qualities.

Wavelet Attention Embedding Networks for Video Super-Resolution

Young-Ju Choi, Young-Woon Lee, Byung-Gyu Kim

Responsive image

Auto-TLDR; Wavelet Attention Embedding Network for Video Super-Resolution

Slides Poster Similar

Recently, Video super-resolution (VSR) has become more crucial as the resolution of display has been grown. The majority of deep learning-based VSR methods combine the convolutional neural networks (CNN) with motion compensation or alignment module to estimate high-resolution (HR) frame from low-resolution (LR) frames. However, most of previous methods deal with the spatial features equally and may result in the misaligned temporal features by pixel-based motion compensation and alignment module. It can lead to the damaging effect on the accuracy of the estimated HR feature. In this paper, we propose a wavelet attention embedding network (WAEN), including wavelet embedding network (WENet) and attention embedding network (AENet), to fully exploit the spatio-temporal informative features. The WENet is operated as a spatial feature extractor of individual low and high-frequency information based on 2-D Haar discrete wavelet transform. The meaningful temporal feature is extracted in the AENet through utilizing the weighted attention map between frames. Experimental results demonstrate that the proposed method achieves superior performance compared with state-of-the-art methods.

CURL: Neural Curve Layers for Global Image Enhancement

Sean Moran, Steven Mcdonagh, Greg Slabaugh

Responsive image

Auto-TLDR; CURL: Neural CURve Layers for Image Enhancement

Slides Poster Similar

We present a novel approach to adjust global image properties such as colour, saturation, and luminance using human-interpretable image enhancement curves, inspired by the Photoshop curves tool. Our method, dubbed neural CURve Layers (CURL), is designed as a multi-colour space neural retouching block trained jointly in three different colour spaces (HSV, CIELab, RGB) guided by a novel multi-colour space loss. The curves are fully differentiable and are trained end-to-end for different computer vision problems including photo enhancement (RGB-to-RGB) and as part of the image signal processing pipeline for image formation (RAW-to-RGB). To demonstrate the effectiveness of CURL we combine this global image transformation block with a pixel-level (local) image multi-scale encoder-decoder backbone network. In an extensive experimental evaluation we show that CURL produces state-of-the-art image quality versus recently proposed deep learning approaches in both objective and perceptual metrics, setting new state-of-the-art performance on multiple public datasets.

Residual Learning of Video Frame Interpolation Using Convolutional LSTM

Keito Suzuki, Masaaki Ikehara

Responsive image

Auto-TLDR; Video Frame Interpolation Using Residual Learning and Convolutional LSTMs

Slides Poster Similar

Video frame interpolation aims to generate interme- diate frames between the original frames. This produces videos with a higher frame r ate and creates smoother motion. Many video frame interpolation methods first estimate the motion vector between the input frames and then synthesizes the intermediate frame based on the motion. However, these methods rely on the accuracy of the motion estimation step and fail to accurately generate the interpolated frame when the estimated motion vectors are inaccurate. Therefore, to avoid the uncertainties caused by motion estimation, this paper proposes a method that directly generates the intermediate frame. Since two consecutive frames are relatively similar, our method takes the average of these two frames and utilizes residual learning to learn the difference between the average of these frames and the ground truth middle frame. In addition, our method uses Convolutional LSTMs and four input frames to better incorporate spatiotemporal information. This neural network can be easily trained end to end without difficult to obtain data such as optical flow. Our experimental results show that the proposed method can perform favorably against other state-of-the-art frame interpolation methods.

Cross-Layer Information Refining Network for Single Image Super-Resolution

Hongyi Zhang, Wen Lu, Xiaopeng Sun

Responsive image

Auto-TLDR; Interlaced Spatial Attention Block for Single Image Super-Resolution

Slides Poster Similar

Recently, deep learning-based image super-resolution (SR) has made a remarkable progress. However, previous SR methods rarely focus on the correlation between adjacent layers, which leads to underutilization of the information extracted by each convolutional layer. To address these problem, we design a simple and efficient cross-layer information refining network (CIRN) for single image super-resolution. Concretely, we propose the interlaced spatial attention block (ISAB) to measure the correlation between the adjacent layers feature maps and adaptively rescale spatial-wise features for refining the information. Owing to the two stage information propagation strategy, the CIRN can distill the primary information of adjacent layers without introducing too many parameters. Extensive experiments on benchmark datasets illustrate that our method achieves better accuracy than state-of-the-art methods even in 16× scale, spcifically it has a better banlance between performance and parameters.

Boosting High-Level Vision with Joint Compression Artifacts Reduction and Super-Resolution

Xiaoyu Xiang, Qian Lin, Jan Allebach

Responsive image

Auto-TLDR; A Context-Aware Joint CAR and SR Neural Network for High-Resolution Text Recognition and Face Detection

Slides Poster Similar

Due to the limits of bandwidth and storage space, digital images are usually down-scaled and compressed when transmitted over networks, resulting in loss of details and jarring artifacts that can lower the performance of high-level visual tasks. In this paper, we aim to generate an artifact-free high-resolution image from a low-resolution one compressed with an arbitrary quality factor by exploring joint compression artifacts reduction (CAR) and super-resolution (SR) tasks. First, we propose a context-aware joint CAR and SR neural network (CAJNN) that integrates both local and non-local features to solve CAR and SR in one-stage. Finally, a deep reconstruction network is adopted to predict high quality and high-resolution images. Evaluation on CAR and SR benchmark datasets shows that our CAJNN model outperforms previous methods and also takes 26.2% less runtime. Based on this model, we explore addressing two critical challenges in high-level computer vision: optical character recognition of low-resolution texts, and extremely tiny face detection. We demonstrate that CAJNN can serve as an effective image preprocessing method and improve the accuracy for real-scene text recognition (from 85.30% to 85.75%) and the average precision for tiny face detection (from 0.317 to 0.611).

Detail-Revealing Deep Low-Dose CT Reconstruction

Xinchen Ye, Yuyao Xu, Rui Xu, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; A Dual-branch Aggregation Network for Low-Dose CT Reconstruction

Slides Poster Similar

Low-dose CT imaging emerges with low radiation risk due to the reduction of radiation dose, but brings negative impact on the imaging quality. This paper addresses the problem of low-dose CT reconstruction. Previous methods are unsatisfactory due to the inaccurate recovery of image details under the strong noise generated by the reduction of radiation dose, which directly affects the final diagnosis. To suppress the noise effectively while retain the structures well, we propose a detail-revealing dual-branch aggregation network to effectively reconstruct the degraded CT image. Specifically, the main reconstruction branch iteratively exploits and compensates the reconstruction errors to gradually refine the CT image, while the prior branch is to learn the structure details as prior knowledge to help recover the CT image. A sophisticated detail-revealing loss is designed to fuse the information from both branches and guide the learning to obtain better performance from pixel-wise and holistic perspectives respectively. Experimental results show that our method outperforms the state-of-art methods in both PSNR and SSIM metrics.

5D Light Field Synthesis from a Monocular Video

Kyuho Bae, Andre Ivan, Hajime Nagahara, In Kyu Park

Responsive image

Auto-TLDR; Synthesis of Light Field Video from Monocular Video using Deep Learning

Slides Similar

Commercially available light field cameras have difficulty in capturing 5D (4D + time) light field videos. They can only capture still light filed images or are excessively expensive for normal users to capture the light field video. To tackle this problem, we propose a deep learning-based method for synthesizing a light field video from a monocular video. We propose a new synthetic light field video dataset that renders photorealistic scenes using Unreal Engine because no light field video dataset is available. The proposed deep learning framework synthesizes the light field video with a full set (9x9) of sub-aperture images from a normal monocular video. The proposed network consists of three sub-networks, namely, feature extraction, 5D light field video synthesis, and temporal consistency refinement. Experimental results show that our model can successfully synthesize the light field video for synthetic and real scenes and outperforms the previous frame-by-frame method quantitatively and qualitatively.

MBD-GAN: Model-Based Image Deblurring with a Generative Adversarial Network

Li Song, Edmund Y. Lam

Responsive image

Auto-TLDR; Model-Based Deblurring GAN for Inverse Imaging

Slides Poster Similar

This paper presents a methodology to tackle inverse imaging problems by leveraging the synergistic power of imaging model and deep learning. The premise is that while learning-based techniques have quickly become the methods of choice in various applications, they often ignore the prior knowledge embedded in imaging models. Incorporating the latter has the potential to improve the image estimation. Specifically, we first provide a mathematical basis of using generative adversarial network (GAN) in inverse imaging through considering an optimization framework. Then, we develop the specific architecture that connects the generator and discriminator networks with the imaging model. While this technique can be applied to a variety of problems, from image reconstruction to super-resolution, we take image deblurring as the example here, where we show in detail the implementation and experimental results of what we call the model-based deblurring GAN (MBD-GAN).

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky

Zhan Li, Xiaopeng Zheng, Bir Bhanu, Shun Long, Qingfeng Zhang, Zhenghao Huang

Responsive image

Auto-TLDR; Image defogging and enhancement of hazy outdoor scenes using region-adaptive segmentation and region-ratio-based adaptive Gamma correction

Slides Poster Similar

Inclement weather, haze, and fog severely decrease the performance of outdoor imaging systems. Due to a large range of the depth-of-field, most image dehazing or enhancement methods suffer from color distortions and halo artifacts when applied to real-world hazy outdoor scenes, especially those with the sky. To effectively recover details in both distant and nearby regions as well as to preserve color fidelity of the sky, in this study, we propose a novel image defogging and enhancement approach based on a replaceable plug-in segmentation module and region-adaptive processing. First, regions of the grayish sky, pure white objects, and other parts are separated. Several segmentation methods are studied, including an efficient threshold-based one used for this work. Second, a luminance-inverted multi-scale Retinex with color restoration (MSRCR) and region-ratio-based adaptive Gamma correction are applied to non-grayish and non-white areas. Finally, the enhanced regions are stitched seamlessly by using a mean-filtered region mask. The proposed method is efficient in defogging natural outdoor scenes and requires no training data or prior knowledge. Extensive experiments show that the proposed approach not only outperforms several state-of-the-art defogging methods in terms of both visibility and color fidelity, but also provides enhanced outputs with fewer artifacts and halos, particularly in sky regions.

LFIEM: Lightweight Filter-Based Image Enhancement Model

Oktai Tatanov, Aleksei Samarin

Responsive image

Auto-TLDR; Image Retouching Using Semi-supervised Learning for Mobile Devices

Slides Poster Similar

Photo retouching features are being integrated into a growing number of mobile applications. Current learning-based approaches enhance images using large convolutional neural network-based models, where the result is received directly from the neural network outputs. This method can lead to artifacts in the resulting images, models that are complicated to interpret, and can be computationally expensive. In this paper, we explore the application of a filter-based approach in order to overcome the problems outlined above. We focus on creating a lightweight solution suitable for use on mobile devices when designing our model. A significant performance increase was achieved through implementing consistency regularization used in semi-supervised learning. The proposed model can be used on mobile devices and achieves competitive results compared to known models.

RSAN: Residual Subtraction and Attention Network for Single Image Super-Resolution

Shuo Wei, Xin Sun, Haoran Zhao, Junyu Dong

Responsive image

Auto-TLDR; RSAN: Residual subtraction and attention network for super-resolution

Slides Similar

The single-image super-resolution (SISR) aims to recover a potential high-resolution image from its low-resolution version. Recently, deep learning-based methods have played a significant role in super-resolution field due to its effectiveness and efficiency. However, most of the SISR methods neglect the importance among the feature map channels. Moreover, they can not eliminate the redundant noises, making the output image be blurred. In this paper, we propose the residual subtraction and attention network (RSAN) for powerful feature expression and channels importance learning. More specifically, RSAN firstly implements one redundance removal module to learn noise information in the feature map and subtract noise through residual learning. Then it introduces the channel attention module to amplify high-frequency information and suppress the weight of effectless channels. Experimental results on extensive public benchmarks demonstrate our RSAN achieves significant improvement over the previous SISR methods in terms of both quantitative metrics and visual quality.

Selective Kernel and Motion-Emphasized Loss Based Attention-Guided Network for HDR Imaging of Dynamic Scenes

Yipeng Deng, Qin Liu, Takeshi Ikenaga

Responsive image

Auto-TLDR; SK-AHDRNet: A Deep Network with attention module and motion-emphasized loss function to produce ghost-free HDR images

Slides Poster Similar

Ghost-like artifacts caused by ill-exposed and motion areas is one of the most challenging problems in high dynamic range (HDR) image reconstruction.When the motion range is small, previous methods based on optical flow or patch-match can suppress ghost-like artifacts by first aligning input images before merging them.However, they are not robust enough and still produce artifacts for challenging scenes where large foreground motions exist.To this end, we propose a deep network with attention module and motion-emphasized loss function to produce ghost-free HDR images. In attention module, we use channel and spatial attention to guide network to emphasize important components such as motion and saturated areas automatically. With the purpose of being robust to images with different resolutions and objects with distinct scale, we adopt the selective kernel network as the basic framework for channel attention. In addition to the attention module, the motion-emphasized loss function based on the motion and ill-exposed areas mask is designed to help network reconstruct motion areas. Experiments on the public dataset indicate that the proposed SK-AHDRNet produces ghost-free results where detail in ill-exposed areas is well recovered. The proposed method scores 43.17 with PSNR metric and 61.02 with HDR-VDP-2 metric on test which outperforms all conventional works. According to quantitative and qualitative evaluations, the proposed method can achieve state-of-the-art performance.

Improving Low-Resolution Image Classification by Super-Resolution with Enhancing High-Frequency Content

Liguo Zhou, Guang Chen, Mingyue Feng, Alois Knoll

Responsive image

Auto-TLDR; Super-resolution for Low-Resolution Image Classification

Slides Poster Similar

With the prosperous development of Convolutional Neural Networks, currently they can perform excellently on visual understanding tasks when the input images are high quality and common quality images. However, large degradation in performance always occur when the input images are low quality images. In this paper, we propose a new super-resolution method in order to improve the classification performance for low-resolution images. In an image, the regions in which pixel values vary dramatically contain more abundant high frequency contents compared to other parts. Based on this fact, we design a weight map and integrate it with a super-resolution CNN training framework. During the process of training, this weight map can find out positions of the high frequency pixels in ground truth high-resolution images. After that, the pixel-level loss function takes effect only at these found positions to minimize the difference between reconstructed high-resolution images and ground truth high-resolution images. Compared with other state-of-the-art super-resolution methods, the experiment results show that our method can recover more high-frequency contents in high-resolution image reconstructing, and better improve the classification accuracy after low-resolution image preprocessing.

Residual Fractal Network for Single Image Super Resolution by Widening and Deepening

Jiahang Gu, Zhaowei Qu, Xiaoru Wang, Jiawang Dan, Junwei Sun

Responsive image

Auto-TLDR; Residual fractal convolutional network for single image super-resolution

Slides Poster Similar

The architecture of the convolutional neural network (CNN) plays an important role in single image super-resolution (SISR). However, most models proposed in recent years usually transplant methods or architectures that perform well in other vision fields. Thence they do not combine the characteristics of super-resolution (SR) and ignore the key information brought by the recurring texture feature in the image. To utilize patch-recurrence in SR and the high correlation of texture, we propose a residual fractal convolutional block (RFCB) and expand its depth and width to obtain residual fractal network (RFN), which contains deep residual fractal network (DRFN) and wide residual fractal network (WRFN). RFCB is recursive with multiple branches of magnified receptive field. Through the phased feature fusion module, the network focuses on extracting high-frequency texture feature that repeatedly appear in the image. We also introduce residual in residual (RIR) structure to RFCB that enables abundant low-frequency feature feed into deeper layers and reduce the difficulties of network training. RFN is the first supervised learning method to combine the patch-recurrence characteristic in SISR into network design. Extensive experiments demonstrate that RFN outperforms state-of-the-art SISR methods in terms of both quantitative metrics and visual quality, while the amount of parameters has been greatly optimized.

Deep Universal Blind Image Denoising

Jae Woong Soh, Nam Ik Cho

Responsive image

Auto-TLDR; Image Denoising with Deep Convolutional Neural Networks

Slides Similar

Image denoising is an essential part of many image processing and computer vision tasks due to inevitable noise corruption during image acquisition. Traditionally, many researchers have investigated image priors for the denoising, within the Bayesian perspective based on image properties and statistics. Recently, deep convolutional neural networks (CNNs) have shown great success in image denoising by incorporating large-scale synthetic datasets. However, they both have pros and cons. While the deep CNNs are powerful for removing the noise with known statistics, they tend to lack flexibility and practicality for the blind and real-world noise. Moreover, they cannot easily employ explicit priors. On the other hand, traditional non-learning methods can involve explicit image priors, but they require considerable computation time and cannot exploit large-scale external datasets. In this paper, we present a CNN-based method that leverages the advantages of both methods based on the Bayesian perspective. Concretely, we divide the blind image denoising problem into sub-problems and conquer each inference problem separately. As the CNN is a powerful tool for inference, our method is rooted in CNNs and propose a novel design of network for efficient inference. With our proposed method, we can successfully remove blind and real-world noise, with a moderate number of parameters of universal CNN.

Motion U-Net: Multi-Cue Encoder-Decoder Network for Motion Segmentation

Gani Rahmon, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; Motion U-Net: A Deep Learning Framework for Robust Moving Object Detection under Challenging Conditions

Slides Poster Similar

Detection of moving objects is a critical first step in many computer vision applications. Several algorithms for motion and change detection were proposed. However, many of these approaches lack the ability to handle challenging real-world scenarios. Recently, deep learning approaches started to produce impressive solutions to computer vision tasks, particularly for detection and segmentation. Many existing deep learning networks proposed for moving object detection rely only on spatial appearance cues. In this paper, we propose a novel multi-cue and multi-stream network, Motion U-Net (MU-Net), which integrates motion, change, and appearance cues using a deep learning framework for robust moving object detection under challenging conditions. The proposed network consists of a two-stream encoder module followed by feature concatenation and a decoder module. Motion and change cues are computed through our tensor-based motion estimation and a multi-modal background subtraction modules. The proposed system was tested and evaluated on the change detection challenge datasets (CDnet-2014) and compared to state-of-the-art methods. On CDnet-2014 dataset, our approach reaches an average overall F-measure of 0.9852 and outperforms all current state-of-the-art methods. The network was also tested on the unseen SBI-2015 dataset and produced promising results.

Progressive Splitting and Upscaling Structure for Super-Resolution

Qiang Li, Tao Dai, Shutao Xia

Responsive image

Auto-TLDR; PSUS: Progressive and Upscaling Layer for Single Image Super-Resolution

Slides Poster Similar

Recently, very deep convolutional neural networks (CNNs) have shown great success in single image super-resolution (SISR). Most of these methods focus on the design of network architecture and adopt a sub-pixel convolution layer at the end of network, but few have paid attention to exploring potential representation ability of upscaling layer. Sub-pixel convolution layer aggregates several low resolution (LR) feature maps and builds super-resolution (SR) images in a single step. However, those LR feature maps share similar patterns as they are extracted from a single trunk network. We believe that the mapping relationships between input image and each LR feature map are not consistent. Inspired by this, we propose a novel progressive splitting and upscaling structure, termed PSUS, which generates decoupled feature maps for upscaling layer to get better SR image. Experiments show that our method can not only speed up the convergence, but also achieve considerable improvement on image quality with fewer parameters and lower computational complexity.

Deep Iterative Residual Convolutional Network for Single Image Super-Resolution

Rao Muhammad Umer, Gian Luca Foresti, Christian Micheloni

Responsive image

Auto-TLDR; ISRResCNet: Deep Iterative Super-Resolution Residual Convolutional Network for Single Image Super-resolution

Slides Similar

Deep convolutional neural networks (CNNs) have recently achieved great success for single image super-resolution (SISR) task due to their powerful feature representation capabilities. Most recent deep learning based SISR methods focus on designing deeper / wider models to learn the non-linear mapping between low-resolution (LR) inputs and the high-resolution (HR) outputs. These existing SR methods do not take into account the image observation (physical) model and thus require a large number of network's trainable parameters with a huge volume of training data. To address these issues, we propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet) that exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach. Extensive experimental results on various super-resolution benchmarks demonstrate that our method with a few trainable parameters improves results for different scaling factors in comparison with the state-of-art methods.

Towards Artifacts-Free Image Defogging

Gabriele Graffieti, Davide Maltoni

Responsive image

Auto-TLDR; CurL-Defog: Learning Based Defogging with CycleGAN and HArD

Slides Similar

In this paper we present a novel defogging technique, named CurL-Defog, aimed at minimizing the creation of artifacts. The majority of learning based defogging approaches relies on paired data (i.e., the same images with and without fog), where fog is artificially added to clear images: this often provides good results on mildly fogged images but does not generalize well to real difficult cases. On the other hand, the models trained with real unpaired data (e.g. CycleGAN) can provide visually impressive results but often produce unwanted artifacts. In this paper we propose a curriculum learning strategy coupled with an enhanced CycleGAN model in order to reduce the number of produced artifacts, while maintaining state-of-the- art performance in terms of contrast enhancement and image reconstruction. We also introduce a new metric, called HArD (Hazy Artifact Detector) to numerically quantify the amount of artifacts in the defogged images, thus avoiding the tedious and subjective manual inspection of the results. The proposed approach compares favorably with state-of-the-art techniques on both real and synthetic datasets.

A Lightweight Network to Learn Optical Flow from Event Data

Zhuoyan Li, Jiawei Shen

Responsive image

Auto-TLDR; A lightweight pyramid network with attention mechanism to learn optical flow from events data

Similar

Existing deep neural networks have found success in estimation of event-based optical flow, but are at the expense of complicated architectures. Moreover, few prior works discuss how to tackle with the noise problem of event camera, which would severely contaminate the data quality and make estimation an ill-posed problem. In this work, we present a lightweight pyramid network with attention mechanism to learn optical flow from events data. Specially, the network is designed according to two-well established principles: Laplacian pyramidal decomposition and channel attention mechanism. By integrating Laplacian pyramidal processing into CNN, the learning problem is simplified into several subproblems at each pyramid level, which can be handled by a relatively shallow network with few parameters. The channel attention block, embedded in each pyramid level, treats channels of feature map unequally and provides extra flexibility in suppressing background noises. The size of the proposed network is about only 5% of previous methods while our method still achieves state-of-the-art performance on the benchmark dataset. The experimental video samples of continuous flow estimation is presented at :https://github.com/xfleezy/blob.

A NoGAN Approach for Image and Video Restoration and Compression Artifact Removal

Mameli Filippo, Marco Bertini, Leonardo Galteri, Alberto Del Bimbo

Responsive image

Auto-TLDR; Deep Neural Network for Image and Video Compression Artifact Removal and Restoration

Poster Similar

Lossy image and video compression algorithms introduce several different types of visual artifacts that reduce the visual quality of the compressed media, and the higher the compression rate the higher is the strength of these artifacts. In this work, we describe an approach for visual quality improvement of compressed images and videos to be performed at presentation time, so to obtain the benefits of fast data transfer and reduced data storage, while enjoying a visual quality that could be obtained only reducing the compression rate. To obtain this result we propose to use a deep neural network trained using the NoGAN approach, adapting the popular DeOldify architecture used for colorization. We show how the proposed method can be applied both to image and video compression artifact removal and restoration.

Single Image Deblurring Using Bi-Attention Network

Yaowei Li, Ye Luo, Jianwei Lu

Responsive image

Auto-TLDR; Bi-Attention Neural Network for Single Image Deblurring

Poster Similar

Recently, deep convolutional neural networks have been extensively applied into image deblurring and have achieved remarkable performance. However, most CNN-based image deblurring methods focus on simply increasing network depth, neglecting the contextual information of the blurred image and the reconstructed image. Meanwhile, most encoder-decoder based methods rarely exploit encoder's multi-layer features. To address these issues, we propose a bi-attention neural network for single image deblurring, which mainly consists of a bi-attention network and a feature fusion network. Specifically, two criss-cross attention modules are plugged before and after the encoder-decoder to capture long-range spatial contextual information in the blurred image and the reconstructed image simultaneously, and the feature fusion network combines multi-layer features from encoder to enable the decoder reconstruct the image with multi-scale features. The whole network is end-to-end trainable. Quantitative and qualitative experiment results validate that the proposed network outperforms state-of-the-art methods in terms of PSNR and SSIM on benchmark datasets.

Deep Residual Attention Network for Hyperspectral Image Reconstruction

Kohei Yorimoto, Xian-Hua Han

Responsive image

Auto-TLDR; Deep Convolutional Neural Network for Hyperspectral Image Reconstruction from a Snapshot

Slides Poster Similar

Coded aperture snapshot spectral imaging (CASSI) captures a full frame spectral image as a single compressive image and is mandatory to reconstruct the underlying hyperspectral image (HSI) from the snapshot as the post-processing, which is challenge inverse problem due to its ill-posed nature. Existing methods for HSI reconstruction from a snapshot usually employs optimization for solving the formulated image degradation model regularized with the empirically designed priors, and still cannot achieve enough reconstruction accuracy for real HS image analysis systems. Motivated by the recent advances of deep learning for different inverse problems, deep learning based HSI reconstruction method has attracted a lot of attention, and can boost the reconstruction performance. This study proposes a novel deep convolutional neural network (DCNN) based framework for effectively learning the spatial structure and spectral attribute in the underlying HSI with the reciprocal spatial and spectral modules. Further, to adaptively leverage the useful learned feature for better HSI image reconstruction, we integrate residual attention modules into our DCNN via exploring both spatial and spectral attention maps. Experimental results on two benchmark HSI datasets show that our method outperforms state-of-the-art methods in both quantitative values and visual effect.

Face Anti-Spoofing Using Spatial Pyramid Pooling

Lei Shi, Zhuo Zhou, Zhenhua Guo

Responsive image

Auto-TLDR; Spatial Pyramid Pooling for Face Anti-Spoofing

Slides Poster Similar

Face recognition system is vulnerable to many kinds of presentation attacks, so how to effectively detect whether the image is from the real face is particularly important. At present, many deep learning-based anti-spoofing methods have been proposed. But these approaches have some limitations, for example, global average pooling (GAP) easily loses local information of faces, single-scale features easily ignore information differences in different scales, while a complex network is prune to be overfitting. In this paper, we propose a face anti-spoofing approach using spatial pyramid pooling (SPP). Firstly, we use ResNet-18 with a small amount of parameter as the basic model to avoid overfitting. Further, we use spatial pyramid pooling module in the single model to enhance local features while fusing multi-scale information. The effectiveness of the proposed method is evaluated on three databases, CASIA-FASD, Replay-Attack and CASIA-SURF. The experimental results show that the proposed approach can achieve state-of-the-art performance.

Novel View Synthesis from a 6-DoF Pose by Two-Stage Networks

Xiang Guo, Bo Li, Yuchao Dai, Tongxin Zhang, Hui Deng

Responsive image

Auto-TLDR; Novel View Synthesis from a 6-DoF Pose Using Generative Adversarial Network

Slides Poster Similar

Novel view synthesis is a challenging problem in 3D vision and robotics. Different from the existing works, which need the reference images or 3D model, we propose a novel paradigm to this problem. That is, we synthesize the novel view from a 6-DoF pose directly. Although this setting is the most straightforward way, there are few works addressing it. While, our experiments demonstrate that, with a concise CNN, we could get a meaningful parametric model which could reconstruct the correct scenery images only from the 6-DoF pose. To this end, we propose a two-stage learning strategy, which consists of two consecutive CNNs: GenNet and RefineNet. The GenNet generates a coarse image from a camera pose. The RefineNet is a generative adversarial network that could refine the coarse image. In this way, we decouple the geometric relationship mapping and texture detail rendering. Extensive experiments conducted on the public datasets prove the effectiveness of our method. We believe this paradigm is of high research and application value and could be an important direction in novel view synthesis. We will share our code after the acceptance of this work.

Adaptive Image Compression Using GAN Based Semantic-Perceptual Residual Compensation

Ruojing Wang, Zitang Sun, Sei-Ichiro Kamata, Weili Chen

Responsive image

Auto-TLDR; Adaptive Image Compression using GAN based Semantic-Perceptual Residual Compensation

Slides Poster Similar

Image compression is a basic task in image processing. In this paper, We present an adaptive image compression algorithm that relies on GAN based semantic-perceptual residual compensation, which is available to offer visually pleasing reconstruction at a low bitrate. Our method adopt an U-shaped encoding and decoding structure accompanied by a well-designed dense residual connection with strip pooling module to improve the original auto-encoder. Besides, we introduce the idea of adversarial learning by introducing a discriminator thus constructed a complete GAN. To improve the coding efficiency, we creatively designed an adaptive semantic-perception residual compensation block based on Grad-CAM algorithm. In the improvement of the quantizer, we embed the method of soft-quantization so as to solve the problem to some extent that back propagation process is irreversible. Simultaneously, we use the latest FLIF lossless compression algorithm and BPG vector compression algorithm to perform deeper compression on the image. More importantly experimental results including PSNR, MS-SSIM demonstrate that the proposed approach outperforms the current state-of-the-art image compression methods.

Edge-Guided CNN for Denoising Images from Portable Ultrasound Devices

Yingnan Ma, Fei Yang, Anup Basu

Responsive image

Auto-TLDR; Edge-Guided Convolutional Neural Network for Portable Ultrasound Images

Slides Poster Similar

Ultrasound is a non-invasive tool that is useful for medical diagnosis and treatment. To reduce long wait times and add convenience to patients, portable ultrasound scanning devices are becoming increasingly popular. These devices can be held in one palm, and are compatible with modern cell phones. However, the quality of ultrasound images captured from the portable scanners is relatively poor compared to standard ultrasound scanning systems in hospitals. To improve the quality of the ultrasound images obtained from portable ultrasound devices, we propose a new neural network architecture called Edge-Guided Convolutional Neural Network (EGCNN), which can preserve significant edge information in ultrasound images when removing noise. We also study and compare the effectiveness of classical filtering approaches in removing speckle noise in these images. Experimental results show that after applying the proposed EGCNN, various organs can be better recognized from ultrasound images. This approach is expected to lead to better accuracy in diagnostics in the future.

Coarse-To-Fine Foreground Segmentation Based on Co-Occurrence Pixel-Block and Spatio-Temporal Attention Model

Xinyu Liu, Dong Liang

Responsive image

Auto-TLDR; Foreground Segmentation from coarse to Fine Using Co-occurrence Pixel-Block Model for Dynamic Scene

Slides Poster Similar

Foreground segmentation in dynamic scene is an important task in video surveillance. The unsupervised background subtraction method based on background statistics modeling has difficulties in updating. On the other hand, the supervised foreground segmentation method based on deep learning relies on the large-scale of accurately annotated training data, which limits its cross-scene performance. In this paper, we propose a foreground segmentation method from coarse to fine. First, a across-scenes trained Spatio-Temporal Attention Model (STAM) is used to achieve coarse segmentation, which does not require training on specific scene. Then the coarse segmentation is used as a reference to help Co-occurrence Pixel-Block Model (CPB) complete the fine segmentation, and at the same time help CPB to update its background model. This method is more flexible than those deep-learning-based methods which depends on the specific-scene training, and realizes the accurate online dynamic update of the background model. Experimental results on WallFlower and LIMU validate our method outperforms STAM, CPB and other methods of participating in comparison.

LiNet: A Lightweight Network for Image Super Resolution

Armin Mehri, Parichehr Behjati Ardakani, Angel D. Sappa

Responsive image

Auto-TLDR; LiNet: A Compact Dense Network for Lightweight Super Resolution

Slides Poster Similar

This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.

DR2S: Deep Regression with Region Selection for Camera Quality Evaluation

Marcelin Tworski, Stéphane Lathuiliere, Salim Belkarfa, Attilio Fiandrotti, Marco Cagnazzo

Responsive image

Auto-TLDR; Texture Quality Estimation Using Deep Learning

Slides Poster Similar

In this work, we tackle the problem of estimating a camera capability to preserve fine texture details at a given lighting condition. Importantly, our texture preservation measurement should coincide with human perception. Consequently, we formulate our problem as a regression one and we introduce a deep convolutional network to estimate texture quality score. At training time, we use ground-truth quality scores provided by expert human annotators in order to obtain a subjective quality measure. In addition, we propose a region selection method to identify the image regions that are better suited at measuring perceptual quality. Finally, our experimental evaluation shows that our learning-based approach outperforms existing methods and that our region selection algorithm consistently improves the quality estimation.

SECI-GAN: Semantic and Edge Completion for Dynamic Objects Removal

Francesco Pinto, Andrea Romanoni, Matteo Matteucci, Phil Torr

Responsive image

Auto-TLDR; SECI-GAN: Semantic and Edge Conditioned Inpainting Generative Adversarial Network

Slides Poster Similar

Image inpainting aims at synthesizing the missing content of damaged and corrupted images to produce visually realistic restorations; typical applications are in image restoration, automatic scene editing, super-resolution, and dynamic object removal. In this paper, we propose Semantic and Edge Conditioned Inpainting Generative Adversarial Network (SECI-GAN), an architecture that jointly exploits the high-level cues extracted by semantic segmentation and the fine-grained details captured by edge extraction to condition the image inpainting process. SECI-GAN is designed with a particular focus on recovering big regions belonging to the same object (e.g. cars or pedestrians) in the context of dynamic object removal from complex street views. To demonstrate the effectiveness of SECI-GAN, we evaluate our results on the Cityscapes dataset, showing that SECI-GAN is better than competing state-of-the-art models at recovering the structure and the content of the missing parts while producing consistent predictions.

A Dual-Branch Network for Infrared and Visible Image Fusion

Yu Fu, Xiaojun Wu

Responsive image

Auto-TLDR; Image Fusion Using Autoencoder for Deep Learning

Slides Poster Similar

In recent years, deep learning has been used extensively in the field of image fusion. In this article, we propose a new image fusion method by designing a new structure and a new loss function for a deep learning model. Our backbone network is an autoencoder, in which the encoder has a dual branch structure. We input infrared images and visible light images to the encoder to extract detailed information and semantic information respectively. The fusion layer fuses two sets of features to get fused features. The decoder reconstructs the fusion features to obtain the fused image. We design a new loss function to reconstruct the image effectively. Experiments show that our proposed method achieves state-of-the-art performance.

DID: A Nested Dense in Dense Structure with Variable Local Dense Blocks for Super-Resolution Image Reconstruction

Longxi Li, Hesen Feng, Bing Zheng, Lihong Ma, Jing Tian

Responsive image

Auto-TLDR; DID: Deep Super-Residual Dense Network for Image Super-resolution Reconstruction

Slides Poster Similar

The success of single image super-resolution reconstruction (SR) relies on a refined mapping from low-resolution (LR) examples to high-resolution (HR) signals. However, the relation is sometimes chaos, especially in a deep SR network. We try to improve the mapping interpretability in two folds: i) The variable local dense blocks (VLDB) are suggested to match receptive fields in different depths of a residual dense network (RDN), with each VLDB a dyadic increment of layer numbers than its predecessor. ii) Based on VLDBs, a dense in dense (DID) network is created. It substitutes nodes in a regular RDN with super nodes, i.e. VLDBs; and formulates a joint learning by flexible hierarchical feature scaling, reusing and long-short term aggregating. VLDBs deal with feature underfitting occurred when a big receptive field meets a fixed-depth dense block, and the DID network provides a relative complete feature dictionary to preserve details for feature shift, dilating and grouping in high dimension image reconstruction. To demonstrate the validness of DID structure, detail experiments are performed on the benchmark datasets Set5, Set14, B100 and Urban100, where the accuracy PSNR and the visual perceptive SSIM are superior to most state-of-the-art methods. Besides, due to the depth adaption of VLDBs and its nesting in generalized RDN,DID network is converged easily and gradient explosion or disappearance are alleviated even when network deepens.

GAN-Based Image Deblurring Using DCT Discriminator

Hiroki Tomosada, Takahiro Kudo, Takanori Fujisawa, Masaaki Ikehara

Responsive image

Auto-TLDR; DeblurDCTGAN: A Discrete Cosine Transform for Image Deblurring

Slides Poster Similar

In this paper, we propose high quality image debluring by using discrete cosine transform (DCT) with less computational complexity. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale architecture of CNN restores blurred image cleary and suppresses more ringing artifacts or block noise, but it takes much time to process. To solve these problems, we propose a method that preserves texture and suppresses ringing artifacts in the restored image without multi-scale architecture using DCT based loss named ``DeblurDCTGAN.''. It compares frequency domain of the images made from deblurred image and grand truth image by using DCT. Hereby, DeblurDCTGAN can reduce block noise or ringing artifacts while maintaining deblurring performance. Our experimental results show that DeblurDCTGAN gets the highest performances on both PSNR and SSIM comparing with other conventional methods in both GoPro test Dataset and DVD test Dataset. Also, the running time per pair of DeblurDCTGAN is faster than others.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

A Novel Deep-Learning Pipeline for Light Field Image Based Material Recognition

Yunlong Wang, Kunbo Zhang, Zhenan Sun

Responsive image

Auto-TLDR; Factorize-Connect-Merge Deep Learning Pipeline for Light Field Image Based Material Recognition

Slides Similar

The primitive basis of image based material recognition builds upon the fact that discrepancies in the reflectances of distinct materials lead to imaging differences under multiple viewpoints. LF cameras possess coherent abilities to capture multiple sub-aperture views (SAIs) within one exposure, which can provide appropriate multi-view sources for material recognition. In this paper, a unified ``Factorize-Connect-Merge`` (FCM) deep-learning pipeline is proposed to solve problems of light field image based material recognition. 4D light-field data as input is initially decomposed into consecutive 3D light-field slices. Shallow CNN is leveraged to extract low-level visual features of each view inside these slices. As to establish correspondences between these SAIs, Bidirectional Long-Short Term Memory (Bi-LSTM) network is built upon these low-level features to model the imaging differences. After feature selection including concatenation and dimension reduction, effective and robust feature representations for material recognition can be extracted from 4D light-field data. Experimental results indicate that the proposed pipeline can obtain remarkable performances on both tasks of single-pixel material classification and whole-image material segmentation. In addition, the proposed pipeline can potentially benefit and inspire other researchers who may also take LF images as input and need to extract 4D light-field representations for computer vision tasks such as object classification, semantic segmentation and edge detection.

Removing Raindrops from a Single Image Using Synthetic Data

Yoshihito Kokubo, Shusaku Asada, Hirotaka Maruyama, Masaru Koide, Kohei Yamamoto, Yoshihisa Suetsugu

Responsive image

Auto-TLDR; Raindrop Removal Using Synthetic Raindrop Data

Slides Poster Similar

We simulated the exact features of raindrops on a camera lens and conducted an experiment to evaluate the performance of a network trained to remove raindrops using synthetic raindrop data. Although research has been conducted to precisely evaluate methods to remove raindrops, with some evaluation networks trained on images with real raindrops and others trained on images with synthetic raindrops, there have not been any studies that have directly compared the performance of two networks trained on each respective kind of image. In a previous study wherein images with synthetic raindrops were used for training, the network did not work effectively on images with real raindrops because the shapes of the raindrops were simulated using simple arithmetic expressions. In this study, we focused on generating raindrop shapes that are closer to reality with the aim of using these synthetic raindrops in images to develop a technique for removing real-world raindrops. After categorizing raindrops by type, we further separated each raindrop type into its constituent elements, generated each element separately, and finally combined the generated elements. The proposed technique was used to add images with synthetic raindrops to the training data, and when we evaluated the model, we confirmed that the technique's precision exceeded that of when only images with actual raindrops were used for training. The evaluation results proved that images with synthetic raindrops can be used as training data for real-world images.

Region-Based Non-Local Operation for Video Classification

Guoxi Huang, Adrian Bors

Responsive image

Auto-TLDR; Regional-based Non-Local Operation for Deep Self-Attention in Convolutional Neural Networks

Slides Poster Similar

Convolutional Neural Networks (CNNs) model long-range dependencies by deeply stacking convolution operations with small window sizes, which makes the optimizations difficult. This paper presents region-based non-local operation (RNL), a family of self-attention mechanisms, which can directly capture long-range dependencies without a deep stack of local operations. Given an intermediate feature map, our method recalibrates the feature at a position by aggregating information from the neighboring regions of all positions. By combining a channel attention module with the proposed RNL, we design an attention chain, which can be integrated into off-the-shelf CNNs for end-to-end training. We evaluate our method on two video classification benchmarks. The experimental result of our method outperforms other attention mechanisms, and we achieve state-of-the-art performance on Something-Something V1.

PSDNet: A Balanced Architecture of Accuracy and Parameters for Semantic Segmentation

Yue Liu, Zhichao Lian

Responsive image

Auto-TLDR; Pyramid Pooling Module with SE1Cblock and D2SUpsample Network (PSDNet)

Slides Poster Similar

Abstract—In this paper, we present our Pyramid Pooling Module (PPM) with SE1Cblock and D2SUpsample Network (PSDNet), a novel architecture for accurate semantic segmentation. Started from the known work called Pyramid Scene Parsing Network (PSPNet), PSDNet takes advantage of pyramid pooling structure with channel attention module and feature transform module in Pyramid Pooling Module (PPM). The enhanced PPM with these two components can strengthen context information flowing in the network instead of damaging it. The channel attention module we mentioned is an improved “Squeeze and Excitation with 1D Convolution” (SE1C) block which can explicitly model interrelationship between channels with fewer number of parameters. We propose a feature transform module named “Depth to Space Upsampling” (D2SUpsample) in the PPM which keeps integrity of features by transforming features while interpolating features, at the same time reducing parameters. In addition, we introduce a joint strategy in SE1Cblock which combines two variants of global pooling without increasing parameters. Compared with PSPNet, our work achieves higher accuracy on public datasets with 73.97% mIoU and 82.89% mAcc accuracy on Cityscapes Dataset based on ResNet50 backbone.

Free-Form Image Inpainting Via Contrastive Attention Network

Xin Ma, Xiaoqiang Zhou, Huaibo Huang, Zhenhua Chai, Xiaolin Wei, Ran He

Responsive image

Auto-TLDR; Self-supervised Siamese inference for image inpainting

Slides Similar

Most deep learning based image inpainting approaches adopt autoencoder or its variants to fill missing regions in images. Encoders are usually utilized to learn powerful representational spaces, which are important for dealing with sophisticated learning tasks. Specifically, in the image inpainting task, masks with any shapes can appear anywhere in images (i.e., free-form masks) forming complex patterns. It is difficult for encoders to capture such powerful representations under this complex situation. To tackle this problem, we propose a self-supervised Siamese inference network to improve the robustness and generalization. Moreover, the restored image usually can not be harmoniously integrated into the exiting content, especially in the boundary area. To address this problem, we propose a novel Dual Attention Fusion module (DAF), which can combine both the restored and known regions in a smoother way and be inserted into decoder layers in a plug-and-play way. DAF is developed to not only adaptively rescale channel-wise features by taking interdependencies between channels into account but also force deep convolutional neural networks (CNNs) focusing more on unknown regions. In this way, the unknown region will be naturally filled from the outside to the inside. Qualitative and quantitative experiments on multiple datasets, including facial and natural datasets (i.e., Celeb-HQ, Pairs Street View, Places2 and ImageNet), demonstrate that our proposed method outperforms against state-of-the-arts in generating high-quality inpainting results.