Efficient Correlation Filter Tracking with Adaptive Training Sample Update Scheme

Shan Jiang, Shuxiao Li, Chengfei Zhu, Nan Yan

Responsive image

Auto-TLDR; Adaptive Training Sample Update Scheme of Correlation Filter Based Trackers for Visual Tracking

Slides Poster

Visual tracking serves as a significant module in many applications. However, the heavy computation and low speed of many recent trackers restrict their applications in some computing power restricted scenarios. On the other hand, the simple update scheme of most correlation filter based trackers limits their robustness during target deformation and occlusion. In this paper, we explore the update scheme of correlation filter based trackers and propose an efficient and adaptive training sample update scheme. Training sample extracted in each frame is updated to the training set according to its distance between existing samples measured with difference hashing algorithm(DHA) or discarded according to tracking result reliability. Experiments on OTB-2015, Temple Color 128 and UAV123 demonstrate our tracker performs favourably against state-of-the-art trackers with light computation and runs over 100 fps on desktop computer with Intel i7-8700 CPU(3.2GHz).

Similar papers

Adaptive Context-Aware Discriminative Correlation Filters for Robust Visual Object Tracking

Tianyang Xu, Zhenhua Feng, Xiaojun Wu, Josef Kittler

Responsive image

Auto-TLDR; ACA-DCF: Adaptive Context-Aware Discriminative Correlation Filter with complementary attention mechanisms

Slides Poster Similar

In recent years, Discriminative Correlation Filters (DCFs) have gained popularity due to their superior performance in visual object tracking. However, existing DCF trackers usually learn filters using fixed attention mechanisms that focus on the centre of an image and suppresses filter amplitudes in surroundings. In this paper, we propose an Adaptive Context-Aware Discriminative Correlation Filter (ACA-DCF) that is able to improve the existing DCF formulation with complementary attention mechanisms. Our ACA-DCF integrates foreground attention and background attention for complementary context-aware filter learning. More importantly, we ameliorate the design using an adaptive weighting strategy that takes complex appearance variations into account. The experimental results obtained on several well-known benchmarks demonstrate the effectiveness and superiority of the proposed method over the state-of-the-art approaches.

DAL: A Deep Depth-Aware Long-Term Tracker

Yanlin Qian, Song Yan, Alan Lukežič, Matej Kristan, Joni-Kristian Kamarainen, Jiri Matas

Responsive image

Auto-TLDR; Deep Depth-Aware Long-Term RGBD Tracking with Deep Discriminative Correlation Filter

Slides Poster Similar

The best RGBD trackers provide high accuracy but are slow to run. On the other hand, the best RGB trackers are fast but clearly inferior on the RGBD datasets. In this work, we propose a deep depth-aware long-term tracker that achieves state-of-the-art RGBD tracking performance and is fast to run. We reformulate deep discriminative correlation filter (DCF) to embed the depth information into deep features. Moreover, the same depth-aware correlation filter is used for target re- detection. Comprehensive evaluations show that the proposed tracker achieves state-of-the-art performance on the Princeton RGBD, STC, and the newly-released CDTB benchmarks and runs 20 fps.

RSINet: Rotation-Scale Invariant Network for Online Visual Tracking

Yang Fang, Geunsik Jo, Chang-Hee Lee

Responsive image

Auto-TLDR; RSINet: Rotation-Scale Invariant Network for Adaptive Tracking

Slides Poster Similar

Most Siamese network-based trackers perform the tracking process without model update, and cannot learn target-specific variation adaptively. Moreover, Siamese-based trackers infer the new state of tracked objects by generating axis-aligned bounding boxes, which contain extra background noise, and are unable to accurately estimate the rotation and scale transformation of moving objects, thus potentially reducing tracking performance. In this paper, we propose a novel Rotation-Scale Invariant Network (RSINet) to address the above problem. Our RSINet tracker consists of a target-distractor discrimination branch and a rotation-scale estimation branch, the rotation and scale knowledge can be explicitly learned by a multi-task learning method in an end-to-end manner. In addtion, the tracking model is adaptively optimized and updated under spatio-temporal energy control, which ensures model stability and reliability, as well as high tracking efficiency. Comprehensive experiments on OTB-100, VOT2018, and LaSOT benchmarks demonstrate that our proposed RSINet tracker yields new state-of-the-art performance compared with recent trackers, while running at real-time speed about 45 FPS.

TSDM: Tracking by SiamRPN++ with a Depth-Refiner and a Mask-Generator

Pengyao Zhao, Quanli Liu, Wei Wang, Qiang Guo

Responsive image

Auto-TLDR; TSDM: A Depth-D Tracker for 3D Object Tracking

Slides Poster Similar

In a generic object tracking, depth (D) information provides informative cues for foreground-background separation and target bounding box regression. However, so far, few trackers have used depth information to play the important role aforementioned due to the lack of a suitable model. In this paper, a RGB-D tracker named TSDM is proposed, which is composed of a Mask-generator (M-g), SiamRPN++ and a Depth-refiner (D-r). The M-g generates the background masks, and updates them as the target 3D position changes. The D-r optimizes the target bounding box estimated by SiamRPN++, based on the spatial depth distribution difference between the target and the surrounding background. Extensive evaluation on the Princeton Tracking Benchmark and the Visual Object Tracking challenge shows that our tracker outperforms the state-of-the-art by a large margin while achieving 23 FPS. In addition, a light-weight variant can run at 31 FPS and thus it is practical for real world applications. Code and models of TSDM are available at https://github.com/lql-team/TSDM.

Model Decay in Long-Term Tracking

Efstratios Gavves, Ran Tao, Deepak Gupta, Arnold Smeulders

Responsive image

Auto-TLDR; Model Bias in Long-Term Tracking

Slides Poster Similar

To account for appearance variations, tracking models need to be updated during the course of inference. However, updating the tracker model with adverse bounding box predictions adds an unavoidable bias term to the learning. This bias term, which we refer to as model decay, offsets the learning and causes tracking drift. While its adverse affect might not be visible in short-term tracking, accumulation of this bias over a long-term can eventually lead to a permanent loss of the target. In this paper, we look at the problem of model bias from a mathematical perspective. Further, we briefly examine the effect of various sources of tracking error on model decay, using a correlation filter (ECO) and a Siamese (SINT) tracker. Based on observations and insights, we propose simple additions that help to reduce model decay in long-term tracking. The proposed tracker is evaluated on four long-term and one short-term tracking benchmarks, demonstrating superior accuracy and robustness, even on 30 minute long videos.

Siamese Fully Convolutional Tracker with Motion Correction

Mathew Francis, Prithwijit Guha

Responsive image

Auto-TLDR; A Siamese Ensemble for Visual Tracking with Appearance and Motion Components

Slides Poster Similar

Visual tracking algorithms use cues like appearance, structure, motion etc. for locating an object in a video. We propose an ensemble tracker with appearance and motion components. A siamese tracker that learns object appearance from a static image and motion vectors computed between consecutive frames with a flow network forms the ensemble. Motion predicted object localization is used to correct the appearance component in the ensemble. Complementary nature of the components bring performance improvement as observed in experiments performed on VOT2018 and VOT2019 datasets.

Reducing False Positives in Object Tracking with Siamese Network

Takuya Ogawa, Takashi Shibata, Shoji Yachida, Toshinori Hosoi

Responsive image

Auto-TLDR; Robust Long-Term Object Tracking with Adaptive Search based on Motion Models

Slides Poster Similar

We have developed a robust long-term object tracking method that resolves the fundamental cause of the drift and loss of a target in visual object tracking. The proposed method consists of “sampling area extension”, which prevents a tracking result from drifting to other objects by learning false positive samples in advance (before they enter the search region of the target), and “adaptive search based on motion models”, which prevents a tracking result from drifting to other objects and avoids the loss of the target by using not only appearance features but also motion models to adaptively search for the target. Experiments conducted on long-term tracking dataset showed that our first technique improved robustness by 16.6% while the second technique improved robustness by 15.3%. By combining both, our method achieved 21.7% and 9.1% improvement for the robustness and precision, and the processing speed became 3.3 times faster. Additional experiments showed that our method achieved the top robustness among state-of-the-art methods on three long-term tracking datasets. These findings demonstrate that our method is effective for long-term object tracking and that its performance and speed are promising for use in practical applications of various technologies underlying object tracking.

VTT: Long-Term Visual Tracking with Transformers

Tianling Bian, Yang Hua, Tao Song, Zhengui Xue, Ruhui Ma, Neil Robertson, Haibing Guan

Responsive image

Auto-TLDR; Visual Tracking Transformer with transformers for long-term visual tracking

Slides Similar

Long-term visual tracking is a challenging problem. State-of-the-art long-term trackers, e.g., GlobalTrack, utilize region proposal networks (RPNs) to generate target proposals. However, the performance of the trackers is affected by occlusions and large scale or ratio variations. To address these issues, in this paper, we are the first to propose a novel architecture with transformers for long-term visual tracking. Specifically, the proposed Visual Tracking Transformer (VTT) utilizes a transformer encoder-decoder architecture for aggregating global information to deal with occlusion and large scale or ratio variation. Furthermore, it also shows better discriminative power against instance-level distractors without the need for extra labeling and hard-sample mining. We conduct extensive experiments on three largest long-term tracking dataset and have achieved state-of-the-art performance.

MFST: Multi-Features Siamese Tracker

Zhenxi Li, Guillaume-Alexandre Bilodeau, Wassim Bouachir

Responsive image

Auto-TLDR; Multi-Features Siamese Tracker for Robust Deep Similarity Tracking

Slides Similar

Siamese trackers have recently achieved interesting results due to their balanced accuracy-speed. This success is mainly due to the fact that deep similarity networks were specifically designed to address the image similarity problem. Therefore, they are inherently more appropriate than classical CNNs for the tracking task. However, Siamese trackers rely on the last convolutional layers for similarity analysis and target search, which restricts their performance. In this paper, we argue that using a single convolutional layer as feature representation is not the optimal choice within the deep similarity framework, as multiple convolutional layers provide several abstraction levels in characterizing an object. Starting from this motivation, we present the Multi-Features Siamese Tracker (MFST), a novel tracking algorithm exploiting several hierarchical feature maps for robust deep similarity tracking. MFST proceeds by fusing hierarchical features to ensure a richer and more efficient representation. Moreover, we handle appearance variation by calibrating deep features extracted from two different CNN models. Based on this advanced feature representation, our algorithm achieves high tracking accuracy, while outperforming several state-of-the-art trackers, including standard Siamese trackers.

Robust Visual Object Tracking with Two-Stream Residual Convolutional Networks

Ning Zhang, Jingen Liu, Ke Wang, Dan Zeng, Tao Mei

Responsive image

Auto-TLDR; Two-Stream Residual Convolutional Network for Visual Tracking

Slides Poster Similar

The current deep learning based visual tracking approaches have been very successful by learning the target classification and/or estimation model from a large amount of supervised training data in offline mode. However, most of them can still fail in tracking objects due to some more challenging issues such as dense distractor objects, confusing background, motion blurs, and so on. Inspired by the human ``visual tracking'' capability which leverages motion cues to distinguish the target from the background, we propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking, which successfully exploits both appearance and motion features for model update. Our TS-RCN can be integrated with existing deep learning based visual trackers. To further improve the tracking performance, we adopt a ``wider'' residual network ResNeXt as its feature extraction backbone. To the best of our knowledge, TS-RCN is the first end-to-end trainable two-stream visual tracking system, which makes full use of both appearance and motion features of the target. We have extensively evaluated the TS-RCN on most widely used benchmark datasets including VOT2018, VOT2019, and GOT-10K. The experiment results have successfully demonstrated that our two-stream model can greatly outperform the appearance based tracker, and it also achieves state-of-the-art performance. The tracking system can run at up to 38.1 FPS.

Visual Object Tracking in Drone Images with Deep Reinforcement Learning

Derya Gözen, Sedat Ozer

Responsive image

Auto-TLDR; A Deep Reinforcement Learning based Single Object Tracker for Drone Applications

Slides Poster Similar

There is an increasing demand on utilizing camera equipped drones and their applications in many domains varying from agriculture to entertainment and from sports events to surveillance. In such drone applications, an essential and a common task is tracking an object of interest visually. Drone (or UAV) images have different properties when compared to the ground taken (natural) images and those differences introduce additional complexities to the existing object trackers to be directly applied on drone applications. Some important differences among those complexities include (i) smaller object sizes to be tracked and (ii) different orientations and viewing angles yielding different texture and features to be observed. Therefore, new algorithms trained on drone images are needed for the drone-based applications. In this paper, we introduce a deep reinforcement learning (RL) based single object tracker that tracks an object of interest in drone images by estimating a series of actions to find the location of the object in the next frame. This is the first work introducing a single object tracker using a deep RL-based technique for drone images. Our proposed solution introduces a novel reward function that aims to reduce the total number of actions taken to estimate the object's location in the next frame and also introduces a different backbone network to be used on low resolution images. Additionally, we introduce a set of new actions into the action library to better deal with the above-mentioned complexities. We compare our proposed solutions to a state of the art tracking algorithm from the recent literature and demonstrate up to 3.87\% improvement in precision and 3.6\% improvement in IoU values on the VisDrone2019 dataset. We also provide additional results on OTB-100 dataset and show up to 3.15\% improvement in precision on the OTB-100 dataset when compared to the same previous state of the art algorithm. Lastly, we analyze the ability to handle some of the challenges faced during tracking, including but not limited to occlusion, deformation, and scale variation for our proposed solutions.

Exploiting Distilled Learning for Deep Siamese Tracking

Chengxin Liu, Zhiguo Cao, Wei Li, Yang Xiao, Shuaiyuan Du, Angfan Zhu

Responsive image

Auto-TLDR; Distilled Learning Framework for Siamese Tracking

Slides Poster Similar

Existing deep siamese trackers are typically built on off-the-shelf CNN models for feature learning, with the demand for huge power consumption and memory storage. This limits current deep siamese trackers to be carried on resource-constrained devices like mobile phones, given factor that such a deployment normally requires cost-effective considerations. In this work, we address this issue by presenting a novel Distilled Learning Framework(DLF) for siamese tracking, which aims at learning tracking model with efficiency and high accuracy. Specifically, we propose two simple yet effective knowledge distillation strategies, denote as point-wise distillation and pair-wise distillation, which are designed for transferring knowledge from a more discriminative teacher tracker into a compact student tracker. In this way, cost-effective and high performance tracking could be achieved. Extensive experiments on several tracking benchmarks demonstrate the effectiveness of our proposed method.

Tackling Occlusion in Siamese Tracking with Structured Dropouts

Deepak Gupta, Efstratios Gavves, Arnold Smeulders

Responsive image

Auto-TLDR; Structured Dropout for Occlusion in latent space

Slides Poster Similar

Occlusion is one of the most difficult challenges in object tracking to model. This is because unlike other challenges, where data augmentation can be of help, occlusion is hard to simulate as the occluding object can be anything in any shape. In this paper, we propose a simple solution to simulate the effects of occlusion in the latent space. Specifically, we present structured dropout to mimic the change in latent codes under occlusion. We present three forms of dropout (channel dropout, segment dropout and slice dropout) with the various forms of occlusion in mind. To demonstrate its effectiveness, the dropouts are incorporated into two modern Siamese trackers (SiamFC and SiamRPN++). The outputs from multiple dropouts are combined using an encoder network to obtain the final prediction. Experiments on several tracking benchmarks show the benefits of structured dropouts, while due to their simplicity requiring only small changes to the existing tracker models.

Visual Saliency Oriented Vehicle Scale Estimation

Qixin Chen, Tie Liu, Jiali Ding, Zejian Yuan, Yuanyuan Shang

Responsive image

Auto-TLDR; Regularized Intensity Matching for Vehicle Scale Estimation with salient object detection

Slides Poster Similar

Vehicle scale estimation with a single camera is a typical application for intelligent transportation and it faces the challenges from visual computing while intensity-based method and descriptor-based method should be balanced. This paper proposed a vehicle scale estimation method based on salient object detection to resolve this problem. The regularized intensity matching method is proposed in Lie Algebra to achieve robust and accurate scale estimation, and descriptor matching and intensity matching are combined to minimize the proposed loss function. The visual attention mechanism is designed to select image patches with texture and remove the occluded image patches. Then the weights are assigned to pixels from the selected image patches which alleviates the influence of noise-corrupted pixels. The experiments show that the proposed method significantly outperforms state-of-the-art methods with regard to the robustness and accuracy of vehicle scale estimation.

AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and Graphical Features

Maximilian Kraus, Seyed Majid Azimi, Emec Ercelik, Reza Bahmanyar, Peter Reinartz, Alois Knoll

Responsive image

Auto-TLDR; AerialMPTNet: A novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features

Slides Poster Similar

Multi-pedestrian tracking in aerial imagery has several applications such as large-scale event monitoring, disaster management, search-and-rescue missions, and as input into predictive crowd dynamic models. Due to the challenges such as the large number and the tiny size of the pedestrians (e.g., 4 x 4 pixels) with their similar appearances as well as different scales and atmospheric conditions of the images with their extremely low frame rates (e.g., 2 fps), current state-of-the-art algorithms including the deep learning-based ones are unable to perform well. In this paper, we propose AerialMPTNet, a novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features from a Siamese Neural Network, movement predictions from a Long Short-Term Memory, and pedestrian interconnections from a GraphCNN. In addition, to address the lack of diverse aerial multi-pedestrian tracking datasets, we introduce the Aerial Multi-Pedestrian Tracking (AerialMPT) dataset consisting of 307 frames and 44,740 pedestrians annotated. To the best of our knowledge, AerialMPT is the largest and most diverse dataset to this date and will be released publicly. We evaluate AerialMPTNet on AerialMPT and KIT AIS, and benchmark with several state-of-the-art tracking methods. Results indicate that AerialMPTNet significantly outperforms other methods on accuracy and time-efficiency.

Compact and Discriminative Multi-Object Tracking with Siamese CNNs

Claire Labit-Bonis, Jérôme Thomas, Frederic Lerasle

Responsive image

Auto-TLDR; Fast, Light-Weight and All-in-One Single Object Tracking for Multi-Target Management

Slides Poster Similar

Following the tracking-by-detection paradigm, multiple object tracking deals with challenging scenarios, occlusions or even missing detections; the priority is often given to quality measures instead of speed, and a good trade-off between the two is hard to achieve. Based on recent work, we propose a fast, light-weight tracker able to predict targets position and reidentify them at once, when it is usually done with two sequential steps. To do so, we combine a bounding box regressor with a target-oriented appearance learner in a newly designed and unified architecture. This way, our tracker can infer the targets' image pose but also provide us with a confidence level about target identity. Most of the time, it is also common to filter out the detector outputs with a preprocessing step, throwing away precious information about what has been seen in the image. We propose a tracks management strategy able to balance efficiently between detection and tracking outputs and their associated likelihoods. Simply put, we spotlight a full siamese based single object tracker able to predict both position and appearance features at once with a light-weight and all-in-one architecture, within a balanced overall multi-target management strategy. We demonstrate the efficiency and speed of our system w.r.t the literature on the well-known MOT17 challenge benchmark, and bring to the fore qualitative evaluations as well as state-of-the-art quantitative results.

Siamese Dynamic Mask Estimation Network for Fast Video Object Segmentation

Dexiang Hong, Guorong Li, Kai Xu, Li Su, Qingming Huang

Responsive image

Auto-TLDR; Siamese Dynamic Mask Estimation for Video Object Segmentation

Slides Poster Similar

Video object segmentation(VOS) has been a fundamental topic in recent years, and many deep learning-based methods have achieved state-of-the-art performance on multiple benchmarks. However, most of these methods rely on pixel-level matching between the template and the searched frames on the whole image while the targets only occupy a small region. Calculating on the entire image brings lots of additional computation cost. Besides, the whole image may contain some distracting information resulting in many false-positive matching points. To address this issue, motivated by one-stage instance object segmentation methods, we propose an efficient siamese dynamic mask estimation network for fast video object segmentation. The VOS is decoupled into two tasks, i.e. mask feature learning and dynamic kernel prediction. The former is responsible for learning high-quality features to preserve structural geometric information, and the latter learns a dynamic kernel which is used to convolve with the mask feature to generate a mask output. We use Siamese neural network as a feature extractor and directly predict masks after correlation. In this way, we can avoid using pixel-level matching, making our framework more simple and efficient. Experiment results on DAVIS 2016 /2017 datasets show that our proposed methods can run at 35 frames per second on NVIDIA RTX TITAN while preserving competitive accuracy.

SiamMT: Real-Time Arbitrary Multi-Object Tracking

Lorenzo Vaquero, Manuel Mucientes, Victor Brea

Responsive image

Auto-TLDR; SiamMT: A Deep-Learning-based Arbitrary Multi-Object Tracking System for Video

Slides Poster Similar

Visual object tracking is of great interest in many applications, as it preserves the identity of an object throughout a video. However, while real applications demand systems capable of real-time-tracking multiple objects, multi-object tracking solutions usually follow the tracking-by-detection paradigm, thus they depend on running a costly detector in each frame, and they do not allow the tracking of arbitrary objects, i.e., they require training for specific classes. In response to this need, this work presents the architecture of SiamMT, a system capable of efficiently applying individual visual tracking techniques to multiple objects in real-time. This makes it the first deep-learning-based arbitrary multi-object tracker. To achieve this, we propose the global frame features extraction by using a fully-convolutional neural network, followed by the cropping and resizing of the different object search areas. The final similarity operation between these search areas and the target exemplars is carried out with an optimized pairwise cross-correlation. These novelties allow the system to track multiple targets in a scalable manner, achieving 25 fps with 60 simultaneous objects for VGA videos and 40 objects for HD720 videos, all with a tracking quality similar to SiamFC.

Tracking Fast Moving Objects by Segmentation Network

Ales Zita, Filip Sroubek

Responsive image

Auto-TLDR; Fast Moving Objects Tracking by Segmentation Using Deep Learning

Slides Poster Similar

Tracking Fast Moving Objects (FMO), which appear as blurred streaks in video sequences, is a difficult task for standard trackers, as the object position does not overlap in consecutive video frames and texture information of the objects is blurred. Up-to-date approaches tuned for this task are based on background subtraction with a static background and slow deblurring algorithms. In this article, we present a tracking-by-segmentation approach implemented using modern deep learning methods that perform near real-time tracking on real-world video sequences. We have developed a physically plausible FMO sequence generator to be a robust foundation for our training pipeline and demonstrate straightforward network adaptation for different FMO scenarios with varying foreground.

An Adaptive Fusion Model Based on Kalman Filtering and LSTM for Fast Tracking of Road Signs

Chengliang Wang, Xin Xie, Chao Liao

Responsive image

Auto-TLDR; Fusion of ThunderNet and Region Growing Detector for Road Sign Detection and Tracking

Slides Poster Similar

The detection and tracking of road signs plays a critical role in various autopilot application. Utilizing convolutional neural networks(CNN) mostly incurs a big run-time overhead in feature extraction and object localization. Although Klaman filter(KF) is a commonly-used tracker, it is likely to be impacted by omitted objects in the detection step. In this paper, we designed a high-efficient detector that combines ThunderNet and Region Growing Detector(RGD) to detect road signs, and built a fusion model of long short term memory network (LSTM) and KF in the state estimation and the color histogram. The experimental results demonstrate that the proposed method improved the state estimation accuracy by 6.4% and enhanced the Frames Per Second(FPS) to 41.

Mobile Augmented Reality: Fast, Precise, and Smooth Planar Object Tracking

Dmitrii Matveichev, Daw-Tung Lin

Responsive image

Auto-TLDR; Planar Object Tracking with Sparse Optical Flow Tracking and Descriptor Matching

Slides Poster Similar

We propose an innovative method for combining sparse optical flow tracking and descriptor matching algorithms. The proposed approach solves the following problems that are inherent to keypoint-based and optical flow based tracking algorithms: spatial jitter, extreme scale transformation, extreme perspective transformation, degradation in the number of tracking points, and drifting of tracking points. Our algorithm provides smooth object-position tracking under six degrees of freedom transformations with a small computational cost for providing a high-quality real-time AR experience on mobile platforms. We experimentally demonstrate that our approach outperforms the state-of-the-art tracking algorithms while offering faster computational time. A mobile augmented reality (AR) application, which is developed using our approach, delivers planar object tracking with 30 FPS on modern mobile phones for a camera resolution of 1280$\times$720. Finally, we compare the performance of our AR application with that of the Vuforia-based AR application on the same planar objects database. The test results show that our AR application delivers better AR experience than Vuforia in terms of smooth transition of object-pose between video frames.

SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater Videos

Mygel Andrei Martija, Prospero Naval

Responsive image

Auto-TLDR; Underwater Multi-Object Tracking in the Wild with Deep Hungarian Network

Slides Poster Similar

In this paper, we seek to extend multi-object tracking research on a relatively less explored domain, that of, underwater multi-object tracking in the wild. Multi-object fish tracking is an important task because it can provide fish monitoring systems with richer information (e.g. multiple views of the same fish) as compared to detections and it can be an invaluable input to fish behavior analysis. However, there is a lack of an annotated benchmark dataset with enough samples for this task. To circumvent the need for manual ground truth tracking annotation, we craft a synthetic dataset. Using this synthetic dataset, we train an integrated detector and tracker called SynDHN. SynDHN uses the Deep Hungarian Network (DHN), which is a differentiable approximation of the Hungarian assignment algorithm. We repurpose DHN to become the tracking component of our algorithm by performing the task of affinity estimation between detector predictions. We consider both spatial and appearance features for affinity estimation. Our results show that despite being trained on a synthetic dataset, SynDHN generalizes well to real underwater video tracking and performs better against our baseline algorithms.

Coarse-To-Fine Foreground Segmentation Based on Co-Occurrence Pixel-Block and Spatio-Temporal Attention Model

Xinyu Liu, Dong Liang

Responsive image

Auto-TLDR; Foreground Segmentation from coarse to Fine Using Co-occurrence Pixel-Block Model for Dynamic Scene

Slides Poster Similar

Foreground segmentation in dynamic scene is an important task in video surveillance. The unsupervised background subtraction method based on background statistics modeling has difficulties in updating. On the other hand, the supervised foreground segmentation method based on deep learning relies on the large-scale of accurately annotated training data, which limits its cross-scene performance. In this paper, we propose a foreground segmentation method from coarse to fine. First, a across-scenes trained Spatio-Temporal Attention Model (STAM) is used to achieve coarse segmentation, which does not require training on specific scene. Then the coarse segmentation is used as a reference to help Co-occurrence Pixel-Block Model (CPB) complete the fine segmentation, and at the same time help CPB to update its background model. This method is more flexible than those deep-learning-based methods which depends on the specific-scene training, and realizes the accurate online dynamic update of the background model. Experimental results on WallFlower and LIMU validate our method outperforms STAM, CPB and other methods of participating in comparison.

3D Audio-Visual Speaker Tracking with a Novel Particle Filter

Hong Liu, Yongheng Sun, Yidi Li, Bing Yang

Responsive image

Auto-TLDR; 3D audio-visual speaker tracking using particle filter based method

Slides Poster Similar

3D speaker tracking using co-located audio-visual sensors has received much attention recently. Though various methods have been attempted to this field, it is still challenging to obtain a reliable 3D tracking result since the position of co-located sensors are restricted to a small area. In this paper, a novel particle filter (PF) based method is proposed for 3D audio-visual speaker tracking. Compared with traditional PF based audio-visual speaker tracking method, our 3D audio-visual tracker has two main characteristics. In the prediction stage, we use audio-visual information at current frame to further adjust the direction of the particles after the particle state transition process, which can make the particles more concentrated around the speaker direction. In the update stage, the particle likelihood is calculated by fusing both the visual distance and audio-visual direction information. Specially, the distance likelihood is obtained according to the camera projection model and the adaptively estimated size of speaker face or head, and the direction likelihood is determined by audio-visual particle fitness. In this way, the particle likelihood can better represent the speaker presence probability in 3D space. Experimental results show that the proposed tracker outperforms other methods and provides a favorable speaker tracking performance both in 3D space and on the image plane.

Utilising Visual Attention Cues for Vehicle Detection and Tracking

Feiyan Hu, Venkatesh Gurram Munirathnam, Noel E O'Connor, Alan Smeaton, Suzanne Little

Responsive image

Auto-TLDR; Visual Attention for Object Detection and Tracking in Driver-Assistance Systems

Slides Poster Similar

Advanced Driver-Assistance Systems (ADAS) have been attracting attention from many researchers. Vision based sensors are the closest way to emulate human driver visual behavior while driving. In this paper, we explore possible ways to use visual attention (saliency) for object detection and tracking. We investigate: 1) How a visual attention map such as a subjectness attention or saliency map and an objectness attention map can facilitate region proposal generation in a 2-stage object detector; 2) How a visual attention map can be used for tracking multiple objects. We propose a neural network that can simultaneously detect objects as and generate objectness and subjectness maps to save computational power. We further exploit the visual attention map during tracking using a sequential Monte Carlo probability hypothesis density (PHD) filter. The experiments are conducted on KITTI and DETRAC datasets. The use of visual attention and hierarchical features has shown a considerable improvement of≈8% in object detection which effectively increased tracking performance by≈4% on KITTI dataset.

Joint Face Alignment and 3D Face Reconstruction with Efficient Convolution Neural Networks

Keqiang Li, Huaiyu Wu, Xiuqin Shang, Zhen Shen, Gang Xiong, Xisong Dong, Bin Hu, Fei-Yue Wang

Responsive image

Auto-TLDR; Mobile-FRNet: Efficient 3D Morphable Model Alignment and 3D Face Reconstruction from a Single 2D Facial Image

Slides Poster Similar

3D face reconstruction from a single 2D facial image is a challenging and concerned problem. Recent methods based on CNN typically aim to learn parameters of 3D Morphable Model (3DMM) from 2D images to render face alignment and 3D face reconstruction. Most algorithms are designed for faces with small, medium yaw angles, which is extremely challenging to align faces in large poses. At the same time, they are not efficient usually. The main challenge is that it takes time to determine the parameters accurately. In order to address this challenge with the goal of improving performance, this paper proposes a novel and efficient end-to-end framework. We design an efficient and lightweight network model combined with Depthwise Separable Convolution and Muti-scale Representation, Lightweight Attention Mechanism, named Mobile-FRNet. Simultaneously, different loss functions are used to constrain and optimize 3DMM parameters and 3D vertices during training to improve the performance of the network. Meanwhile, extensive experiments on the challenging datasets show that our method significantly improves the accuracy of face alignment and 3D face reconstruction. The model parameters and complexity of our method are also improved greatly.

Detecting Manipulated Facial Videos: A Time Series Solution

Zhang Zhewei, Ma Can, Gao Meilin, Ding Bowen

Responsive image

Auto-TLDR; Face-Alignment Based Bi-LSTM for Fake Video Detection

Slides Poster Similar

We propose a new method to expose fake videos based on a time series solution. The method is based on bidirectional long short-term memory (Bi-LSTM) backbone architecture with two different types of features: {Face-Alignment} and {Dense-Face-Alignment}, in which both of them are physiological signals that can be distinguished between fake and original videos. We choose 68 landmark points as the feature of {Face-Alignment} and Pose Adaptive Feature (PAF) for {Dense-Face-Alignment}. Based on these two facial features, we designed two deep networks. In addition, we optimize our network by adding an attention mechanism that improves detection precision. Our method is tested over benchmarks of Face Forensics/Face Forensics++ dataset and show a promising performance on inference speed while maintaining accuracy with state-of art solutions that deal against DeepFake.

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Adaptive L2 Regularization in Person Re-Identification

Xingyang Ni, Liang Fang, Heikki Juhani Huttunen

Responsive image

Auto-TLDR; AdaptiveReID: Adaptive L2 Regularization for Person Re-identification

Slides Poster Similar

We introduce an adaptive L2 regularization mechanism termed AdaptiveReID, in the setting of person re-identification. In the literature, it is common practice to utilize hand-picked regularization factors which remain constant throughout the training procedure. Unlike existing approaches, the regularization factors in our proposed method are updated adaptively through backpropagation. This is achieved by incorporating trainable scalar variables as the regularization factors, which are further fed into a scaled hard sigmoid function. Extensive experiments on the Market-1501, DukeMTMC-reID and MSMT17 datasets validate the effectiveness of our framework. Most notably, we obtain state-of-the-art performance on MSMT17, which is the largest dataset for person re-identification. Source code will be published at https://github.com/nixingyang/AdaptiveReID.

ACCLVOS: Atrous Convolution with Spatial-Temporal ConvLSTM for Video Object Segmentation

Muzhou Xu, Shan Zong, Chunping Liu, Shengrong Gong, Zhaohui Wang, Yu Xia

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation using U-shape Convolution and ConvLSTM

Slides Poster Similar

Semi-supervised video object segmentation aims at segmenting the target of interest throughout a video sequence when only the annotated mask of the first frame is given. A feasible method for segmentation is to capture the spatial-temporal coherence between frames. However, it may suffer from mask drift when the spatial-temporal coherence is unreliable. To relieve this problem, we propose an encoder-decoder-recurrent model for semi-supervised video object segmentation. The model adopts a U-shape architecture that combines atrous convolution and ConvLSTM to establish the coherence in both the spatial and temporal domains. Furthermore, the weight ratio for each block is also reconstructed to make the model more suitable for the VOS task. We evaluate our method on two benchmarks, DAVIS-2017 and Youtube-VOS, where state-of-the-art segmentation accuracy with a real-time inference speed of 21.3 frames per second on a Tesla P100 is obtained.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Coarse to Fine: Progressive and Multi-Task Learning for Salient Object Detection

Dong-Goo Kang, Sangwoo Park, Joonki Paik

Responsive image

Auto-TLDR; Progressive and mutl-task learning scheme for salient object detection

Slides Poster Similar

Most deep learning-based salient object detection (SOD) methods tried to manipulate the convolution block to effectively capture the context of object. In this paper, we propose a novel method, called progressive and mutl-task learning scheme, to extract the context of object by only manipulating the learning scheme without changing the network architecture. The progressive learning scheme is a method to grow the decoder progressively in the train phase. In other words, starting from easier low-resolution layers, it gradually adds high-resolution layers. Although the progressive learning successfullyl captures the context of object, its output boundary tends to be rough. To solve this problem, we also propose a multi-task learning (MTL) scheme that processes the object saliency map and contour in a single network jointly. The proposed MTL scheme trains the network in an edge-preserved direction through an auxiliary branch that learns contours. The proposed a learning scheme can be combined with other convolution block manipulation methods. Extensive experiments on five datasets show that the proposed method performs best compared with state-of-the-art methods in most cases.

Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Ye He, Chao Zhu, Xu-Cheng Yin

Responsive image

Auto-TLDR; A Mutual-Supervised Feature Modulation Network for Occluded Pedestrian Detection

Similar

State-of-the-art pedestrian detectors have achieved significant progress on non-occluded pedestrians, yet they are still struggling under heavy occlusions. The recent occlusion handling strategy of popular two-stage approaches is to build a two-branch architecture with the help of additional visible body annotations. Nonetheless, these methods still have some weaknesses. Either the two branches are trained independently with only score-level fusion, which cannot guarantee the detectors to learn robust enough pedestrian features. Or the attention mechanisms are exploited to only emphasize on the visible body features. However, the visible body features of heavily occluded pedestrians are concentrated on a relatively small area, which will easily cause missing detections. To address the above issues, we propose in this paper a novel Mutual-Supervised Feature Modulation (MSFM) network, to better handle occluded pedestrian detection. The key MSFM module in our network calculates the similarity loss of full body boxes and visible body boxes corresponding to the same pedestrian, so that the full-body detector could learn more complete and robust pedestrian features with the assist of contextual features from the occluding parts. To facilitate the MSFM module, we also propose a novel two-branch architecture, consisting of a standard full body detection branch and an extra visible body classification branch. These two branches are trained in a mutual-supervised way with full body annotations and visible body annotations, respectively. To verify the effectiveness of our proposed method, extensive experiments are conducted on two challenging pedestrian datasets: Caltech and CityPersons, and our approach achieves superior performances compared to other state-of-the-art methods on both datasets, especially in heavy occlusion cases.

Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing

Qianqian Zhang, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; Optimized Projection Supervised Discrete Hashing for Large-Scale Remote Sensing Image Object Classification

Slides Poster Similar

Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has been widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications

Hierarchical Deep Hashing for Fast Large Scale Image Retrieval

Yongfei Zhang, Cheng Peng, Zhang Jingtao, Xianglong Liu, Shiliang Pu, Changhuai Chen

Responsive image

Auto-TLDR; Hierarchical indexed deep hashing for fast large scale image retrieval

Slides Poster Similar

Fast image retrieval is of great importance in many computer vision tasks and especially practical applications. Deep hashing, the state-of-the-art fast image retrieval scheme, introduces deep learning to learn the hash functions and generate binary hash codes, and outperforms the other image retrieval methods in terms of accuracy. However, all the existing deep hashing methods could only generate one level hash codes and require a linear traversal of all the hash codes to figure out the closest one when a new query arrives, which is very time-consuming and even intractable for large scale applications. In this work, we propose a Hierarchical Deep HASHing(HDHash) scheme to speed up the state-of-the-art deep hashing methods. More specifically, hierarchical deep hash codes of multiple levels can be generated and indexed with tree structures rather than linear ones, and pruning irrelevant branches can sharply decrease the retrieval time. To our best knowledge, this is the first work to introduce hierarchical indexed deep hashing for fast large scale image retrieval. Extensive experimental results on three benchmark datasets demonstrate that the proposed HDHash scheme achieves better or comparable accuracy with significantly improved efficiency and reduced memory as compared to state-of-the-art fast image retrieval schemes.

Edge-Aware Monocular Dense Depth Estimation with Morphology

Zhi Li, Xiaoyang Zhu, Haitao Yu, Qi Zhang, Yongshi Jiang

Responsive image

Auto-TLDR; Spatio-Temporally Smooth Dense Depth Maps Using Only a CPU

Slides Poster Similar

Dense depth maps play an important role in Computer Vision and AR (Augmented Reality). For CV applications, a dense depth map is the cornerstone of 3D reconstruction allowing real objects to be precisely displayed in the computer. And Dense depth maps can handle correct occlusion relationships between virtual content and real objects for better user experience in AR. However, the complicated computation limits the development of computing dense depth maps. We present a novel algorithm that produces low latency, spatio-temporally smooth dense depth maps using only a CPU. The depth maps exhibit sharp discontinuities at depth edges in low computational complexity ways. Our algorithm obtains the sparse SLAM reconstruction first, then extracts coarse depth edges from a down-sampled RGB image by morphology operations. Next, we thin the depth edges and align them with image edges. Finally, a Warm-Start initialization scheme and an improved optimization solver are adopted to accelerate convergence. We evaluate our proposal quantitatively and the result shows improvements on the accuracy of depth map with respect to other state-of-the-art and baseline techniques.

Learning Object Deformation and Motion Adaption for Semi-Supervised Video Object Segmentation

Xiaoyang Zheng, Xin Tan, Jianming Guo, Lizhuang Ma

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation with Mask-propagation-based Model

Slides Poster Similar

We propose a novel method to solve the task of semi-supervised video object segmentation in this paper, where the mask annotation is only given at the first frame of the video sequence. A mask-propagation-based model is applied to learn the past and current information for segmentation. Besides, due to the scarcity of training data, image/mask pairs that model object deformation and shape variance are generated for the training phase. In addition, we generate the key flips between two adjacent frames for motion adaptation. The method works in an end-to-end way, without any online fine-tuning on test videos. Extensive experiments demonstrate that our method achieves competitive performance against state-of-the-art algorithms on benchmark datasets, covering cases with single object or multiple objects. We also conduct extensive ablation experiments to analyze the effectiveness of our proposed method.

Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster Similar

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

Improved Deep Classwise Hashing with Centers Similarity Learning for Image Retrieval

Ming Zhang, Hong Yan

Responsive image

Auto-TLDR; Deep Classwise Hashing for Image Retrieval Using Center Similarity Learning

Slides Poster Similar

Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.

Object Segmentation Tracking from Generic Video Cues

Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper

Responsive image

Auto-TLDR; A Light-Weight Variational Framework for Video Object Segmentation in Videos

Slides Poster Similar

We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence specific training of dedicated CNN architectures, we show the potential of a variational model, based on generic video information from motion and color. Such cues are usually required for tasks such as robot navigation or grasp estimation. We leverage them directly for video object segmentation and thus provide accurate segmentations at potentially very low extra cost. Our simple method can provide competitive results compared to the costly CNN-based methods with parameter tuning. Furthermore, we show that our approach can be combined with state-of-the-art CNN-based segmentations in order to improve over their respective results. We evaluate our method on the datasets DAVIS 16,17 and SegTrack v2.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

6D Pose Estimation with Correlation Fusion

Yi Cheng, Hongyuan Zhu, Ying Sun, Cihan Acar, Wei Jing, Yan Wu, Liyuan Li, Cheston Tan, Joo-Hwee Lim

Responsive image

Auto-TLDR; Intra- and Inter-modality Fusion for 6D Object Pose Estimation with Attention Mechanism

Slides Poster Similar

6D object pose estimation is widely applied in robotic tasks such as grasping and manipulation. Prior methods using RGB-only images are vulnerable to heavy occlusion and poor illumination, so it is important to complement them with depth information. However, existing methods using RGB-D data cannot adequately exploit consistent and complementary information between RGB and depth modalities. In this paper, we present a novel method to effectively consider the correlation within and across both modalities with attention mechanism to learn discriminative and compact multi-modal features. Then, effective fusion strategies for intra- and inter-correlation modules are explored to ensure efficient information flow between RGB and depth. To our best knowledge, this is the first work to explore effective intra- and inter-modality fusion in 6D pose estimation. The experimental results show that our method can achieve the state-of-the-art performance on LineMOD and YCBVideo dataset. We also demonstrate that the proposed method can benefit a real-world robot grasping task by providing accurate object pose estimation.

Self-Paced Bottom-Up Clustering Network with Side Information for Person Re-Identification

Mingkun Li, Chun-Guang Li, Ruo-Pei Guo, Jun Guo

Responsive image

Auto-TLDR; Self-Paced Bottom-up Clustering Network with Side Information for Unsupervised Person Re-identification

Slides Poster Similar

Person re-identification (Re-ID) has attracted a lot of research attention in recent years. However, supervised methods demand an enormous amount of manually annotated data. In this paper, we propose a Self-Paced bottom-up Clustering Network with Side Information (SPCNet-SI) for unsupervised person Re-ID, where the side information comes from the serial number of the camera associated with each image. Specifically, our proposed SPCNet-SI exploits the camera side information to guide the feature learning and uses soft label in bottom-up clustering process, in which the camera association information is used in the repelled loss and the soft label based cluster information is used to select the candidate cluster pairs to merge. Moreover, a self-paced dynamic mechanism is developed to regularize the merging process such that the clustering is implemented in an easy-to-hard way with a slow-to-fast merging process. Experiments on two benchmark datasets Market-1501 and DukeMTMC-ReID demonstrate promising performance.

IPT: A Dataset for Identity Preserved Tracking in Closed Domains

Thomas Heitzinger, Martin Kampel

Responsive image

Auto-TLDR; Identity Preserved Tracking Using Depth Data for Privacy and Privacy

Slides Poster Similar

We present a public dataset for Identity Preserved Tracking (IPT) consisting of sequences of depth data recorded using an Orbbec Astra depth sensor. The dataset features sequences in ten different locations with a high amount of background variation and is designed to be applicable to a wide range of tasks. Its labeling is versatile, allowing for tracking in either 3d space or image coordinates. Next to frame-by-frame 3d and inferred bounding box labeling we provide supplementary annotation of camera poses and room layouts, split in multiple semantically distinct categories. Intended use-cases are applications where both a high level understanding of scene understanding and privacy are central points of consideration, such as active and assisted living (AAL), security and industrial safety. Compared to similar public datasets IPT distinguishes itself with its sequential data format, 3d instance labeling and room layout annotation. We present baseline object detection results in image coordinates using a YOLOv3 network architecture and implement a background model suitable for online tracking applications to increase detection accuracy. Additionally we propose a novel volumetric non-maximum suppression (V-NMS) approach, taking advantage of known room geometry. Last we provide baseline person tracking results utilizing Multiple Object Tracking Challenge (MOTChallenge) evaluation metrics of the CVPR19 benchmark.

Forground-Guided Vehicle Perception Framework

Kun Tian, Tong Zhou, Shiming Xiang, Chunhong Pan

Responsive image

Auto-TLDR; A foreground segmentation branch for vehicle detection

Slides Poster Similar

As the basis of advanced visual tasks such as vehicle tracking and traffic flow analysis, vehicle detection needs to accurately predict the position and category of vehicle objects. In the past decade, deep learning based methods have made great progress. However, we also notice that some existing cases are not studied thoroughly. First, false positive on the background regions is one of the critical problems. Second, most of the previous approaches only optimize a single vehicle detection model, ignoring the relationship between different visual perception tasks. In response to the above two findings, we introduce a foreground segmentation branch for the first time, which can predict the pixel level of vehicles in advance. Furthermore, two attention modules are designed to guide the work of the detection branch. The proposed method can be easily grafted into the one-stage and two-stage detection framework. We evaluate the effectiveness of our model on LSVH, a dataset with large variations in vehicle scales, and achieve the state-of-the-art detection accuracy.

A Prototype-Based Generalized Zero-Shot Learning Framework for Hand Gesture Recognition

Jinting Wu, Yujia Zhang, Xiao-Guang Zhao

Responsive image

Auto-TLDR; Generalized Zero-Shot Learning for Hand Gesture Recognition

Slides Poster Similar

Hand gesture recognition plays a significant role in human-computer interaction for understanding various human gestures and their intent. However, most prior works can only recognize gestures of limited labeled classes and fail to adapt to new categories. The task of Generalized Zero-Shot Learning (GZSL) for hand gesture recognition aims to address the above issue by leveraging semantic representations and detecting both seen and unseen class samples. In this paper, we propose an end-to-end prototype-based GZSL framework for hand gesture recognition which consists of two branches. The first branch is a prototype-based detector that learns gesture representations and determines whether an input sample belongs to a seen or unseen category. The second branch is a zero-shot label predictor which takes the features of unseen classes as input and outputs predictions through a learned mapping mechanism between the feature and the semantic space. We further establish a hand gesture dataset that specifically targets this GZSL task, and comprehensive experiments on this dataset demonstrate the effectiveness of our proposed approach on recognizingQuestionnaire both seen and unseen gestures.

A Spectral Clustering on Grassmann Manifold Via Double Low Rank Constraint

Xinglin Piao, Yongli Hu, Junbin Gao, Yanfeng Sun, Xin Yang, Baocai Yin

Responsive image

Auto-TLDR; Double Low Rank Representation for High-Dimensional Data Clustering on Grassmann Manifold

Slides Similar

High-dimension data clustering is a fundamental topic in machine learning and data mining areas. In recent year, researchers have proposed a series of effective methods based on Low Rank Representation (LRR) which could explore low-dimension subspace structure embedded in original data effectively. The traditional LRR methods usually treat original data as samples in Euclidean space. They generally adopt linear metric to measure the distance between two data. However, high-dimension data (such as video clip or imageset) are always considered as non-linear manifold data such as Grassmann manifold. Therefore, the traditional linear Euclidean metric would be no longer suitable for these special data. In addition, traditional LRR clustering method always adopt nuclear norm as low rank constraint which would lead to suboptimal solution and decrease the clustering accuracy. In this paper, we proposed a new low rank method on Grassmann manifold for high-dimension data clustering task. In the proposed method, a double low rank representation approach is proposed by combining the nuclear norm and bilinear representation for better construct the representation matrix. The experimental results on several public datasets show that the proposed method outperforms the state-of-the-art clustering methods.