Anup Basu

Papers from this author

Edge-Guided CNN for Denoising Images from Portable Ultrasound Devices

Yingnan Ma, Fei Yang, Anup Basu

Responsive image

Auto-TLDR; Edge-Guided Convolutional Neural Network for Portable Ultrasound Images

Slides Poster Similar

Ultrasound is a non-invasive tool that is useful for medical diagnosis and treatment. To reduce long wait times and add convenience to patients, portable ultrasound scanning devices are becoming increasingly popular. These devices can be held in one palm, and are compatible with modern cell phones. However, the quality of ultrasound images captured from the portable scanners is relatively poor compared to standard ultrasound scanning systems in hospitals. To improve the quality of the ultrasound images obtained from portable ultrasound devices, we propose a new neural network architecture called Edge-Guided Convolutional Neural Network (EGCNN), which can preserve significant edge information in ultrasound images when removing noise. We also study and compare the effectiveness of classical filtering approaches in removing speckle noise in these images. Experimental results show that after applying the proposed EGCNN, various organs can be better recognized from ultrasound images. This approach is expected to lead to better accuracy in diagnostics in the future.

Multi-Scale Deep Pixel Distribution Learning for Concrete Crack Detection

Xuanyi Wu, Jianfei Ma, Yu Sun, Chenqiu Zhao, Anup Basu

Responsive image

Auto-TLDR; Multi-scale Deep Learning for Concrete Crack Detection

Slides Poster Similar

A number of methods including image processing echnologies (IPTs) and deep learning methods have been used to detect defects in civilian infrastructure. These methods have been introduced to extract features representing cracks in concrete surfaces. Inspired by recent advances of a pixel distribution learning method in background subtraction, we propose a novel multi-scale deep learning method (MS-DPDL) for concrete crack detection. The designed CNN network is trained on the dataset CRACK500 [1], [2], and tested on it for concrete segmentation. To show the good transferability of our proposed model, it is later tested on the dataset Concrete Crack Images for crack classification. Several existing deep learning methods are used to compare the performance of the proposed MS-DPDL method. Results show that our method has good performance and can effectively find concrete cracks in practical situations.