Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Similar papers

Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Jianyang Qin, Lunke Fei, Shaohua Teng, Wei Zhang, Genping Zhao, Haoliang Yuan

Responsive image

Auto-TLDR; Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Slides Poster Similar

Hashing has been widely studied for cross-modal retrieval due to its promising efficiency and effectiveness in massive data analysis. However, most existing supervised hashing has the limitations of inefficiency for very large-scale search and intractable discrete constraint for hash codes learning. In this paper, we propose a new supervised hashing method, namely, Discrete Semantic Matrix Factorization Hashing (DSMFH), for cross-modal retrieval. First, we conduct the matrix factorization via directly utilizing the available label information to obtain a latent representation, so that both the inter-modality and intra-modality similarities are well preserved. Then, we simultaneously learn the discriminative hash codes and corresponding hash functions by deriving the matrix factorization into a discrete optimization. Finally, we adopt an alternatively iterative procedure to efficiently optimize the matrix factorization and discrete learning. Extensive experimental results on three widely used image-tag databases demonstrate the superiority of the DSMFH over state-of-the-art cross-modal hashing methods.

A Local Descriptor with Physiological Characteristic for Finger Vein Recognition

Liping Zhang, Weijun Li, Ning Xin

Responsive image

Auto-TLDR; Finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns

Slides Poster Similar

Local feature descriptors exhibit great superiority in finger vein recognition due to their stability and robustness against local changes in images. However, most of these are methods use general-purpose descriptors that do not consider finger vein-specific features. In this work, we propose a finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns, i.e., histogram of oriented physiological Gabor responses (HOPGR), for finger vein recognition. First, a prior of directional characteristic of finger vein patterns is obtained in an unsupervised manner. Then the physiological Gabor filter banks are set up based on the prior information to extract the physiological responses and orientation. Finally, to make the feature robust against local changes in images, a histogram is generated as output by dividing the image into non-overlapping cells and overlapping blocks. Extensive experimental results on several databases clearly demonstrate that the proposed method outperforms most current state-of-the-art finger vein recognition methods.

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing

Qianqian Zhang, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; Optimized Projection Supervised Discrete Hashing for Large-Scale Remote Sensing Image Object Classification

Slides Poster Similar

Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has been widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications

Face Anti-Spoofing Based on Dynamic Color Texture Analysis Using Local Directional Number Pattern

Junwei Zhou, Ke Shu, Peng Liu, Jianwen Xiang, Shengwu Xiong

Responsive image

Auto-TLDR; LDN-TOP Representation followed by ProCRC Classification for Face Anti-Spoofing

Slides Poster Similar

Face anti-spoofing is becoming increasingly indispensable for face recognition systems, which are vulnerable to various spoofing attacks performed using fake photos and videos. In this paper, a novel "LDN-TOP representation followed by ProCRC classification" pipeline for face anti-spoofing is proposed. We use local directional number pattern (LDN) with the derivative-Gaussian mask to capture detailed appearance information resisting illumination variations and noises, which can influence the texture pattern distribution. To further capture motion information, we extend LDN to a spatial-temporal variant named local directional number pattern from three orthogonal planes (LDN-TOP). The multi-scale LDN-TOP capturing complete information is extracted from color images to generate the feature vector with powerful representation capacity. Finally, the feature vector is fed into the probabilistic collaborative representation based classifier (ProCRC) for face anti-spoofing. Our method is evaluated on three challenging public datasets, namely CASIA FASD, Replay-Attack database, and UVAD database using sequence-based evaluation protocol. The experimental results show that our method can achieve promising performance with 0.37% EER on CASIA and 5.73% HTER on UVAD. The performance on Replay-Attack database is also competitive.

Feature Extraction and Selection Via Robust Discriminant Analysis and Class Sparsity

Ahmad Khoder, Fadi Dornaika

Responsive image

Auto-TLDR; Hybrid Linear Discriminant Embedding for supervised multi-class classification

Slides Poster Similar

The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multi-class classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Inter-class sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.

Cross-spectrum Face Recognition Using Subspace Projection Hashing

Hanrui Wang, Xingbo Dong, Jin Zhe, Jean-Luc Dugelay, Massimo Tistarelli

Responsive image

Auto-TLDR; Subspace Projection Hashing for Cross-Spectrum Face Recognition

Slides Poster Similar

Cross-spectrum face recognition, e.g. visible to thermal matching, remains a challenging task due to the large variation originated from different domains. This paper proposed a subspace projection hashing (SPH) to enable the cross-spectrum face recognition task. The intrinsic idea behind SPH is to project the features from different domains onto a common subspace, where matching the faces from different domains can be accomplished. Notably, we proposed a new loss function that can (i) preserve both inter-domain and intra-domain similarity; (ii) regularize a scaled-up pairwise distance between hashed codes, to optimize projection matrix. Three datasets, Wiki, EURECOM VIS-TH paired face and TDFace are adopted to evaluate the proposed SPH. The experimental results indicate that the proposed SPH outperforms the original linear subspace ranking hashing (LSRH) in the benchmark dataset (Wiki) and demonstrates a reasonably good performance for visible-thermal, visible-near-infrared face recognition, therefore suggests the feasibility and effectiveness of the proposed SPH.

Embedding Shared Low-Rank and Feature Correlation for Multi-View Data Analysis

Zhan Wang, Lizhi Wang, Hua Huang

Responsive image

Auto-TLDR; embedding shared low-rank and feature correlation for multi-view data analysis

Slides Poster Similar

The diversity of multimedia data in the real-world usually forms multi-view features. How to explore the structure information and correlations among multi-view features is still an open problem. In this paper, we propose a novel multi-view subspace learning method, named embedding shared low-rank and feature correlation (ESLRFC), for multi-view data analysis. First, in the embedding subspace, we propose a robust low-rank model on each feature set and enforce a shared low-rank constraint to characterize the common structure information of multiple feature data. Second, we develop an enhanced correlation analysis in the embedding subspace for simultaneously removing the redundancy of each feature set and exploring the correlations of multiple feature data. Finally, we incorporate the low-rank model and the correlation analysis into a unified framework. The shared low-rank constraint not only depicts the data distribution consistency among multiple feature data, but also assists robust subspace learning. Experimental results on recognition tasks demonstrate the superior performance and noise robustness of the proposed method.

Subspace Clustering Via Joint Unsupervised Feature Selection

Wenhua Dong, Xiaojun Wu, Hui Li, Zhenhua Feng, Josef Kittler

Responsive image

Auto-TLDR; Unsupervised Feature Selection for Subspace Clustering

Poster Similar

Any high-dimensional data arising from practical applications usually contains irrelevant features, which may impact on the performance of existing subspace clustering methods. This paper proposes a novel subspace clustering method, which reconstructs the feature matrix by the means of unsupervised feature selection (UFS) to achieve a better dictionary for subspace clustering (SC). Different from most existing clustering methods, the proposed approach uses a reconstructed feature matrix as the dictionary rather than the original data matrix. As the feature matrix reconstructed by representative features is more discriminative and closer to the ground-truth, it results in improved performance. The corresponding non-convex optimization problem is effectively solved using the half-quadratic and augmented Lagrange multiplier methods. Extensive experiments on four real datasets demonstrate the effectiveness of the proposed method.

Label Self-Adaption Hashing for Image Retrieval

Jianglin Lu, Zhihui Lai, Hailing Wang, Jie Zhou

Responsive image

Auto-TLDR; Label Self-Adaption Hashing for Large-Scale Image Retrieval

Slides Poster Similar

Hashing has attracted widespread attention in image retrieval because of its fast retrieval speed and low storage cost. Compared with supervised methods, unsupervised hashing methods are more reasonable and suitable for large-scale image retrieval since it is always difficult and expensive to collect true labels of the massive data. Without label information, however, unsupervised hashing methods can not guarantee the quality of learned binary codes. To resolve this dilemma, this paper proposes a novel unsupervised hashing method called Label Self-Adaption Hashing (LSAH), which contains effective hashing function learning part and self-adaption label generation part. In the first part, we utilize anchor graph to keep the local structure of the data and introduce joint sparsity into the model to extract effective features for high-quality binary code learning. In the second part, a self-adaptive cluster label matrix is learned from the data under the assumption that the nearest neighbor points should have a large probability to be in the same cluster. Therefore, the proposed LSAH can make full use of the potential discriminative information of the data to guide the learning of binary code. It is worth noting that LSAH can learn effective binary codes, hashing function and cluster labels simultaneously in a unified optimization framework. To solve the resulting optimization problem, an Augmented Lagrange Multiplier based iterative algorithm is elaborately designed. Extensive experiments on three large-scale data sets indicate the promising performance of the proposed LSAH.

Local Grouped Invariant Order Pattern for Grayscale-Inversion and Rotation Invariant Texture Classification

Yankai Huang, Tiecheng Song, Shuang Li, Yuanjing Han

Responsive image

Auto-TLDR; Local grouped invariant order pattern for grayscale-inversion and rotation invariant texture classification

Slides Poster Similar

Local binary pattern (LBP) based descriptors have shown effectiveness for texture classification. However, most of them encode the intensity relationships between neighboring pixels and a central pixel into binary forms, thereby failing to capture the complete ordering information among neighbors. Several methods have explored intensity order information for feature description, but they do not address the grayscale-inversion problem. In this paper, we propose an image descriptor called local grouped invariant order pattern (LGIOP) for grayscale-inversion and rotation invariant texture classification. Our LGIOP is a histogram representation which jointly encodes neighboring order information and central pixels. In particular, two new order encoding methods, i.e., intensity order encoding and distance order encoding, are proposed to describe the neighboring relationships. These two order encoding methods are not only complementary but also invariant to grayscale-inversion and rotation changes. Experiments for texture classification demonstrate that the proposed LGIOP descriptor is robust to (linear or nonlinear) grayscale inversion and image rotation.

A Distinct Discriminant Canonical Correlation Analysis Network Based Deep Information Quality Representation for Image Classification

Lei Gao, Zheng Guo, Ling Guan Ling Guan

Responsive image

Auto-TLDR; DDCCANet: Deep Information Quality Representation for Image Classification

Slides Poster Similar

In this paper, we present a distinct discriminant canonical correlation analysis network (DDCCANet) based deep information quality representation with application to image classification. Specifically, to explore the sufficient discriminant information between different data sets, the within-class and between-class correlation matrices are employed and optimized jointly. Moreover, different from the existing canonical correlation analysis network (CCANet) and related algorithms, an information theoretic descriptor, information quality (IQ), is adopted to generate the deep-level feature representation for image classification. Benefiting from the explored discriminant information and IQ descriptor, it is potential to gain a more effective deep-level representation from multi-view data sets, leading to improved performance in classification tasks. To demonstrate the effectiveness of the proposed DDCCANet, we conduct experiments on the Olivetti Research Lab (ORL) face database, ETH80 database and CIFAR10 database. Experimental results show the superiority of the proposed solution on image classification.

SoftmaxOut Transformation-Permutation Network for Facial Template Protection

Hakyoung Lee, Cheng Yaw Low, Andrew Teoh

Responsive image

Auto-TLDR; SoftmaxOut Transformation-Permutation Network for C cancellable Biometrics

Slides Poster Similar

In this paper, we propose a data-driven cancellable biometrics scheme, referred to as SoftmaxOut Transformation-Permutation Network (SOTPN). The SOTPN is a neural version of Random Permutation Maxout (RPM) transform, which was introduced for facial template protection. We present a specialized SoftmaxOut layer integrated with the permutable MaxOut units and the parameterized softmax function to approximate the non-differentiable permutation and the winner-takes-all operations in the RPM transform. On top of that, a novel pairwise ArcFace loss and a code balancing loss are also formulated to ensure that the SOTPN-transformed facial template is cancellable, discriminative, high entropy and free from quantization errors when coupled with the SoftmaxOut layer. The proposed SOTPN is evaluated on three face datasets, namely LFW, YouTube Face and Facescrub, and our experimental results disclosed that the SOTPN outperforms the RPM transform significantly.

VSB^2-Net: Visual-Semantic Bi-Branch Network for Zero-Shot Hashing

Xin Li, Xiangfeng Wang, Bo Jin, Wenjie Zhang, Jun Wang, Hongyuan Zha

Responsive image

Auto-TLDR; VSB^2-Net: inductive zero-shot hashing for image retrieval

Slides Poster Similar

Zero-shot hashing aims at learning hashing model from seen classes and the obtained model is capable of generalizing to unseen classes for image retrieval. Inspired by zero-shot learning, existing zero-shot hashing methods usually transfer the supervised knowledge from seen to unseen classes, by embedding the hamming space to a shared semantic space. However, this makes instances difficult to distinguish due to limited hashing bit numbers, especially for semantically similar unseen classes. We propose a novel inductive zero-shot hashing framework, i.e., VSB^2-Net, where both semantic space and visual feature space are embedded to the same hamming space instead. The reconstructive semantic relationships are established in the hamming space, preserving local similarity relationships and explicitly enlarging the discrepancy between semantic hamming vectors. A two-task architecture, comprising of classification module and visual feature reconstruction module, is employed to enhance the generalization and transfer abilities. Extensive evaluation results on several benchmark datasets demonstratethe superiority of our proposed method compared to several state-of-the-art baselines.

DFH-GAN: A Deep Face Hashing with Generative Adversarial Network

Bo Xiao, Lanxiang Zhou, Yifei Wang, Qiangfang Xu

Responsive image

Auto-TLDR; Deep Face Hashing with GAN for Face Image Retrieval

Slides Poster Similar

Face Image retrieval is one of the key research directions in computer vision field. Thanks to the rapid development of deep neural network in recent years, deep hashing has achieved good performance in the field of image retrieval. But for large-scale face image retrieval, the performance needs to be further improved. In this paper, we propose Deep Face Hashing with GAN (DFH-GAN), a novel deep hashing method for face image retrieval, which mainly consists of three components: a generator network for generating synthesized images, a discriminator network with a shared CNN to learn multi-domain face feature, and a hash encoding network to generate compact binary hash codes. The generator network is used to perform data augmentation so that the model could learn from both real images and diverse synthesized images. We adopt a two-stage training strategy. In the first stage, the GAN is trained to generate fake images, while in the second stage, to make the network convergence faster. The model inherits the trained shared CNN of discriminator to train the DFH model by using many different supervised loss functions not only in the last layer but also in the middle layer of the network. Extensive experiments on two widely used datasets demonstrate that DFH-GAN can generate high-quality binary hash codes and exceed the performance of the state-of-the-art model greatly.

Fast Discrete Cross-Modal Hashing Based on Label Relaxation and Matrix Factorization

Donglin Zhang, Xiaojun Wu, Zhen Liu, Jun Yu, Josef Kittler

Responsive image

Auto-TLDR; LRMF: Label Relaxation and Discrete Matrix Factorization for Cross-Modal Retrieval

Poster Similar

In recent years, cross-media retrieval has drawn considerable attention due to the exponential growth of multimedia data. Many hashing approaches have been proposed for the cross-media search task. However, there are still open problems that warrant investigation. For example, most existing supervised hashing approaches employ a binary label matrix, which achieves small margins between wrong labels (0) and true labels (1). This may affect the retrieval performance by generating many false negatives and false positives. In addition, some methods adopt a relaxation scheme to solve the binary constraints, which may cause large quantization errors. There are also some discrete hashing methods that have been presented, but most of them are time-consuming. To conquer these problems, we present a label relaxation and discrete matrix factorization method (LRMF) for cross-modal retrieval. It offers a number of innovations. First of all, the proposed approach employs a novel label relaxation scheme to control the margins adaptively, which has the benefit of reducing the quantization error. Second, by virtue of the proposed discrete matrix factorization method designed to learn the binary codes, large quantization errors caused by relaxation can be avoided. The experimental results obtained on two widely-used databases demonstrate that LRMF outperforms state-of-the-art cross-media methods.

Sample-Dependent Distance for 1 : N Identification Via Discriminative Feature Selection

Naoki Kawamura, Susumu Kubota

Responsive image

Auto-TLDR; Feature Selection Mask for 1:N Identification Problems with Binary Features

Slides Poster Similar

We focus on 1:N identification problems with binary features. Most multiclass classification methods, including identification and verification methods, use a shared metric space in which distances between samples are measured regardless of their identities. This is because dedicated metric spaces learned for each identity in the training set are of little use for the test set. In 1:N identification problems, however, gallery samples contain rich information about the test domain. Given a sample and its neighbors in the gallery set, we propose a method for calculating a discriminative feature selection mask that is used as a sample-dependent distance metric. Experiments on several re-identification datasets show that the proposed method enhances the performance of state-of-the-art feature extractors.

A Spectral Clustering on Grassmann Manifold Via Double Low Rank Constraint

Xinglin Piao, Yongli Hu, Junbin Gao, Yanfeng Sun, Xin Yang, Baocai Yin

Responsive image

Auto-TLDR; Double Low Rank Representation for High-Dimensional Data Clustering on Grassmann Manifold

Slides Similar

High-dimension data clustering is a fundamental topic in machine learning and data mining areas. In recent year, researchers have proposed a series of effective methods based on Low Rank Representation (LRR) which could explore low-dimension subspace structure embedded in original data effectively. The traditional LRR methods usually treat original data as samples in Euclidean space. They generally adopt linear metric to measure the distance between two data. However, high-dimension data (such as video clip or imageset) are always considered as non-linear manifold data such as Grassmann manifold. Therefore, the traditional linear Euclidean metric would be no longer suitable for these special data. In addition, traditional LRR clustering method always adopt nuclear norm as low rank constraint which would lead to suboptimal solution and decrease the clustering accuracy. In this paper, we proposed a new low rank method on Grassmann manifold for high-dimension data clustering task. In the proposed method, a double low rank representation approach is proposed by combining the nuclear norm and bilinear representation for better construct the representation matrix. The experimental results on several public datasets show that the proposed method outperforms the state-of-the-art clustering methods.

Face Anti-Spoofing Using Spatial Pyramid Pooling

Lei Shi, Zhuo Zhou, Zhenhua Guo

Responsive image

Auto-TLDR; Spatial Pyramid Pooling for Face Anti-Spoofing

Slides Poster Similar

Face recognition system is vulnerable to many kinds of presentation attacks, so how to effectively detect whether the image is from the real face is particularly important. At present, many deep learning-based anti-spoofing methods have been proposed. But these approaches have some limitations, for example, global average pooling (GAP) easily loses local information of faces, single-scale features easily ignore information differences in different scales, while a complex network is prune to be overfitting. In this paper, we propose a face anti-spoofing approach using spatial pyramid pooling (SPP). Firstly, we use ResNet-18 with a small amount of parameter as the basic model to avoid overfitting. Further, we use spatial pyramid pooling module in the single model to enhance local features while fusing multi-scale information. The effectiveness of the proposed method is evaluated on three databases, CASIA-FASD, Replay-Attack and CASIA-SURF. The experimental results show that the proposed approach can achieve state-of-the-art performance.

Soft Label and Discriminant Embedding Estimation for Semi-Supervised Classification

Fadi Dornaika, Abdullah Baradaaji, Youssof El Traboulsi

Responsive image

Auto-TLDR; Semi-supervised Semi-Supervised Learning for Linear Feature Extraction and Label Propagation

Slides Poster Similar

In recent times, graph-based semi-supervised learning proved to be a powerful paradigm for processing and mining large datasets. The main advantage relies on the fact that these methods can be useful in propagating a small set of known labels to a large set of unlabeled data. The scarcity of labeled data may affect the performance of the semi-learning. This paper introduces a new semi-supervised framework for simultaneous linear feature extraction and label propagation. The proposed method simultaneously estimates a discriminant transformation and the unknown label by exploiting both labeled and unlabeled data. In addition, the unknowns of the learning model are estimated by integrating two types of graph-based smoothness constraints. The resulting semi-supervised model is expected to learn more discriminative information. Experiments are conducted on six public image datasets. These experimental results show that the performance of the proposed method can be better than that of many state-of-the-art graph-based semi-supervised algorithms.

Super-Resolution Guided Pore Detection for Fingerprint Recognition

Syeda Nyma Ferdous, Ali Dabouei, Jeremy Dawson, Nasser M. Nasarabadi

Responsive image

Auto-TLDR; Super-Resolution Generative Adversarial Network for Fingerprint Recognition Using Pore Features

Slides Poster Similar

Performance of fingerprint recognition algorithms substantially rely on fine features extracted from fingerprints. Apart from minutiae and ridge patterns, pore features have proven to be usable for fingerprint recognition. Although features from minutiae and ridge patterns are quite attainable from low-resolution images, using pore features is practical only if the fingerprint image is of high resolution which necessitates a model that enhances the image quality of the conventional 500 ppi legacy fingerprints preserving the fine details. To find a solution for recovering pore information from low-resolution fingerprints, we adopt a joint learning-based approach that combines both super-resolution and pore detection networks. Our modified single image Super-Resolution Generative Adversarial Network (SRGAN) framework helps to reliably reconstruct high-resolution fingerprint samples from low-resolution ones assisting the pore detection network to identify pores with a high accuracy. The network jointly learns a distinctive feature representation from a real low-resolution fingerprint sample and successfully synthesizes a high-resolution sample from it. To add discriminative information and uniqueness for all the subjects, we have integrated features extracted from a deep fingerprint verifier with the SRGAN quality discriminator. We also add ridge reconstruction loss, utilizing ridge patterns to make the best use of extracted features. Our proposed method solves the recognition problem by improving the quality of fingerprint images. High recognition accuracy of the synthesized samples that is close to the accuracy achieved using the original high-resolution images validate the effectiveness of our proposed model.

Hierarchical Deep Hashing for Fast Large Scale Image Retrieval

Yongfei Zhang, Cheng Peng, Zhang Jingtao, Xianglong Liu, Shiliang Pu, Changhuai Chen

Responsive image

Auto-TLDR; Hierarchical indexed deep hashing for fast large scale image retrieval

Slides Poster Similar

Fast image retrieval is of great importance in many computer vision tasks and especially practical applications. Deep hashing, the state-of-the-art fast image retrieval scheme, introduces deep learning to learn the hash functions and generate binary hash codes, and outperforms the other image retrieval methods in terms of accuracy. However, all the existing deep hashing methods could only generate one level hash codes and require a linear traversal of all the hash codes to figure out the closest one when a new query arrives, which is very time-consuming and even intractable for large scale applications. In this work, we propose a Hierarchical Deep HASHing(HDHash) scheme to speed up the state-of-the-art deep hashing methods. More specifically, hierarchical deep hash codes of multiple levels can be generated and indexed with tree structures rather than linear ones, and pruning irrelevant branches can sharply decrease the retrieval time. To our best knowledge, this is the first work to introduce hierarchical indexed deep hashing for fast large scale image retrieval. Extensive experimental results on three benchmark datasets demonstrate that the proposed HDHash scheme achieves better or comparable accuracy with significantly improved efficiency and reduced memory as compared to state-of-the-art fast image retrieval schemes.

First and Second-Order Sorted Local Binary Pattern Features for Grayscale-Inversion and Rotation Invariant Texture Classification

Tiecheng Song, Yuanjing Han, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; First- and Secondorder Sorted Local Binary Pattern for texture classification under inverse grayscale changes and image rotation

Slides Poster Similar

Local binary pattern (LBP) is sensitive to inverse grayscale changes. Several methods address this problem by mapping each LBP code and its complement to the minimum one. However, without distinguishing LBP codes and their complements, these methods show limited discriminative power. In this paper, we introduce a histogram sorting method to preserve the distribution information of LBP codes and their complements. Based on this method, we propose first- and secondorder sorted LBP (SLBP) features which are robust to inverse grayscale changes and image rotation. The proposed method focuses on encoding difference-sign information and it can be generalized to embed other difference-magnitude features to obtain complementary representations. Experiments demonstrate the effectiveness of our method for texture classification under(linear or nonlinear) grayscale-inversion and rotation changes.

Joint Compressive Autoencoders for Full-Image-To-Image Hiding

Xiyao Liu, Ziping Ma, Xingbei Guo, Jialu Hou, Lei Wang, Gerald Schaefer, Hui Fang

Responsive image

Auto-TLDR; J-CAE: Joint Compressive Autoencoder for Image Hiding

Slides Poster Similar

Image hiding has received significant attention due to the need of enhanced multimedia services, such as multimedia security and meta-information embedding for multimedia augmentation. Recently, deep learning-based methods have been introduced that are capable of significantly increasing the hidden capacity and supporting full size image hiding. However, these methods suffer from the necessity to balance the errors of the modified cover image and the recovered hidden image. In this paper, we propose a novel joint compressive autoencoder (J-CAE) framework to design an image hiding algorithm that achieves full-size image hidden capacity with small reconstruction errors of the hidden image. More importantly, it addresses the trade-off problem of previous deep learning-based methods by mapping the image representations in the latent spaces of the joint CAE models. Thus, both visual quality of the container image and recovery quality of the hidden image can be simultaneously improved. Extensive experimental results demonstrate that our proposed framework outperforms several state-of-the-art deep learning-based image hiding methods in terms of imperceptibility and recovery quality of the hidden images while maintaining full-size image hidden capacity.

Improved Deep Classwise Hashing with Centers Similarity Learning for Image Retrieval

Ming Zhang, Hong Yan

Responsive image

Auto-TLDR; Deep Classwise Hashing for Image Retrieval Using Center Similarity Learning

Slides Poster Similar

Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.

RGB-Infrared Person Re-Identification Via Image Modality Conversion

Huangpeng Dai, Qing Xie, Yanchun Ma, Yongjian Liu, Shengwu Xiong

Responsive image

Auto-TLDR; CE2L: A Novel Network for Cross-Modality Re-identification with Feature Alignment

Slides Poster Similar

As a cross modality retrieval task, RGB-infrared person re-identification(Re-ID) is an important and challenging tasking, because of its important role in video surveillance applications and large cross-modality variations between visible and infrared images. Most previous works addressed the problem of cross-modality gap with feature alignment by original feature representation learning straightly. In this paper, different from existing works, we propose a novel network(CE2L) to tackle the cross-modality gap with feature alignment. CE2L mainly focuses on adding discriminative information and learning robust features by converting modality between visible and infrared images. Its merits are highlighted in two aspects: 1)Using CycleGAN to convert infrared images into color images can not only increase the recognition characteristics of images, but also allow the our network to better learn the two modal image features; 2)Our novel method can serve as data augmentation. Specifically, it can increase data diversity and total data against over-fitting by converting labeled training images to another modal images. Extensive experimental results on two datasets demonstrate superior performance compared to the baseline and the state-of-the-art methods.

Cancelable Biometrics Vault: A Secure Key-Binding Biometric Cryptosystem Based on Chaffing and Winnowing

Osama Ouda, Karthik Nandakumar, Arun Ross

Responsive image

Auto-TLDR; Cancelable Biometrics Vault for Key-binding Biometric Cryptosystem Framework

Slides Poster Similar

Existing key-binding biometric cryptosystems, such as the Fuzzy Vault Scheme (FVS) and Fuzzy Commitment Scheme (FCS), employ Error Correcting Codes (ECC) to handle intra-user variations in biometric data. As a result, a trade-off exists between the key length and matching accuracy. Moreover, these systems are vulnerable to privacy leakage, i.e., it is trivial to recover the original biometric template given the secure sketch and its associated cryptographic key. In this work, we propose a novel key-binding biometric cryptosystem framework, referred to as Cancelable Biometrics Vault (CBV), to address the above two limitations. The CBV framework is inspired by the cryptographic principle of chaffing and winnowing. It utilizes the concept of cancelable biometrics (CB) to generate secure biometric templates, which in turn are used to encode bits in a cryptographic key. While the CBV framework is generic and does not rely on a specific biometric representation, it does assume the availability of a suitable (satisfying the requirements of accuracy preservation, non-invertibility, and non-linkability) CB scheme for the given representation. To demonstrate the usefulness of the proposed CBV framework, we implement this approach using an extended BioEncoding scheme, which is a CB scheme appropriate for bit strings such as iris-codes. Unlike the baseline BioEncoding scheme, the extended version proposed in this work fulfills all the three requirements of a CB construct. Experiments show that the decoding accuracy of the proposed CBV framework is comparable to the recognition accuracy of the underlying CB construct, namely, the extended BioEncoding scheme, regardless of the cryptographic key size.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Two-Level Attention-Based Fusion Learning for RGB-D Face Recognition

Hardik Uppal, Alireza Sepas-Moghaddam, Michael Greenspan, Ali Etemad

Responsive image

Auto-TLDR; Fused RGB-D Facial Recognition using Attention-Aware Feature Fusion

Slides Poster Similar

With recent advances in RGB-D sensing technologies as well as improvements in machine learning and fusion techniques, RGB-D facial recognition has become an active area of research. A novel attention aware method is proposed to fuse two image modalities, RGB and depth, for enhanced RGB-D facial recognition. The proposed method first extracts features from both modalities using a convolutional feature extractor. These features are then fused using a two layer attention mechanism. The first layer focuses on the fused feature maps generated by the feature extractor, exploiting the relationship between feature maps using LSTM recurrent learning. The second layer focuses on the spatial features of those maps using convolution. The training database is preprocessed and augmented through a set of geometric transformations, and the learning process is further aided using transfer learning from a pure 2D RGB image training process. Comparative evaluations demonstrate that the proposed method outperforms other state-of-the-art approaches, including both traditional and deep neural network-based methods, on the challenging CurtinFaces and IIIT-D RGB-D benchmark databases, achieving classification accuracies over 98.2% and 99.3% respectively. The proposed attention mechanism is also compared with other attention mechanisms, demonstrating more accurate results.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Self-Paced Bottom-Up Clustering Network with Side Information for Person Re-Identification

Mingkun Li, Chun-Guang Li, Ruo-Pei Guo, Jun Guo

Responsive image

Auto-TLDR; Self-Paced Bottom-up Clustering Network with Side Information for Unsupervised Person Re-identification

Slides Poster Similar

Person re-identification (Re-ID) has attracted a lot of research attention in recent years. However, supervised methods demand an enormous amount of manually annotated data. In this paper, we propose a Self-Paced bottom-up Clustering Network with Side Information (SPCNet-SI) for unsupervised person Re-ID, where the side information comes from the serial number of the camera associated with each image. Specifically, our proposed SPCNet-SI exploits the camera side information to guide the feature learning and uses soft label in bottom-up clustering process, in which the camera association information is used in the repelled loss and the soft label based cluster information is used to select the candidate cluster pairs to merge. Moreover, a self-paced dynamic mechanism is developed to regularize the merging process such that the clustering is implemented in an easy-to-hard way with a slow-to-fast merging process. Experiments on two benchmark datasets Market-1501 and DukeMTMC-ReID demonstrate promising performance.

G-FAN: Graph-Based Feature Aggregation Network for Video Face Recognition

He Zhao, Yongjie Shi, Xin Tong, Jingsi Wen, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Graph-based Feature Aggregation Network for Video Face Recognition

Slides Poster Similar

In this paper, we propose a graph-based feature aggregation network (G-FAN) for video face recognition. Compared with the still image, video face recognition exhibits great challenges due to huge intra-class variability and high inter-class ambiguity. To address this problem, our G-FAN first uses a Convolutional Neural Network to extract deep features for every input face of a subject. Then, we build an affinity graph based on the relation between facial features and apply Graph Convolutional Network to generate fine-grained quality vectors for each frame. Finally, the features among multiple frames are adaptively aggregated into a discriminative vector to represent a video face. Different from previous works that take a single image as input, our G-FAN could utilize the correlation information between image pairs and aggregate a template of faces simultaneously. The experiments on video face recognition benchmarks, including YTF, IJB-A, and IJB-C show that: (i) G-FAN automatically learns to advocate high-quality frames while repelling low-quality ones. (ii) G-FAN significantly boosts recognition accuracy and outperforms other state-of-the-art aggregation methods.

Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

Can Zhang, Hong Liu, Wei Guo, Mang Ye

Responsive image

Auto-TLDR; Multi-Scale Part-Aware Cascading for RGB-Infrared Person Re-identification

Slides Poster Similar

RGB-Infrared person re-identification (RGB-IR Re-ID) aims to matching persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in surveillance system under poor light conditions. Facing great challenges in complex variances including conventional single-modality and additional inter-modality discrepancies, most of existing RGB-IR Re-ID methods directly work on global features for simultaneous elimination, whereas modality-specific noises and modality-shared features are not well considered. To address these issues, a novel Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global in a cascading manner, which results in an unified representation robust to noises. Moreover, a marginal exponential center (MeCen) loss is introduced to jointly eliminate mixed variances, which enables to model cross-modality correlations on sharable salient features. Extensive experiments are conducted for demonstration that the proposed method outperforms all the state-of-the-arts by a large margin.

Double Manifolds Regularized Non-Negative Matrix Factorization for Data Representation

Jipeng Guo, Shuai Yin, Yanfeng Sun, Yongli Hu

Responsive image

Auto-TLDR; Double Manifolds Regularized Non-negative Matrix Factorization for Clustering

Slides Poster Similar

Non-negative matrix factorization (NMF) is an important method in learning latent data representation. The local geometrical structure can make the learned representation more effectively and significantly improve the performance of NMF. However, most of existing graph-based learning methods are determined by a predefined similarity graph which may be not optimal for specific tasks. To solve the above the problem, we propose the Double Manifolds Regularized NMF (DMR-NMF) model which jointly learns an adaptive affinity matrix with the non-negative matrix factorization. The learned affinity matrix can guide the NMF to fit the clustering task. Moreover, we develop the iterative updating optimization schemes for DMR-NMF, and provide the strict convergence proof of our optimization strategy. Empirical experiments on four different real-world data sets demonstrate the state-of-the-art performance of DMR-NMF in comparison with the other related algorithms.

Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins Using the CNN Triplet Loss

Georg Wimmer, Bernhard Prommegger, Andreas Uhl

Responsive image

Auto-TLDR; Finger vein recognition using CNNs and hard triplet online selection

Slides Poster Similar

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand crafted features, but only little work using CNN based recognition systems. This article proposes a new approach using CNNs that utilizes the triplet loss function together with hard triplet online selection for finger vein recognition. The CNNs are used for three different use cases: (1) the classical recognition use case, where every finger of a subject is considered as a separate class, (2) an evaluation of the similarity of left and right hand fingers from the same subject and (3) an evaluation of the similarity of different fingers of the same subject. The results show that the proposed approach achieves superior results compared to prior work on finger vein recognition using the triplet loss function. Furtherly, we show that different fingers of the same subject, especially same fingers from the left and right hand, show enough similarities to perform recognition. The last statement contradicts the current understanding in the literature for finger vein biometry, in which it is assumed that different fingers of the same subject are unique identities.

Learning Metric Features for Writer-Independent Signature Verification Using Dual Triplet Loss

Qian Wan, Qin Zou

Responsive image

Auto-TLDR; A dual triplet loss based method for offline writer-independent signature verification

Poster Similar

Handwritten signature has long been a widely accepted biometric and applied in many verification scenarios. However, automatic signature verification remains an open research problem, which is mainly due to three reasons. 1) Skilled forgeries generated by persons who imitate the original writting pattern are very difficult to be distinguished from genuine signatures. It is especially so in the case of offline signatures, where only the signature image is captured as a feature for verification. 2) Most state-of-the-art models are writer-dependent, requiring a specific model to be trained whenever a new user is registered in verification, which is quite inconvenient. 3) Writer-independent models often have unsatisfactory performance. To this end, we propose a novel metric learning based method for offline writer-independent signature verification. Specifically, a dual triplet loss is used to train the model, where two different triplets are constructed for random and skilled forgeries, respectively. Experiments on three alphabet datasets — GPDS Synthetic, MCYT and CEDAR — show that the proposed method achieves competitive or superior performance to the state-of-the-art methods. Experiments are also conducted on a new offline Chinese signature dataset — CSIG-WHU, and the results show that the proposed method has a high feasibility on character-based signatures.

Person Recognition with HGR Maximal Correlation on Multimodal Data

Yihua Liang, Fei Ma, Yang Li, Shao-Lun Huang

Responsive image

Auto-TLDR; A correlation-based multimodal person recognition framework that learns discriminative embeddings of persons by joint learning visual features and audio features

Slides Poster Similar

Multimodal person recognition is a common task in video analysis and public surveillance, where information from multiple modalities, such as images and audio extracted from videos, are used to jointly determine the identity of a person. Previous person recognition techniques either use only uni-modal data or only consider shared representations between different input modalities, while leaving the extraction of their relationship with identity information to downstream tasks. Furthermore, real-world data often contain noise, which makes recognition more challenging practical situations. In our work, we propose a novel correlation-based multimodal person recognition framework that is relatively simple but can efficaciously learn supervised information in multimodal data fusion and resist noise. Specifically, our framework learns a discriminative embeddings of persons by joint learning visual features and audio features while maximizing HGR maximal correlation among multimodal input and persons' identities. Experiments are done on a subset of Voxceleb2. Compared with state-of-the-art methods, the proposed method demonstrates an improvement of accuracy and robustness to noise.

Supervised Feature Embedding for Classification by Learning Rank-Based Neighborhoods

Ghazaal Sheikhi, Hakan Altincay

Responsive image

Auto-TLDR; Supervised Feature Embedding with Representation Learning of Rank-based Neighborhoods

Slides Similar

In feature embedding, the recovery of associated discriminative information in the reduced subspace is critical for downstream classifiers. In this study, a supervised feature embedding method is proposed inspired by the well-known word embedding technique, word2vec. Proposed embedding method is implemented as representative learning of rank-based neighborhoods. The notion of context words in word2vec is extended into neighboring instances within a given window. Neighborship is defined using ranks of instances rather than their values so that regions with different densities are captured properly. Each sample is represented by a unique one-hot vector whereas its neighbors are encoded by several two-hot vectors. The two-hot vectors are identical for neighboring samples of the same class. A feed-forward neural network with a continuous projection layer, then learns the mapping from one-hot vectors to multiple two-hot vectors. The hidden layer determines the reduced subspace for the train samples. The obtained transformation is then applied on test data to find a lower-dimensional representation. Proposed method is tested in classification problems on 10 UCI data sets. Experimental results confirm that the proposed method is effective in finding a discriminative representation of the features and outperforms several supervised embedding approaches in terms of classification performance.

Three-Dimensional Lip Motion Network for Text-Independent Speaker Recognition

Jianrong Wang, Tong Wu, Shanyu Wang, Mei Yu, Qiang Fang, Ju Zhang, Li Liu

Responsive image

Auto-TLDR; Lip Motion Network for Text-Independent and Text-Dependent Speaker Recognition

Slides Poster Similar

Lip motion reflects behavior characteristics of speakers, and thus can be used as a new kind of biometrics in speaker recognition. In the literature, lots of works used two dimensional (2D) lip images to recognize speaker in a text-dependent context. However, 2D lip easily suffers from face orientations. To this end, in this work, we present a novel end-to-end 3D lip motion Network (3LMNet) by utilizing the sentence-level 3D lip motion (S3DLM) to recognize speakers in both the text-independent and text-dependent contexts. A novel regional feedback module (RFM) is proposed to explore attentions in different lip regions. Besides, prior knowledge of lip motion is investigated to complement RFM, where landmark-level and frame-level features are merged to form a better feature representation. Moreover, we present two methods, i.e., coordinate transformation and face posture correction to pre-process the LSD-AV dataset, which contains 68 speakers and 146 sentences per speaker. The evaluation results on this dataset demonstrate that our proposed 3LMNet is superior to the baseline models, i.e., LSTM, VGG-16 and ResNet-34, and outperforms the state-of-the-art using 2D lip image as well as the 3D face. The code of this work is released at https://github.com/wutong18/Three-Dimensional-Lip-Motion-Ne twork-for-Text-Independent-Speaker-Recognition.

Adaptive Feature Fusion Network for Gaze Tracking in Mobile Tablets

Yiwei Bao, Yihua Cheng, Yunfei Liu, Feng Lu

Responsive image

Auto-TLDR; Adaptive Feature Fusion Network for Multi-stream Gaze Estimation in Mobile Tablets

Slides Poster Similar

Recently, many multi-stream gaze estimation methods have been proposed. They estimate gaze from eye and face appearances and achieve reasonable accuracy. However, most of the methods simply concatenate the features extracted from eye and face appearance. The feature fusion process has been ignored. In this paper, we propose a novel Adaptive Feature Fusion Network (AFF-Net), which performs gaze tracking task in mobile tablets. We stack two-eye feature maps and utilize Squeeze-and-Excitation layers to adaptively fuse two-eye features based on different eye features. Meanwhile, we also propose Adaptive Group Normalization to recalibrate eye features with the guidance of face appearance characteristics. Extensive experiments on both GazeCapture and MPIIFaceGaze datasets demonstrate consistently superior performance of the proposed method.

Appliance Identification Using a Histogram Post-Processing of 2D Local Binary Patterns for Smart Grid Applications

Yassine Himeur, Abdullah Alsalemi, Faycal Bensaali, Abbes Amira

Responsive image

Auto-TLDR; LBP-BEVM based Local Binary Patterns for Appliances Identification in the Smart Grid

Similar

Identifying domestic appliances in the smart grid leads to a better power usage management and further helps in detecting appliance-level abnormalities. An efficient identification can be achieved only if a robust feature extraction scheme is developed with a high ability to discriminate between different appliances on the smart grid. Accordingly, we propose in this paper a novel method to extract electrical power signatures after transforming the power signal to 2D space, which has more encoding possibilities. Following, an improved local binary patterns (LBP) is proposed that relies on improving the discriminative ability of conventional LBP using a post-processing stage. A binarized eigenvalue map (BEVM) is extracted from the 2D power matrix and then used to post-process the generated LBP representation. Next, two histograms are constructed, namely up and down histograms, and are then concatenated to form the global histogram. A comprehensive performance evaluation is performed on two different datasets, namely the GREEND and WITHED, in which power data were collected at 1 Hz and 44000 Hz sampling rates, respectively. The obtained results revealed the superiority of the proposed LBP-BEVM based system in terms of the identification performance versus other 2D descriptors and existing identification frameworks.

Exploiting Local Indexing and Deep Feature Confidence Scores for Fast Image-To-Video Search

Savas Ozkan, Gözde Bozdağı Akar

Responsive image

Auto-TLDR; Fast and Robust Image-to-Video Retrieval Using Local and Global Descriptors

Slides Poster Similar

Cost-effective visual representation and fast query-by-example search are two challenging goals hat should be provided for web-scale visual retrieval task on a moderate hardware. In this paper, we introduce a fast yet robust method that ensures both of these goals by obtaining the state-of-the-art results for an image-to-video search scenario. To this end, we present important enhancements to commonly used indexing and visual representation techniques by promoting faster, better and more moderate retrieval performance. We also boost the effectiveness of the method for visual distortion by exploiting the individual decision results of local and global descriptors in the query time. By this way, local content descriptors effectively represent copied / duplicated scenes with large geometric deformations, while global descriptors for near duplicate and semantic searches are more practical. Experiments are conducted on the large-scale Stanford I2V dataset. The experimental results show that the method is effective in terms of complexity and query processing time for large-scale visual retrieval scenarios, even if local and global representations are used together. In addition, the proposed method is fairly accurate and achieves state-of-the-art performance based on the mAP score of the dataset. Lastly, we report additional mAP scores after updating the ground annotations obtained by the retrieval results of the proposed method showing more clearly the actual performance.

A Unified Framework for Distance-Aware Domain Adaptation

Fei Wang, Youdong Ding, Huan Liang, Yuzhen Gao, Wenqi Che

Responsive image

Auto-TLDR; distance-aware domain adaptation

Slides Poster Similar

Unsupervised domain adaptation has achieved significant results by leveraging knowledge from a source domain to learn a related but unlabeled target domain. Previous methods are insufficient to model domain discrepancy and class discrepancy, which may lead to misalignment and poor adaptation performance. To address this problem, in this paper, we propose a unified framework, called distance-aware domain adaptation, which is fully aware of both cross-domain distance and class-discriminative distance. In addition, second-order statistics distance and manifold alignment are also exploited to extract more information from data. In this manner, the generalization error of the target domain in classification problems can be reduced substantially. To validate the proposed method, we conducted experiments on five public datasets and an ablation study. The results demonstrate the good performance of our proposed method.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

Cross-Media Hash Retrieval Using Multi-head Attention Network

Zhixin Li, Feng Ling, Chuansheng Xu, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Unsupervised Cross-Media Hash Retrieval Using Multi-Head Attention Network

Slides Poster Similar

The cross-media hash retrieval method is to encode multimedia data into a common binary hash space, which can effectively measure the correlation between samples from different modalities. In order to further improve the retrieval accuracy, this paper proposes an unsupervised cross-media hash retrieval method based on multi-head attention network. First of all, we use a multi-head attention network to make better matching images and texts, which contains rich semantic information. At the same time, an auxiliary similarity matrix is constructed to integrate the original neighborhood information from different modalities. Therefore, this method can capture the potential correlations between different modalities and within the same modality, so as to make up for the differences between different modalities and within the same modality. Secondly, the method is unsupervised and does not require additional semantic labels, so it has the potential to achieve large-scale cross-media retrieval. In addition, batch normalization and replacement hash code generation functions are adopted to optimize the model, and two loss functions are designed, which make the performance of this method exceed many supervised deep cross-media hash methods. Experiments on three datasets show that the average performance of this method is about 5 to 6 percentage points higher than the state-of-the-art unsupervised method, which proves the effectiveness and superiority of this method.

Low Rank Representation on Product Grassmann Manifolds for Multi-viewSubspace Clustering

Jipeng Guo, Yanfeng Sun, Junbin Gao, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Low Rank Representation on Product Grassmann Manifold for Multi-View Data Clustering

Slides Poster Similar

Clustering high dimension multi-view data with complex intrinsic properties and nonlinear manifold structure is a challenging task since these data are always embedded in low dimension manifolds. Inspired by Low Rank Representation (LRR), some researchers extended classic LRR on Grassmann manifold or Product Grassmann manifold to represent data with non-linear metrics. However, most of these methods utilized convex nuclear norm to leverage a low-rank structure, which was over-relaxation of true rank and would lead to the results deviated from the true underlying ones. And, the computational complexity of singular value decomposition of matrix is high for nuclear norm minimization. In this paper, we propose a new low rank model for high-dimension multi-view data clustering on Product Grassmann Manifold with the matrix tri-factorization which is used to control the upper bound of true rank of representation matrix. And, the original problem can be transformed into the nuclear norm minimization with smaller scale matrices. An effective solution and theoretical analysis are also provided. The experimental results show that the proposed method obviously outperforms other state-of-the-art methods on several multi-source human/crowd action video datasets.

Modeling Extent-Of-Texture Information for Ground Terrain Recognition

Shuvozit Ghose, Pinaki Nath Chowdhury, Partha Pratim Roy, Umapada Pal

Responsive image

Auto-TLDR; Extent-of-Texture Guided Inter-domain Message Passing for Ground Terrain Recognition

Slides Poster Similar

Ground Terrain Recognition is a difficult task as the context information varies significantly over the regions of a ground terrain image. In this paper, we propose a novel approach towards ground-terrain recognition via modeling the Extent-of-Texture information to establish a balance between the order-less texture component and ordered-spatial information locally. At first, the proposed method uses a CNN backbone feature extractor network to capture meaningful information of a ground terrain image, and model the extent of texture and shape information locally. Then, the order-less texture information and ordered shape information are encoded in a patch-wise manner, which is utilized by intra-domain message passing module to make every patch aware of each other for rich feature learning. Next, the Extent-of-Texture (EoT) Guided Inter-domain Message Passing module combines the extent of texture and shape information with the encoded texture and shape information in a patch-wise fashion for sharing knowledge to balance out the order-less texture information with ordered shape information. Further, Bilinear model generates a pairwise correlation between the order-less texture information and ordered shape information. Finally, the ground-terrain image classification is performed by a fully connected layer. The experimental results indicate superior performance of the proposed model over existing state-of-the-art techniques on publicly available datasets like DTD, MINC and GTOS-mobile.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.