Chenqiang Gao

Papers from this author

Color Texture Description Based on Holistic and Hierarchical Order-Encoding Patterns

Tiecheng Song, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; Holistic and Hierarchical Order-Encoding Patterns for Color Texture Classification

Slides Poster Similar

Local binary pattern (LBP), as one of the most representative texture operators, has attracted much attention in computer vision applications. Many LBP variants were developed in the literature. However, most of them were designed for gray images and their performance remains to be improved for color images. In this paper, we propose a novel color image descriptor named Holistic and Hierarchical Order-Encoding Patterns (H2OEP) for texture classification. In H2OEP, the holistic order-encoding pattern compactly encodes color order variation tendencies for each pixel in color space. The hierarchical order-encoding pattern leverages min ordering, median ordering and max ordering to encode local neighboring relationships across different color channels. Finally, the generated order-encoding patterns are aggregated via central pixel encoding to build 3D joint histograms for image representation. Experiments on four benchmark texture databases demonstrate the effectiveness of the proposed descriptor for color texture classification.

First and Second-Order Sorted Local Binary Pattern Features for Grayscale-Inversion and Rotation Invariant Texture Classification

Tiecheng Song, Yuanjing Han, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; First- and Secondorder Sorted Local Binary Pattern for texture classification under inverse grayscale changes and image rotation

Slides Poster Similar

Local binary pattern (LBP) is sensitive to inverse grayscale changes. Several methods address this problem by mapping each LBP code and its complement to the minimum one. However, without distinguishing LBP codes and their complements, these methods show limited discriminative power. In this paper, we introduce a histogram sorting method to preserve the distribution information of LBP codes and their complements. Based on this method, we propose first- and secondorder sorted LBP (SLBP) features which are robust to inverse grayscale changes and image rotation. The proposed method focuses on encoding difference-sign information and it can be generalized to embed other difference-magnitude features to obtain complementary representations. Experiments demonstrate the effectiveness of our method for texture classification under(linear or nonlinear) grayscale-inversion and rotation changes.