Reducing False Positives in Object Tracking with Siamese Network

Takuya Ogawa, Takashi Shibata, Shoji Yachida, Toshinori Hosoi

Responsive image

Auto-TLDR; Robust Long-Term Object Tracking with Adaptive Search based on Motion Models

Slides Poster

We have developed a robust long-term object tracking method that resolves the fundamental cause of the drift and loss of a target in visual object tracking. The proposed method consists of “sampling area extension”, which prevents a tracking result from drifting to other objects by learning false positive samples in advance (before they enter the search region of the target), and “adaptive search based on motion models”, which prevents a tracking result from drifting to other objects and avoids the loss of the target by using not only appearance features but also motion models to adaptively search for the target. Experiments conducted on long-term tracking dataset showed that our first technique improved robustness by 16.6% while the second technique improved robustness by 15.3%. By combining both, our method achieved 21.7% and 9.1% improvement for the robustness and precision, and the processing speed became 3.3 times faster. Additional experiments showed that our method achieved the top robustness among state-of-the-art methods on three long-term tracking datasets. These findings demonstrate that our method is effective for long-term object tracking and that its performance and speed are promising for use in practical applications of various technologies underlying object tracking.

Similar papers

Model Decay in Long-Term Tracking

Efstratios Gavves, Ran Tao, Deepak Gupta, Arnold Smeulders

Responsive image

Auto-TLDR; Model Bias in Long-Term Tracking

Slides Poster Similar

To account for appearance variations, tracking models need to be updated during the course of inference. However, updating the tracker model with adverse bounding box predictions adds an unavoidable bias term to the learning. This bias term, which we refer to as model decay, offsets the learning and causes tracking drift. While its adverse affect might not be visible in short-term tracking, accumulation of this bias over a long-term can eventually lead to a permanent loss of the target. In this paper, we look at the problem of model bias from a mathematical perspective. Further, we briefly examine the effect of various sources of tracking error on model decay, using a correlation filter (ECO) and a Siamese (SINT) tracker. Based on observations and insights, we propose simple additions that help to reduce model decay in long-term tracking. The proposed tracker is evaluated on four long-term and one short-term tracking benchmarks, demonstrating superior accuracy and robustness, even on 30 minute long videos.

DAL: A Deep Depth-Aware Long-Term Tracker

Yanlin Qian, Song Yan, Alan Lukežič, Matej Kristan, Joni-Kristian Kamarainen, Jiri Matas

Responsive image

Auto-TLDR; Deep Depth-Aware Long-Term RGBD Tracking with Deep Discriminative Correlation Filter

Slides Poster Similar

The best RGBD trackers provide high accuracy but are slow to run. On the other hand, the best RGB trackers are fast but clearly inferior on the RGBD datasets. In this work, we propose a deep depth-aware long-term tracker that achieves state-of-the-art RGBD tracking performance and is fast to run. We reformulate deep discriminative correlation filter (DCF) to embed the depth information into deep features. Moreover, the same depth-aware correlation filter is used for target re- detection. Comprehensive evaluations show that the proposed tracker achieves state-of-the-art performance on the Princeton RGBD, STC, and the newly-released CDTB benchmarks and runs 20 fps.

Siamese Fully Convolutional Tracker with Motion Correction

Mathew Francis, Prithwijit Guha

Responsive image

Auto-TLDR; A Siamese Ensemble for Visual Tracking with Appearance and Motion Components

Slides Poster Similar

Visual tracking algorithms use cues like appearance, structure, motion etc. for locating an object in a video. We propose an ensemble tracker with appearance and motion components. A siamese tracker that learns object appearance from a static image and motion vectors computed between consecutive frames with a flow network forms the ensemble. Motion predicted object localization is used to correct the appearance component in the ensemble. Complementary nature of the components bring performance improvement as observed in experiments performed on VOT2018 and VOT2019 datasets.

VTT: Long-Term Visual Tracking with Transformers

Tianling Bian, Yang Hua, Tao Song, Zhengui Xue, Ruhui Ma, Neil Robertson, Haibing Guan

Responsive image

Auto-TLDR; Visual Tracking Transformer with transformers for long-term visual tracking

Slides Similar

Long-term visual tracking is a challenging problem. State-of-the-art long-term trackers, e.g., GlobalTrack, utilize region proposal networks (RPNs) to generate target proposals. However, the performance of the trackers is affected by occlusions and large scale or ratio variations. To address these issues, in this paper, we are the first to propose a novel architecture with transformers for long-term visual tracking. Specifically, the proposed Visual Tracking Transformer (VTT) utilizes a transformer encoder-decoder architecture for aggregating global information to deal with occlusion and large scale or ratio variation. Furthermore, it also shows better discriminative power against instance-level distractors without the need for extra labeling and hard-sample mining. We conduct extensive experiments on three largest long-term tracking dataset and have achieved state-of-the-art performance.

Efficient Correlation Filter Tracking with Adaptive Training Sample Update Scheme

Shan Jiang, Shuxiao Li, Chengfei Zhu, Nan Yan

Responsive image

Auto-TLDR; Adaptive Training Sample Update Scheme of Correlation Filter Based Trackers for Visual Tracking

Slides Poster Similar

Visual tracking serves as a significant module in many applications. However, the heavy computation and low speed of many recent trackers restrict their applications in some computing power restricted scenarios. On the other hand, the simple update scheme of most correlation filter based trackers limits their robustness during target deformation and occlusion. In this paper, we explore the update scheme of correlation filter based trackers and propose an efficient and adaptive training sample update scheme. Training sample extracted in each frame is updated to the training set according to its distance between existing samples measured with difference hashing algorithm(DHA) or discarded according to tracking result reliability. Experiments on OTB-2015, Temple Color 128 and UAV123 demonstrate our tracker performs favourably against state-of-the-art trackers with light computation and runs over 100 fps on desktop computer with Intel i7-8700 CPU(3.2GHz).

TSDM: Tracking by SiamRPN++ with a Depth-Refiner and a Mask-Generator

Pengyao Zhao, Quanli Liu, Wei Wang, Qiang Guo

Responsive image

Auto-TLDR; TSDM: A Depth-D Tracker for 3D Object Tracking

Slides Poster Similar

In a generic object tracking, depth (D) information provides informative cues for foreground-background separation and target bounding box regression. However, so far, few trackers have used depth information to play the important role aforementioned due to the lack of a suitable model. In this paper, a RGB-D tracker named TSDM is proposed, which is composed of a Mask-generator (M-g), SiamRPN++ and a Depth-refiner (D-r). The M-g generates the background masks, and updates them as the target 3D position changes. The D-r optimizes the target bounding box estimated by SiamRPN++, based on the spatial depth distribution difference between the target and the surrounding background. Extensive evaluation on the Princeton Tracking Benchmark and the Visual Object Tracking challenge shows that our tracker outperforms the state-of-the-art by a large margin while achieving 23 FPS. In addition, a light-weight variant can run at 31 FPS and thus it is practical for real world applications. Code and models of TSDM are available at https://github.com/lql-team/TSDM.

RSINet: Rotation-Scale Invariant Network for Online Visual Tracking

Yang Fang, Geunsik Jo, Chang-Hee Lee

Responsive image

Auto-TLDR; RSINet: Rotation-Scale Invariant Network for Adaptive Tracking

Slides Poster Similar

Most Siamese network-based trackers perform the tracking process without model update, and cannot learn target-specific variation adaptively. Moreover, Siamese-based trackers infer the new state of tracked objects by generating axis-aligned bounding boxes, which contain extra background noise, and are unable to accurately estimate the rotation and scale transformation of moving objects, thus potentially reducing tracking performance. In this paper, we propose a novel Rotation-Scale Invariant Network (RSINet) to address the above problem. Our RSINet tracker consists of a target-distractor discrimination branch and a rotation-scale estimation branch, the rotation and scale knowledge can be explicitly learned by a multi-task learning method in an end-to-end manner. In addtion, the tracking model is adaptively optimized and updated under spatio-temporal energy control, which ensures model stability and reliability, as well as high tracking efficiency. Comprehensive experiments on OTB-100, VOT2018, and LaSOT benchmarks demonstrate that our proposed RSINet tracker yields new state-of-the-art performance compared with recent trackers, while running at real-time speed about 45 FPS.

Tackling Occlusion in Siamese Tracking with Structured Dropouts

Deepak Gupta, Efstratios Gavves, Arnold Smeulders

Responsive image

Auto-TLDR; Structured Dropout for Occlusion in latent space

Slides Poster Similar

Occlusion is one of the most difficult challenges in object tracking to model. This is because unlike other challenges, where data augmentation can be of help, occlusion is hard to simulate as the occluding object can be anything in any shape. In this paper, we propose a simple solution to simulate the effects of occlusion in the latent space. Specifically, we present structured dropout to mimic the change in latent codes under occlusion. We present three forms of dropout (channel dropout, segment dropout and slice dropout) with the various forms of occlusion in mind. To demonstrate its effectiveness, the dropouts are incorporated into two modern Siamese trackers (SiamFC and SiamRPN++). The outputs from multiple dropouts are combined using an encoder network to obtain the final prediction. Experiments on several tracking benchmarks show the benefits of structured dropouts, while due to their simplicity requiring only small changes to the existing tracker models.

Exploiting Distilled Learning for Deep Siamese Tracking

Chengxin Liu, Zhiguo Cao, Wei Li, Yang Xiao, Shuaiyuan Du, Angfan Zhu

Responsive image

Auto-TLDR; Distilled Learning Framework for Siamese Tracking

Slides Poster Similar

Existing deep siamese trackers are typically built on off-the-shelf CNN models for feature learning, with the demand for huge power consumption and memory storage. This limits current deep siamese trackers to be carried on resource-constrained devices like mobile phones, given factor that such a deployment normally requires cost-effective considerations. In this work, we address this issue by presenting a novel Distilled Learning Framework(DLF) for siamese tracking, which aims at learning tracking model with efficiency and high accuracy. Specifically, we propose two simple yet effective knowledge distillation strategies, denote as point-wise distillation and pair-wise distillation, which are designed for transferring knowledge from a more discriminative teacher tracker into a compact student tracker. In this way, cost-effective and high performance tracking could be achieved. Extensive experiments on several tracking benchmarks demonstrate the effectiveness of our proposed method.

Visual Object Tracking in Drone Images with Deep Reinforcement Learning

Derya Gözen, Sedat Ozer

Responsive image

Auto-TLDR; A Deep Reinforcement Learning based Single Object Tracker for Drone Applications

Slides Poster Similar

There is an increasing demand on utilizing camera equipped drones and their applications in many domains varying from agriculture to entertainment and from sports events to surveillance. In such drone applications, an essential and a common task is tracking an object of interest visually. Drone (or UAV) images have different properties when compared to the ground taken (natural) images and those differences introduce additional complexities to the existing object trackers to be directly applied on drone applications. Some important differences among those complexities include (i) smaller object sizes to be tracked and (ii) different orientations and viewing angles yielding different texture and features to be observed. Therefore, new algorithms trained on drone images are needed for the drone-based applications. In this paper, we introduce a deep reinforcement learning (RL) based single object tracker that tracks an object of interest in drone images by estimating a series of actions to find the location of the object in the next frame. This is the first work introducing a single object tracker using a deep RL-based technique for drone images. Our proposed solution introduces a novel reward function that aims to reduce the total number of actions taken to estimate the object's location in the next frame and also introduces a different backbone network to be used on low resolution images. Additionally, we introduce a set of new actions into the action library to better deal with the above-mentioned complexities. We compare our proposed solutions to a state of the art tracking algorithm from the recent literature and demonstrate up to 3.87\% improvement in precision and 3.6\% improvement in IoU values on the VisDrone2019 dataset. We also provide additional results on OTB-100 dataset and show up to 3.15\% improvement in precision on the OTB-100 dataset when compared to the same previous state of the art algorithm. Lastly, we analyze the ability to handle some of the challenges faced during tracking, including but not limited to occlusion, deformation, and scale variation for our proposed solutions.

Robust Visual Object Tracking with Two-Stream Residual Convolutional Networks

Ning Zhang, Jingen Liu, Ke Wang, Dan Zeng, Tao Mei

Responsive image

Auto-TLDR; Two-Stream Residual Convolutional Network for Visual Tracking

Slides Poster Similar

The current deep learning based visual tracking approaches have been very successful by learning the target classification and/or estimation model from a large amount of supervised training data in offline mode. However, most of them can still fail in tracking objects due to some more challenging issues such as dense distractor objects, confusing background, motion blurs, and so on. Inspired by the human ``visual tracking'' capability which leverages motion cues to distinguish the target from the background, we propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking, which successfully exploits both appearance and motion features for model update. Our TS-RCN can be integrated with existing deep learning based visual trackers. To further improve the tracking performance, we adopt a ``wider'' residual network ResNeXt as its feature extraction backbone. To the best of our knowledge, TS-RCN is the first end-to-end trainable two-stream visual tracking system, which makes full use of both appearance and motion features of the target. We have extensively evaluated the TS-RCN on most widely used benchmark datasets including VOT2018, VOT2019, and GOT-10K. The experiment results have successfully demonstrated that our two-stream model can greatly outperform the appearance based tracker, and it also achieves state-of-the-art performance. The tracking system can run at up to 38.1 FPS.

MFST: Multi-Features Siamese Tracker

Zhenxi Li, Guillaume-Alexandre Bilodeau, Wassim Bouachir

Responsive image

Auto-TLDR; Multi-Features Siamese Tracker for Robust Deep Similarity Tracking

Slides Similar

Siamese trackers have recently achieved interesting results due to their balanced accuracy-speed. This success is mainly due to the fact that deep similarity networks were specifically designed to address the image similarity problem. Therefore, they are inherently more appropriate than classical CNNs for the tracking task. However, Siamese trackers rely on the last convolutional layers for similarity analysis and target search, which restricts their performance. In this paper, we argue that using a single convolutional layer as feature representation is not the optimal choice within the deep similarity framework, as multiple convolutional layers provide several abstraction levels in characterizing an object. Starting from this motivation, we present the Multi-Features Siamese Tracker (MFST), a novel tracking algorithm exploiting several hierarchical feature maps for robust deep similarity tracking. MFST proceeds by fusing hierarchical features to ensure a richer and more efficient representation. Moreover, we handle appearance variation by calibrating deep features extracted from two different CNN models. Based on this advanced feature representation, our algorithm achieves high tracking accuracy, while outperforming several state-of-the-art trackers, including standard Siamese trackers.

Siamese Dynamic Mask Estimation Network for Fast Video Object Segmentation

Dexiang Hong, Guorong Li, Kai Xu, Li Su, Qingming Huang

Responsive image

Auto-TLDR; Siamese Dynamic Mask Estimation for Video Object Segmentation

Slides Poster Similar

Video object segmentation(VOS) has been a fundamental topic in recent years, and many deep learning-based methods have achieved state-of-the-art performance on multiple benchmarks. However, most of these methods rely on pixel-level matching between the template and the searched frames on the whole image while the targets only occupy a small region. Calculating on the entire image brings lots of additional computation cost. Besides, the whole image may contain some distracting information resulting in many false-positive matching points. To address this issue, motivated by one-stage instance object segmentation methods, we propose an efficient siamese dynamic mask estimation network for fast video object segmentation. The VOS is decoupled into two tasks, i.e. mask feature learning and dynamic kernel prediction. The former is responsible for learning high-quality features to preserve structural geometric information, and the latter learns a dynamic kernel which is used to convolve with the mask feature to generate a mask output. We use Siamese neural network as a feature extractor and directly predict masks after correlation. In this way, we can avoid using pixel-level matching, making our framework more simple and efficient. Experiment results on DAVIS 2016 /2017 datasets show that our proposed methods can run at 35 frames per second on NVIDIA RTX TITAN while preserving competitive accuracy.

SiamMT: Real-Time Arbitrary Multi-Object Tracking

Lorenzo Vaquero, Manuel Mucientes, Victor Brea

Responsive image

Auto-TLDR; SiamMT: A Deep-Learning-based Arbitrary Multi-Object Tracking System for Video

Slides Poster Similar

Visual object tracking is of great interest in many applications, as it preserves the identity of an object throughout a video. However, while real applications demand systems capable of real-time-tracking multiple objects, multi-object tracking solutions usually follow the tracking-by-detection paradigm, thus they depend on running a costly detector in each frame, and they do not allow the tracking of arbitrary objects, i.e., they require training for specific classes. In response to this need, this work presents the architecture of SiamMT, a system capable of efficiently applying individual visual tracking techniques to multiple objects in real-time. This makes it the first deep-learning-based arbitrary multi-object tracker. To achieve this, we propose the global frame features extraction by using a fully-convolutional neural network, followed by the cropping and resizing of the different object search areas. The final similarity operation between these search areas and the target exemplars is carried out with an optimized pairwise cross-correlation. These novelties allow the system to track multiple targets in a scalable manner, achieving 25 fps with 60 simultaneous objects for VGA videos and 40 objects for HD720 videos, all with a tracking quality similar to SiamFC.

AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and Graphical Features

Maximilian Kraus, Seyed Majid Azimi, Emec Ercelik, Reza Bahmanyar, Peter Reinartz, Alois Knoll

Responsive image

Auto-TLDR; AerialMPTNet: A novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features

Slides Poster Similar

Multi-pedestrian tracking in aerial imagery has several applications such as large-scale event monitoring, disaster management, search-and-rescue missions, and as input into predictive crowd dynamic models. Due to the challenges such as the large number and the tiny size of the pedestrians (e.g., 4 x 4 pixels) with their similar appearances as well as different scales and atmospheric conditions of the images with their extremely low frame rates (e.g., 2 fps), current state-of-the-art algorithms including the deep learning-based ones are unable to perform well. In this paper, we propose AerialMPTNet, a novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features from a Siamese Neural Network, movement predictions from a Long Short-Term Memory, and pedestrian interconnections from a GraphCNN. In addition, to address the lack of diverse aerial multi-pedestrian tracking datasets, we introduce the Aerial Multi-Pedestrian Tracking (AerialMPT) dataset consisting of 307 frames and 44,740 pedestrians annotated. To the best of our knowledge, AerialMPT is the largest and most diverse dataset to this date and will be released publicly. We evaluate AerialMPTNet on AerialMPT and KIT AIS, and benchmark with several state-of-the-art tracking methods. Results indicate that AerialMPTNet significantly outperforms other methods on accuracy and time-efficiency.

Adaptive Context-Aware Discriminative Correlation Filters for Robust Visual Object Tracking

Tianyang Xu, Zhenhua Feng, Xiaojun Wu, Josef Kittler

Responsive image

Auto-TLDR; ACA-DCF: Adaptive Context-Aware Discriminative Correlation Filter with complementary attention mechanisms

Slides Poster Similar

In recent years, Discriminative Correlation Filters (DCFs) have gained popularity due to their superior performance in visual object tracking. However, existing DCF trackers usually learn filters using fixed attention mechanisms that focus on the centre of an image and suppresses filter amplitudes in surroundings. In this paper, we propose an Adaptive Context-Aware Discriminative Correlation Filter (ACA-DCF) that is able to improve the existing DCF formulation with complementary attention mechanisms. Our ACA-DCF integrates foreground attention and background attention for complementary context-aware filter learning. More importantly, we ameliorate the design using an adaptive weighting strategy that takes complex appearance variations into account. The experimental results obtained on several well-known benchmarks demonstrate the effectiveness and superiority of the proposed method over the state-of-the-art approaches.

Tracking Fast Moving Objects by Segmentation Network

Ales Zita, Filip Sroubek

Responsive image

Auto-TLDR; Fast Moving Objects Tracking by Segmentation Using Deep Learning

Slides Poster Similar

Tracking Fast Moving Objects (FMO), which appear as blurred streaks in video sequences, is a difficult task for standard trackers, as the object position does not overlap in consecutive video frames and texture information of the objects is blurred. Up-to-date approaches tuned for this task are based on background subtraction with a static background and slow deblurring algorithms. In this article, we present a tracking-by-segmentation approach implemented using modern deep learning methods that perform near real-time tracking on real-world video sequences. We have developed a physically plausible FMO sequence generator to be a robust foundation for our training pipeline and demonstrate straightforward network adaptation for different FMO scenarios with varying foreground.

Compact and Discriminative Multi-Object Tracking with Siamese CNNs

Claire Labit-Bonis, Jérôme Thomas, Frederic Lerasle

Responsive image

Auto-TLDR; Fast, Light-Weight and All-in-One Single Object Tracking for Multi-Target Management

Slides Poster Similar

Following the tracking-by-detection paradigm, multiple object tracking deals with challenging scenarios, occlusions or even missing detections; the priority is often given to quality measures instead of speed, and a good trade-off between the two is hard to achieve. Based on recent work, we propose a fast, light-weight tracker able to predict targets position and reidentify them at once, when it is usually done with two sequential steps. To do so, we combine a bounding box regressor with a target-oriented appearance learner in a newly designed and unified architecture. This way, our tracker can infer the targets' image pose but also provide us with a confidence level about target identity. Most of the time, it is also common to filter out the detector outputs with a preprocessing step, throwing away precious information about what has been seen in the image. We propose a tracks management strategy able to balance efficiently between detection and tracking outputs and their associated likelihoods. Simply put, we spotlight a full siamese based single object tracker able to predict both position and appearance features at once with a light-weight and all-in-one architecture, within a balanced overall multi-target management strategy. We demonstrate the efficiency and speed of our system w.r.t the literature on the well-known MOT17 challenge benchmark, and bring to the fore qualitative evaluations as well as state-of-the-art quantitative results.

An Adaptive Fusion Model Based on Kalman Filtering and LSTM for Fast Tracking of Road Signs

Chengliang Wang, Xin Xie, Chao Liao

Responsive image

Auto-TLDR; Fusion of ThunderNet and Region Growing Detector for Road Sign Detection and Tracking

Slides Poster Similar

The detection and tracking of road signs plays a critical role in various autopilot application. Utilizing convolutional neural networks(CNN) mostly incurs a big run-time overhead in feature extraction and object localization. Although Klaman filter(KF) is a commonly-used tracker, it is likely to be impacted by omitted objects in the detection step. In this paper, we designed a high-efficient detector that combines ThunderNet and Region Growing Detector(RGD) to detect road signs, and built a fusion model of long short term memory network (LSTM) and KF in the state estimation and the color histogram. The experimental results demonstrate that the proposed method improved the state estimation accuracy by 6.4% and enhanced the Frames Per Second(FPS) to 41.

SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater Videos

Mygel Andrei Martija, Prospero Naval

Responsive image

Auto-TLDR; Underwater Multi-Object Tracking in the Wild with Deep Hungarian Network

Slides Poster Similar

In this paper, we seek to extend multi-object tracking research on a relatively less explored domain, that of, underwater multi-object tracking in the wild. Multi-object fish tracking is an important task because it can provide fish monitoring systems with richer information (e.g. multiple views of the same fish) as compared to detections and it can be an invaluable input to fish behavior analysis. However, there is a lack of an annotated benchmark dataset with enough samples for this task. To circumvent the need for manual ground truth tracking annotation, we craft a synthetic dataset. Using this synthetic dataset, we train an integrated detector and tracker called SynDHN. SynDHN uses the Deep Hungarian Network (DHN), which is a differentiable approximation of the Hungarian assignment algorithm. We repurpose DHN to become the tracking component of our algorithm by performing the task of affinity estimation between detector predictions. We consider both spatial and appearance features for affinity estimation. Our results show that despite being trained on a synthetic dataset, SynDHN generalizes well to real underwater video tracking and performs better against our baseline algorithms.

Unsupervised Moving Object Detection through Background Models for PTZ Camera

Kimin Yun, Hyung-Il Kim, Kangmin Bae, Jongyoul Park

Responsive image

Auto-TLDR; Unsupervised Moving Object Detection in a PTZ Camera through Two Background Models

Slides Poster Similar

Moving object detection in a video plays an important role in many vision applications. Recently, moving object detection using appearance modeling based on a convolutional neural network has been actively developed. However, the CNN-based methods usually require the user's supervision of the first frame so that it becomes highly dependent on the training dataset. In contrast, the method of finding a foreground, which models a background occupying a large proportion in an image, can detect a moving object efficiently in an unsupervised manner. However, existing methods based on background modeling in a pan-tilt-zoom (PTZ) camera suffer many false positives or loss of moving objects due to the estimation error of camera motion. To overcome the aforementioned limitations, we propose a moving object detection method for a PTZ camera through two background models. In an unsupervised way, our method builds the two background models that have different roles: 1) a coarse background model for detecting large changes, and 2) a fine background model for detecting small changes. In more detail, the coarse background model builds a block-based Gaussian model, and the fine model builds a sample consensus model. Both models are adaptively updated according to the estimated camera motion in the video recorded by a PTZ camera. Then, each foreground result from two background models is incorporated to fill the moving object region. Through experiments, the proposed method achieves better performance than the state-of-the-art methods and operates in real-time without parallel processing. In addition, we showed the effectiveness of the proposed model through improved results of moving object detection through combination with the latest supervised method.

Visual Saliency Oriented Vehicle Scale Estimation

Qixin Chen, Tie Liu, Jiali Ding, Zejian Yuan, Yuanyuan Shang

Responsive image

Auto-TLDR; Regularized Intensity Matching for Vehicle Scale Estimation with salient object detection

Slides Poster Similar

Vehicle scale estimation with a single camera is a typical application for intelligent transportation and it faces the challenges from visual computing while intensity-based method and descriptor-based method should be balanced. This paper proposed a vehicle scale estimation method based on salient object detection to resolve this problem. The regularized intensity matching method is proposed in Lie Algebra to achieve robust and accurate scale estimation, and descriptor matching and intensity matching are combined to minimize the proposed loss function. The visual attention mechanism is designed to select image patches with texture and remove the occluded image patches. Then the weights are assigned to pixels from the selected image patches which alleviates the influence of noise-corrupted pixels. The experiments show that the proposed method significantly outperforms state-of-the-art methods with regard to the robustness and accuracy of vehicle scale estimation.

Mobile Augmented Reality: Fast, Precise, and Smooth Planar Object Tracking

Dmitrii Matveichev, Daw-Tung Lin

Responsive image

Auto-TLDR; Planar Object Tracking with Sparse Optical Flow Tracking and Descriptor Matching

Slides Poster Similar

We propose an innovative method for combining sparse optical flow tracking and descriptor matching algorithms. The proposed approach solves the following problems that are inherent to keypoint-based and optical flow based tracking algorithms: spatial jitter, extreme scale transformation, extreme perspective transformation, degradation in the number of tracking points, and drifting of tracking points. Our algorithm provides smooth object-position tracking under six degrees of freedom transformations with a small computational cost for providing a high-quality real-time AR experience on mobile platforms. We experimentally demonstrate that our approach outperforms the state-of-the-art tracking algorithms while offering faster computational time. A mobile augmented reality (AR) application, which is developed using our approach, delivers planar object tracking with 30 FPS on modern mobile phones for a camera resolution of 1280$\times$720. Finally, we compare the performance of our AR application with that of the Vuforia-based AR application on the same planar objects database. The test results show that our AR application delivers better AR experience than Vuforia in terms of smooth transition of object-pose between video frames.

ACCLVOS: Atrous Convolution with Spatial-Temporal ConvLSTM for Video Object Segmentation

Muzhou Xu, Shan Zong, Chunping Liu, Shengrong Gong, Zhaohui Wang, Yu Xia

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation using U-shape Convolution and ConvLSTM

Slides Poster Similar

Semi-supervised video object segmentation aims at segmenting the target of interest throughout a video sequence when only the annotated mask of the first frame is given. A feasible method for segmentation is to capture the spatial-temporal coherence between frames. However, it may suffer from mask drift when the spatial-temporal coherence is unreliable. To relieve this problem, we propose an encoder-decoder-recurrent model for semi-supervised video object segmentation. The model adopts a U-shape architecture that combines atrous convolution and ConvLSTM to establish the coherence in both the spatial and temporal domains. Furthermore, the weight ratio for each block is also reconstructed to make the model more suitable for the VOS task. We evaluate our method on two benchmarks, DAVIS-2017 and Youtube-VOS, where state-of-the-art segmentation accuracy with a real-time inference speed of 21.3 frames per second on a Tesla P100 is obtained.

DualBox: Generating BBox Pair with Strong Correspondence Via Occlusion Pattern Clustering and Proposal Refinement

Zheng Ge, Chuyu Hu, Xin Huang, Baiqiao Qiu, Osamu Yoshie

Responsive image

Auto-TLDR; R2NMS: Combining Full and Visible Body Bounding Box for Dense Pedestrian Detection

Slides Poster Similar

Despite the rapid development of pedestrian detection, the problem of dense pedestrian detection is still unsolved, especially the upper limit of Recall caused by Non-Maximum-Suppression (NMS). Out of this reason, R2NMS is proposed to simultaneously detect full and visible body bounding boxes, by replacing the full body BBoxes with less occluded visible body BBoxes in the NMS algorithm, achieving a higher recall. However, the P-RPN and P-RCNN modules proposed in R2NMS for simultaneous high quality full and visible body prediction require non-trivial positive/negative assigning strategies for anchor BBoxes. To simplify the prerequisites and improve the utility of R2NMS, we incorporate clustering analysis into the learning of visible body proposals from full body proposals. Furthermore, to reduce the computation complexity caused by the large number of potential visible body proposals, we introduce a novel occlusion pattern prediction branch on top of the R-CNN module (i.e. F-RCNN) to select the best matched visible proposals for each full body proposals and then feed them into another R-CNN module (i.e. V-RCNN). Incorporated with R2NMS, our DualBox model can achieve competitive performance while only requires few hyper-parameters. We validate the effectiveness of the proposed approach on the CrowdHuman and CityPersons datasets. Experimental results show that our approach achieves promising performance for detecting both non-occluded and occluded pedestrians, especially heavily occluded ones.

MagnifierNet: Learning Efficient Small-Scale Pedestrian Detector towards Multiple Dense Regions

Qi Cheng, Mingqin Chen, Yingjie Wu, Fei Chen, Shiping Lin

Responsive image

Auto-TLDR; MagnifierNet: A Simple but Effective Small-Scale Pedestrian Detection Towards Multiple Dense Regions

Slides Poster Similar

Despite the success of pedestrian detection, there is still a significant gap in the performance of the detection of pedestrians at different scales. Detecting small-scale pedestrians is extremely challenging due to the low resolution of their convolution features which is essential for downstream classifiers. To address this issue, we observed pedestrian datasets and found that pedestrians often gather together in crowded public places. Then we propose MagnifierNet, a simple but effective small-scale pedestrian detector towards multiple dense regions. MagnifierNet uses our proposed sweep-line based grouping algorithm to find dense regions based on the number of pedestrians in the grouped region. And we adopt a new definition of small-scale pedestrians through grid search and KL-divergence. Besides, our grouping method can also be used as a new strategy for pedestrian data augmentation. The ablation study demonstrates that MagnifierNet improves the representation of small-scale pedestrians. We validate the effectiveness of MagnifierNet on CityPersons and KITTI datasets. Experimental results show that MagnifierNet achieves the best small-scale pedestrian detection performance on CityPersons benchmark without any external data, and also achieves competitive performance for detecting small-scale pedestrians on KITTI dataset without bells and whistles.

Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Ye He, Chao Zhu, Xu-Cheng Yin

Responsive image

Auto-TLDR; A Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Similar

State-of-the-art pedestrian detectors have achieved significant progress on non-occluded pedestrians, yet they are still struggling under heavy occlusions. The recent occlusion handling strategy of popular two-stage approaches is to build a two-branch architecture with the help of additional visible body annotations. Nonetheless, these methods still have some weaknesses. Either the two branches are trained independently with only score-level fusion, which cannot guarantee the detectors to learn robust enough pedestrian features. Or the attention mechanisms are exploited to only emphasize on the visible body features. However, the visible body features of heavily occluded pedestrians are concentrated on a relatively small area, which will easily cause missing detections. To address the above issues, we propose in this paper a novel Mutual-Supervised Feature Modulation (MSFM) network, to better handle occluded pedestrian detection. The key MSFM module in our network calculates the similarity loss of full body boxes and visible body boxes corresponding to the same pedestrian, so that the full-body detector could learn more complete and robust pedestrian features with the assist of contextual features from the occluding parts. To facilitate the MSFM module, we also propose a novel two-branch architecture, consisting of a standard full body detection branch and an extra visible body classification branch. These two branches are trained in a mutual-supervised way with full body annotations and visible body annotations, respectively. To verify the effectiveness of our proposed method, extensive experiments are conducted on two challenging pedestrian datasets: Caltech and CityPersons, and our approach achieves superior performances compared to other state-of-the-art methods on both datasets, especially in heavy occlusion cases.

IPT: A Dataset for Identity Preserved Tracking in Closed Domains

Thomas Heitzinger, Martin Kampel

Responsive image

Auto-TLDR; Identity Preserved Tracking Using Depth Data for Privacy and Privacy

Slides Poster Similar

We present a public dataset for Identity Preserved Tracking (IPT) consisting of sequences of depth data recorded using an Orbbec Astra depth sensor. The dataset features sequences in ten different locations with a high amount of background variation and is designed to be applicable to a wide range of tasks. Its labeling is versatile, allowing for tracking in either 3d space or image coordinates. Next to frame-by-frame 3d and inferred bounding box labeling we provide supplementary annotation of camera poses and room layouts, split in multiple semantically distinct categories. Intended use-cases are applications where both a high level understanding of scene understanding and privacy are central points of consideration, such as active and assisted living (AAL), security and industrial safety. Compared to similar public datasets IPT distinguishes itself with its sequential data format, 3d instance labeling and room layout annotation. We present baseline object detection results in image coordinates using a YOLOv3 network architecture and implement a background model suitable for online tracking applications to increase detection accuracy. Additionally we propose a novel volumetric non-maximum suppression (V-NMS) approach, taking advantage of known room geometry. Last we provide baseline person tracking results utilizing Multiple Object Tracking Challenge (MOTChallenge) evaluation metrics of the CVPR19 benchmark.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

Motion and Region Aware Adversarial Learning for Fall Detection with Thermal Imaging

Vineet Mehta, Abhinav Dhall, Sujata Pal, Shehroz Khan

Responsive image

Auto-TLDR; Automatic Fall Detection with Adversarial Network using Thermal Imaging Camera

Slides Poster Similar

Automatic fall detection is a vital technology for ensuring health and safety of people. Home based camera systems for fall detection often put people's privacy at risk. Thermal cameras can partially/fully obfuscate facial features, thus preserving the privacy of a person. Another challenge is the less occurrence of falls in comparison to normal activities of daily living. As fall occurs rarely, it is non-trivial to learn algorithms due to class imbalance. To handle these problems, we formulate fall detection as an anomaly detection within an adversarial framework using thermal imaging camera. We present a novel adversarial network that comprise of two channel 3D convolutional auto encoders; one each handling video sequences and optical flow, which then reconstruct the thermal data and the optical flow input sequences. We introduce a differential constraint, a technique to track the region of interest and a joint discriminator to compute the reconstruction error. Larger reconstruction error indicates the occurrence of fall in a video sequence. The experiments on a publicly available thermal fall dataset show the superior results obtained in comparison to standard baseline.

RLST: A Reinforcement Learning Approach to Scene Text Detection Refinement

Xuan Peng, Zheng Huang, Kai Chen, Jie Guo, Weidong Qiu

Responsive image

Auto-TLDR; Saccadic Eye Movements and Peripheral Vision for Scene Text Detection using Reinforcement Learning

Slides Poster Similar

Within the research of scene text detection, some previous work has already achieved significant accuracy and efficiency. However, most of the work was generally done without considering about the implicit relationship between detection and eye movements. In this paper, we propose a new method for scene text detection especially for its refinement based on reinforcement learning. The idea of this method is inspired by Saccadic Eye Movements and Peripheral Vision. A saccade makes it possible for humans to orient the gaze to the location where a visual object has appeared. Peripheral vision gathers visual information of surroundings which provides supplement to foveal vision during gazing. We propose a simple pipeline, imitating the way human eyes do a saccade and collect peripheral information, to locate scene text roughly and to refine multi-scale vision field iteratively using reinforcement learning. For both training and evaluation, we use ICDAR2015 Challenge 4 dataset as a base and design several criteria to measure the feasibility of our work.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Learning Object Deformation and Motion Adaption for Semi-Supervised Video Object Segmentation

Xiaoyang Zheng, Xin Tan, Jianming Guo, Lizhuang Ma

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation with Mask-propagation-based Model

Slides Poster Similar

We propose a novel method to solve the task of semi-supervised video object segmentation in this paper, where the mask annotation is only given at the first frame of the video sequence. A mask-propagation-based model is applied to learn the past and current information for segmentation. Besides, due to the scarcity of training data, image/mask pairs that model object deformation and shape variance are generated for the training phase. In addition, we generate the key flips between two adjacent frames for motion adaptation. The method works in an end-to-end way, without any online fine-tuning on test videos. Extensive experiments demonstrate that our method achieves competitive performance against state-of-the-art algorithms on benchmark datasets, covering cases with single object or multiple objects. We also conduct extensive ablation experiments to analyze the effectiveness of our proposed method.

Object Features and Face Detection Performance: Analyses with 3D-Rendered Synthetic Data

Jian Han, Sezer Karaoglu, Hoang-An Le, Theo Gevers

Responsive image

Auto-TLDR; Synthetic Data for Face Detection Using 3DU Face Dataset

Slides Poster Similar

This paper is to provide an overview of how object features from images influence face detection performance, and how to select synthetic faces to address specific features. To this end, we investigate the effects of occlusion, scale, viewpoint, background, and noise by using a novel synthetic image generator based on 3DU Face Dataset. To examine the effects of different features, we selected three detectors (Faster RCNN, HR, SSH) as representative of various face detection methodologies. Comparing different configurations of synthetic data on face detection systems, it showed that our synthetic dataset could complement face detectors to become more robust against features in the real world. Our analysis also demonstrated that a variety of data augmentation is necessary to address nuanced differences in performance.

Utilising Visual Attention Cues for Vehicle Detection and Tracking

Feiyan Hu, Venkatesh Gurram Munirathnam, Noel E O'Connor, Alan Smeaton, Suzanne Little

Responsive image

Auto-TLDR; Visual Attention for Object Detection and Tracking in Driver-Assistance Systems

Slides Poster Similar

Advanced Driver-Assistance Systems (ADAS) have been attracting attention from many researchers. Vision based sensors are the closest way to emulate human driver visual behavior while driving. In this paper, we explore possible ways to use visual attention (saliency) for object detection and tracking. We investigate: 1) How a visual attention map such as a subjectness attention or saliency map and an objectness attention map can facilitate region proposal generation in a 2-stage object detector; 2) How a visual attention map can be used for tracking multiple objects. We propose a neural network that can simultaneously detect objects as and generate objectness and subjectness maps to save computational power. We further exploit the visual attention map during tracking using a sequential Monte Carlo probability hypothesis density (PHD) filter. The experiments are conducted on KITTI and DETRAC datasets. The use of visual attention and hierarchical features has shown a considerable improvement of≈8% in object detection which effectively increased tracking performance by≈4% on KITTI dataset.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Object Detection Model Based on Scene-Level Region Proposal Self-Attention

Yu Quan, Zhixin Li, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Exploiting Semantic Informations for Object Detection

Slides Poster Similar

The improvement of object detection performance is mostly focused on the extraction of local information near the region of interest in the image, which results in detection performance in this area being unable to achieve the desired effect. First, a depth-wise separable convolution network(D_SCNet-127 R-CNN) is built on the backbone network. Considering the importance of scene and semantic informations for visual recognition, the feature map is sent into the branch of the semantic segmentation module, region proposal network module, and the region proposal self-attention module to build the network of scene-level and region proposal self-attention module. Second, a deep reinforcement learning was utilized to achieve accurate positioning of border regression, and the calculation speed of the whole model was improved through implementing a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental verification on MSCOCO17, VOC12, and Cityscapes datasets shows that the proposed method has good validity and scalability.

Coarse to Fine: Progressive and Multi-Task Learning for Salient Object Detection

Dong-Goo Kang, Sangwoo Park, Joonki Paik

Responsive image

Auto-TLDR; Progressive and mutl-task learning scheme for salient object detection

Slides Poster Similar

Most deep learning-based salient object detection (SOD) methods tried to manipulate the convolution block to effectively capture the context of object. In this paper, we propose a novel method, called progressive and mutl-task learning scheme, to extract the context of object by only manipulating the learning scheme without changing the network architecture. The progressive learning scheme is a method to grow the decoder progressively in the train phase. In other words, starting from easier low-resolution layers, it gradually adds high-resolution layers. Although the progressive learning successfullyl captures the context of object, its output boundary tends to be rough. To solve this problem, we also propose a multi-task learning (MTL) scheme that processes the object saliency map and contour in a single network jointly. The proposed MTL scheme trains the network in an edge-preserved direction through an auxiliary branch that learns contours. The proposed a learning scheme can be combined with other convolution block manipulation methods. Extensive experiments on five datasets show that the proposed method performs best compared with state-of-the-art methods in most cases.

SyNet: An Ensemble Network for Object Detection in UAV Images

Berat Mert Albaba, Sedat Ozer

Responsive image

Auto-TLDR; SyNet: Combining Multi-Stage and Single-Stage Object Detection for Aerial Images

Poster Similar

Recent advances in camera equipped drone applications and their widespread use increased the demand on vision based object detection algorithms for aerial images. Object detection process is inherently a challenging task as a generic computer vision problem, however, since the use of object detection algorithms on UAVs (or on drones) is relatively a new area, it remains as a more challenging problem to detect objects in aerial images. There are several reasons for that including: (i) the lack of large drone datasets including large object variance, (ii) the large orientation and scale variance in drone images when compared to the ground images, and (iii) the difference in texture and shape features between the ground and the aerial images. Deep learning based object detection algorithms can be classified under two main categories: (a) single-stage detectors and (b) multi-stage detectors. Both single-stage and multi-stage solutions have their advantages and disadvantages over each other. However, a technique to combine the good sides of each of those solutions could yield even a stronger solution than each of those solutions individually. In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one with the motivation of decreasing the high false negative rate of multi-stage detectors and increasing the quality of the single-stage detector proposals. As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy. We report the state of the art results obtained by our proposed solution on two different datasets: namely MS-COCO and visDrone with \%52.1 $mAP_{IoU = 0.75}$ is obtained on MS-COCO $val2017$ dataset and \%26.2 $mAP_{IoU = 0.75}$ is obtained on VisDrone $test-set$. Our code is available at: https://github.com/mertalbaba/SyNet}{https://github.com/mer talbaba/SyNet

Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated Convolution

Renshu Gu, Gaoang Wang, Jenq-Neng Hwang

Responsive image

Auto-TLDR; 3D Human Pose Estimation for Multi-Human Videos with Occlusion

Slides Similar

3D human pose estimation (HPE) is crucial in human behavior analysis, augmented reality/virtual reality (AR/VR) applications, and self-driving industry. Videos that contain multiple potentially occluded people captured from freely moving monocular cameras are very common in real-world scenarios, while 3D HPE for such scenarios is quite challenging, partially because there is a lack of such data with accurate 3D ground truth labels in existing datasets. In this paper, we propose a temporal regression network with a gated convolution module to transform 2D joints to 3D and recover the missing occluded joints in the meantime. A simple yet effective localization approach is further conducted to transform the normalized pose to the global trajectory. To verify the effectiveness of our approach, we also collect a new moving camera multi-human (MMHuman) dataset that includes multiple people with heavy occlusion captured by moving cameras. The 3D ground truth joints are provided by accurate motion capture (MoCap) system. From the experiments on static-camera based Human3.6M data and our own collected moving-camera based data, we show that our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods, especially for the scenarios with heavy occlusions.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

Precise Temporal Action Localization with Quantified Temporal Structure of Actions

Chongkai Lu, Ruimin Li, Hong Fu, Bin Fu, Yihao Wang, Wai Lun Lo, Zheru Chi

Responsive image

Auto-TLDR; Action progression networks for temporal action detection

Slides Poster Similar

Existing temporal action detection algorithms cannot distinguish complete and incomplete actions while this property is essential in many applications. To tackle this challenge, we proposed the action progression networks (APN), a novel model that predicts action progression of video frames with continuous numbers. Using the progression sequence of test video, on the top of the APN, a complete action searching algorithm (CAS) was designed to detect complete actions only. With the usage of frame-level fine-grained temporal structure modeling and detecting actions according to their whole temporal context, our framework can locate actions precisely and is good at avoiding incomplete action detection. We evaluated our framework on a new dataset (DFMAD-70) collected by ourselves which contains both complete and incomplete actions. Our framework got good temporal localization results with 95.77% average precision when the IoU threshold is 0.5. On the benchmark THUMOS14, an incomplete-ignostic dataset, our framework still obtain competitive performance. The code is available online at https://github.com/MakeCent/Action-Progression-Network

Video Object Detection Using Object's Motion Context and Spatio-Temporal Feature Aggregation

Jaekyum Kim, Junho Koh, Byeongwon Lee, Seungji Yang, Jun Won Choi

Responsive image

Auto-TLDR; Video Object Detection Using Spatio-Temporal Aggregated Features and Gated Attention Network

Slides Poster Similar

The deep learning technique has recently led to significant improvement in object-detection accuracy. Numerous object detection schemes have been designed to process each frame independently. However, in many applications, object detection is performed using video data, which consists of a sequence of two-dimensional (2D) image frames. Thus, the object detection accuracy can be improved by exploiting the temporal context of the video sequence. In this paper, we propose a novel video object detection method that exploits both the motion context of the object and spatio-temporal aggregated features in the video sequence to enhance the object detection performance. First, the motion of the object is captured by the correlation between the spatial feature maps of two adjacent frames. Then, the embedding vector, representing the motion context, is obtained by feeding the N correlation maps to long short term memory (LSTM). In addition to generating the motion context vector, the spatial feature maps for N adjacent frames are aggregated to boost the quality of the feature map. The gated attention network is employed to selectively combine only highly correlated feature maps based on their relevance. While most video object detectors are applied to two-stage detectors, our proposed method is applicable to one-stage detectors, which tend to be preferred for practical applications owing to reduced computational complexity. Our numerical evaluation conducted on the ImageNet VID dataset shows that our network offers significant performance gain over baseline algorithms, and it outperforms the existing state-of-the-art one-stage video object detection methods.

Human Segmentation with Dynamic LiDAR Data

Tao Zhong, Wonjik Kim, Masayuki Tanaka, Masatoshi Okutomi

Responsive image

Auto-TLDR; Spatiotemporal Neural Network for Human Segmentation with Dynamic Point Clouds

Slides Similar

Consecutive LiDAR scans and depth images compose dynamic 3D sequences, which contain more abundant spatiotemporal information than a single frame. Similar to the development history of image and video perception, dynamic 3D sequence perception starts to come into sight after inspiring research on static 3D data perception. This work proposes a spatiotemporal neural network for human segmentation with the dynamic LiDAR point clouds. It takes a sequence of depth images as input. It has a two-branch structure, i.e., the spatial segmentation branch and the temporal velocity estimation branch. The velocity estimation branch is designed to capture motion cues from the input sequence and then propagates them to the other branch. So that the segmentation branch segments humans according to both spatial and temporal features. These two branches are jointly learned on a generated dynamic point cloud data set for human recognition. Our works fill in the blank of dynamic point cloud perception with the spherical representation of point cloud and achieves high accuracy. The experiments indicate that the introduction of temporal feature benefits the segmentation of dynamic point cloud perception.

Learning a Dynamic High-Resolution Network for Multi-Scale Pedestrian Detection

Mengyuan Ding, Shanshan Zhang, Jian Yang

Responsive image

Auto-TLDR; Learningable Dynamic HRNet for Pedestrian Detection

Slides Poster Similar

Pedestrian detection is a canonical instance of object detection in computer vision. In practice, scale variation is one of the key challenges, resulting in unbalanced performance across different scales. Recently, the High-Resolution Network (HRNet) has become popular because high-resolution feature representations are more friendly to small objects. However, when we apply HRNet for pedestrian detection, we observe that it improves for small pedestrians on one hand, but hurts the performance for larger ones on the other hand. To overcome this problem, we propose a learnable Dynamic HRNet (DHRNet) aiming to generate different network paths adaptive to different scales. Specifically, we construct a parallel multi-branch architecture and add a soft conditional gate module allowing for dynamic feature fusion. Both branches share all the same parameters except the soft gate module. Experimental results on CityPersons and Caltech benchmarks indicate that our proposed dynamic HRNet is more capable of dealing with pedestrians of various scales, and thus improves the performance across different scales consistently.

Temporal Feature Enhancement Network with External Memory for Object Detection in Surveillance Video

Masato Fujitake, Akihiro Sugimoto

Responsive image

Auto-TLDR; Temporal Attention Based External Memory Network for Surveillance Object Detection

Poster Similar

Video object detection is challenging and essential in practical applications, such as surveillance cameras for traffic control and public security. Unlike the video in natural scenes, the surveillance video tends to contain dense, and small objects (typically vehicles) in their appearances. Therefore, existing methods for surveillance object detection utilize still-image object detection approaches with rich feature extractors at the expense of their run-time speeds. The run-time speed, however, becomes essential when the video is being streamed. In this paper, we exploit temporal information in videos to enrich the feature maps, proposing the first temporal attention based external memory network for the live stream of video. Extensive experiments on real-world traffic surveillance benchmarks demonstrate the real-time performance of the proposed model while keeping comparable accuracy with state-of-the-art.

Motion U-Net: Multi-Cue Encoder-Decoder Network for Motion Segmentation

Gani Rahmon, Filiz Bunyak, Kannappan Palaniappan

Responsive image

Auto-TLDR; Motion U-Net: A Deep Learning Framework for Robust Moving Object Detection under Challenging Conditions

Slides Poster Similar

Detection of moving objects is a critical first step in many computer vision applications. Several algorithms for motion and change detection were proposed. However, many of these approaches lack the ability to handle challenging real-world scenarios. Recently, deep learning approaches started to produce impressive solutions to computer vision tasks, particularly for detection and segmentation. Many existing deep learning networks proposed for moving object detection rely only on spatial appearance cues. In this paper, we propose a novel multi-cue and multi-stream network, Motion U-Net (MU-Net), which integrates motion, change, and appearance cues using a deep learning framework for robust moving object detection under challenging conditions. The proposed network consists of a two-stream encoder module followed by feature concatenation and a decoder module. Motion and change cues are computed through our tensor-based motion estimation and a multi-modal background subtraction modules. The proposed system was tested and evaluated on the change detection challenge datasets (CDnet-2014) and compared to state-of-the-art methods. On CDnet-2014 dataset, our approach reaches an average overall F-measure of 0.9852 and outperforms all current state-of-the-art methods. The network was also tested on the unseen SBI-2015 dataset and produced promising results.

Online Object Recognition Using CNN-Based Algorithm on High-Speed Camera Imaging

Shigeaki Namiki, Keiko Yokoyama, Shoji Yachida, Takashi Shibata, Hiroyoshi Miyano, Masatoshi Ishikawa

Responsive image

Auto-TLDR; Real-Time Object Recognition with High-Speed Camera Imaging with Population Data Clearing and Data Ensemble

Slides Poster Similar

High-speed camera imaging (e.g., 1,000 fps) is effective to detect and recognize objects moving at high speeds because temporally dense images obtained by a high-speed camera can usually capture the best moment for object detection and recognition. However, the latest recognition algorithms, with their high complexity, are difficult to utilize in real-time applications involving high-speed cameras because a vast amount of images need to be processed with no latency. To tackle this problem, we propose a novel framework for real-time object recognition with high-speed camera imaging. The proposed framework has the key processes of population data cleansing and data ensemble. Population data cleansing improves the recognition accuracy by quantifying the recognizability and by excluding part of the images prior to the recognition process, while data ensemble improves the robustness of object recognition by merging the class probabilities with multiple images of the same object. Experimental results with a real dataset show that our framework is more effective than existing methods.