First and Second-Order Sorted Local Binary Pattern Features for Grayscale-Inversion and Rotation Invariant Texture Classification

Tiecheng Song, Yuanjing Han, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; First- and Secondorder Sorted Local Binary Pattern for texture classification under inverse grayscale changes and image rotation

Slides Poster

Local binary pattern (LBP) is sensitive to inverse grayscale changes. Several methods address this problem by mapping each LBP code and its complement to the minimum one. However, without distinguishing LBP codes and their complements, these methods show limited discriminative power. In this paper, we introduce a histogram sorting method to preserve the distribution information of LBP codes and their complements. Based on this method, we propose first- and secondorder sorted LBP (SLBP) features which are robust to inverse grayscale changes and image rotation. The proposed method focuses on encoding difference-sign information and it can be generalized to embed other difference-magnitude features to obtain complementary representations. Experiments demonstrate the effectiveness of our method for texture classification under(linear or nonlinear) grayscale-inversion and rotation changes.

Similar papers

Color Texture Description Based on Holistic and Hierarchical Order-Encoding Patterns

Tiecheng Song, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; Holistic and Hierarchical Order-Encoding Patterns for Color Texture Classification

Slides Poster Similar

Local binary pattern (LBP), as one of the most representative texture operators, has attracted much attention in computer vision applications. Many LBP variants were developed in the literature. However, most of them were designed for gray images and their performance remains to be improved for color images. In this paper, we propose a novel color image descriptor named Holistic and Hierarchical Order-Encoding Patterns (H2OEP) for texture classification. In H2OEP, the holistic order-encoding pattern compactly encodes color order variation tendencies for each pixel in color space. The hierarchical order-encoding pattern leverages min ordering, median ordering and max ordering to encode local neighboring relationships across different color channels. Finally, the generated order-encoding patterns are aggregated via central pixel encoding to build 3D joint histograms for image representation. Experiments on four benchmark texture databases demonstrate the effectiveness of the proposed descriptor for color texture classification.

Local Grouped Invariant Order Pattern for Grayscale-Inversion and Rotation Invariant Texture Classification

Yankai Huang, Tiecheng Song, Shuang Li, Yuanjing Han

Responsive image

Auto-TLDR; Local grouped invariant order pattern for grayscale-inversion and rotation invariant texture classification

Slides Poster Similar

Local binary pattern (LBP) based descriptors have shown effectiveness for texture classification. However, most of them encode the intensity relationships between neighboring pixels and a central pixel into binary forms, thereby failing to capture the complete ordering information among neighbors. Several methods have explored intensity order information for feature description, but they do not address the grayscale-inversion problem. In this paper, we propose an image descriptor called local grouped invariant order pattern (LGIOP) for grayscale-inversion and rotation invariant texture classification. Our LGIOP is a histogram representation which jointly encodes neighboring order information and central pixels. In particular, two new order encoding methods, i.e., intensity order encoding and distance order encoding, are proposed to describe the neighboring relationships. These two order encoding methods are not only complementary but also invariant to grayscale-inversion and rotation changes. Experiments for texture classification demonstrate that the proposed LGIOP descriptor is robust to (linear or nonlinear) grayscale inversion and image rotation.

Local Binary Quaternion Rotation Pattern for Colour Texture Retrieval

Hela Jebali, Noel Richard, Mohamed Naouai

Responsive image

Auto-TLDR; Local Binary Quaternion Rotation Pattern for Color Texture Classification

Poster Similar

Color is very important feature for image representation, it assumes very essential in the human visual recognition process. Most existing approaches usually extract features from the three color channels separately (Marginal way). Although, it exists few vector expressions of texture features. Aware of the high interaction that exists between different channels in the color image, this work introduces a compact texture descriptor, named Local Binary Quaternion Rotation Pattern (LBQRP). In this LBQRP purpose, the quaternion representation is used to represent color texture. The distance between two color can be expressed as the angle of rotation between two unit quaternions using the geodesic distance. After a LBQRP coding, local histograms are extracted and used as features. Experiments on three challenging color datasets: Vistex, Outex-TC13 and USPtex are carried out to evaluate the LBQRP performance in texture classification. Results show the high efficiency of the proposed approach facing to several stat-of-art methods.

Gaussian Convolution Angles: Invariant Vein and Texture Descriptors for Butterfly Species Identification

Xin Chen, Bin Wang, Yongsheng Gao

Responsive image

Auto-TLDR; Gaussian convolution angle for butterfly species classification

Slides Poster Similar

Identifying butterfly species by image patterns is a challenging task in computer vision and pattern recognition community due to many butterfly species having similar shape patterns with complex interior structures and considerable pose variation. In additional, geometrical transformation and illumination variation also make this task more difficult. In this paper, a novel image descriptor, named Gaussian convolution angle (GCA) is proposed for butterfly species classification. The proposed GCA projects the butterfly vein image function and intensity image function along a group of vectors that start from a common contour points and ends at the remaining contour points which results a group of vectors that capture the complex vein patterns and texture patterns of butterfly images. The Gaussian convolution of different scales is conducted to the resulting vector functions to generate a multiscale GCA descriptors. The proposed GCA is not only invariant to geometrical transformation including rotation, scaling and translation, but also invariant to lighting change. The proposed method has been tested on a publicly available butterfly image dataset that has 832 samples of 10 species. It achieves a classification accuracy of 92.03% which is higher than the benchmark methods.

Face Anti-Spoofing Based on Dynamic Color Texture Analysis Using Local Directional Number Pattern

Junwei Zhou, Ke Shu, Peng Liu, Jianwen Xiang, Shengwu Xiong

Responsive image

Auto-TLDR; LDN-TOP Representation followed by ProCRC Classification for Face Anti-Spoofing

Slides Poster Similar

Face anti-spoofing is becoming increasingly indispensable for face recognition systems, which are vulnerable to various spoofing attacks performed using fake photos and videos. In this paper, a novel "LDN-TOP representation followed by ProCRC classification" pipeline for face anti-spoofing is proposed. We use local directional number pattern (LDN) with the derivative-Gaussian mask to capture detailed appearance information resisting illumination variations and noises, which can influence the texture pattern distribution. To further capture motion information, we extend LDN to a spatial-temporal variant named local directional number pattern from three orthogonal planes (LDN-TOP). The multi-scale LDN-TOP capturing complete information is extracted from color images to generate the feature vector with powerful representation capacity. Finally, the feature vector is fed into the probabilistic collaborative representation based classifier (ProCRC) for face anti-spoofing. Our method is evaluated on three challenging public datasets, namely CASIA FASD, Replay-Attack database, and UVAD database using sequence-based evaluation protocol. The experimental results show that our method can achieve promising performance with 0.37% EER on CASIA and 5.73% HTER on UVAD. The performance on Replay-Attack database is also competitive.

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Appliance Identification Using a Histogram Post-Processing of 2D Local Binary Patterns for Smart Grid Applications

Yassine Himeur, Abdullah Alsalemi, Faycal Bensaali, Abbes Amira

Responsive image

Auto-TLDR; LBP-BEVM based Local Binary Patterns for Appliances Identification in the Smart Grid

Similar

Identifying domestic appliances in the smart grid leads to a better power usage management and further helps in detecting appliance-level abnormalities. An efficient identification can be achieved only if a robust feature extraction scheme is developed with a high ability to discriminate between different appliances on the smart grid. Accordingly, we propose in this paper a novel method to extract electrical power signatures after transforming the power signal to 2D space, which has more encoding possibilities. Following, an improved local binary patterns (LBP) is proposed that relies on improving the discriminative ability of conventional LBP using a post-processing stage. A binarized eigenvalue map (BEVM) is extracted from the 2D power matrix and then used to post-process the generated LBP representation. Next, two histograms are constructed, namely up and down histograms, and are then concatenated to form the global histogram. A comprehensive performance evaluation is performed on two different datasets, namely the GREEND and WITHED, in which power data were collected at 1 Hz and 44000 Hz sampling rates, respectively. The obtained results revealed the superiority of the proposed LBP-BEVM based system in terms of the identification performance versus other 2D descriptors and existing identification frameworks.

Automatic Tuberculosis Detection Using Chest X-Ray Analysis with Position Enhanced Structural Information

Hermann Jepdjio Nkouanga, Szilard Vajda

Responsive image

Auto-TLDR; Automatic Chest X-ray Screening for Tuberculosis in Rural Population using Localized Region on Interest

Slides Poster Similar

For Tuberculosis (TB) detection beside the more expensive diagnosis solutions such as culture or sputum smear analysis one could consider the automatic analysis of the chest X-ray (CXR). This could mimic the lung region reading by the radiologist and it could provide a cheap solution to analyze and diagnose pulmonary abnormalities such as TB which often co- occurs with HIV. This software based pulmonary screening can be a reliable and affordable solution for rural population in different parts of the world such as India, Africa, etc. Our fully automatic system is processing the incoming CXR image by applying image processing techniques to detect the region on interest (ROI) followed by a computationally cheap feature extraction involving edge detection using Laplacian of Gaussian which we enrich by counting the local distribution of the intensities. The choice to ”zoom in” the ROI and look for abnormalities locally is motivated by the fact that some pulmonary abnormalities are localized in specific regions of the lungs. Later on the classifiers can decide about the normal or abnormal nature of each lung X-ray. Our goal is to find a simple feature, instead of a combination of several ones, -proposed and promoted in recent years’ literature, which can properly describe the different pathological alterations in the lungs. Our experiments report results on two publicly available data collections1, namely the Shenzhen and the Montgomery collection. For performance evaluation, measures such as area under the curve (AUC), and accuracy (ACC) were considered, achieving AUC = 0.81 (ACC = 83.33%) and AUC = 0.96 (ACC = 96.35%) for the Montgomery and Schenzen collections, respectively. Several comparisons are also provided to other state- of-the-art systems reported recently in the field.

A Local Descriptor with Physiological Characteristic for Finger Vein Recognition

Liping Zhang, Weijun Li, Ning Xin

Responsive image

Auto-TLDR; Finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns

Slides Poster Similar

Local feature descriptors exhibit great superiority in finger vein recognition due to their stability and robustness against local changes in images. However, most of these are methods use general-purpose descriptors that do not consider finger vein-specific features. In this work, we propose a finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns, i.e., histogram of oriented physiological Gabor responses (HOPGR), for finger vein recognition. First, a prior of directional characteristic of finger vein patterns is obtained in an unsupervised manner. Then the physiological Gabor filter banks are set up based on the prior information to extract the physiological responses and orientation. Finally, to make the feature robust against local changes in images, a histogram is generated as output by dividing the image into non-overlapping cells and overlapping blocks. Extensive experimental results on several databases clearly demonstrate that the proposed method outperforms most current state-of-the-art finger vein recognition methods.

Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing

Qianqian Zhang, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; Optimized Projection Supervised Discrete Hashing for Large-Scale Remote Sensing Image Object Classification

Slides Poster Similar

Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has been widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

Merged 1D-2D Deep Convolutional Neural Networks for Nerve Detection in Ultrasound Images

Mohammad Alkhatib, Adel Hafiane, Pierre Vieyres

Responsive image

Auto-TLDR; A Deep Neural Network for Deep Neural Networks to Detect Median Nerve in Ultrasound-Guided Regional Anesthesia

Slides Poster Similar

Ultrasound-Guided Regional Anesthesia (UGRA) becomes a standard procedure in surgical operations and contributes to pain management. It offers the advantages of the targeted nerve detection and provides the visualization of regions of interest such as anatomical structures. However, nerve detection is one of the most challenging tasks that anesthetists can encounter in the UGRA procedure. A computer-aided system that can detect automatically the nerve region would facilitate the anesthetist's daily routine and allow them to concentrate more on the anesthetic delivery. In this paper, we propose a new method based on merging deep learning models from different data to detect the median nerve. The merged architecture consists of two branches, one being one dimensional (1D) convolutional neural networks (CNN) branch and another 2D CNN branch. The merged architecture aims to learn the high-level features from 1D handcrafted noise-robust features and 2D ultrasound images. The obtained results show the validity and high accuracy of the proposed approach and its robustness.

Magnifying Spontaneous Facial Micro Expressions for Improved Recognition

Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurence Taggart, Pradeepa Samarasinghe

Responsive image

Auto-TLDR; Eulerian Video Magnification for Micro Expression Recognition

Slides Poster Similar

Building an effective automatic micro expression recognition (MER) system is becoming increasingly desirable in computer vision applications. However, it is also very challenging given the fine-grained nature of the expressions to be recognized. Hence, we investigate if amplifying micro facial muscle movements as a pre-processing phase, by employing Eulerian Video Magnification (EVM), can boost performance of Local Phase Quantization with Three Orthogonal Planes (LPQ-TOP) to achieve improved facial MER across various datasets. In addition, we examine the rate of increase for recognition to determine if it is uniform across datasets using EVM. Ultimately, we classify the extracted features using Support Vector Machines (SVM). We evaluate and compare the performance with various methods on seven different datasets namely CASME, CAS(ME)2, CASME2, SMIC-HS, SMIC-VIS, SMIC-NIR and SAMM. The results obtained demonstrate that EVM can enhance LPQ-TOP to achieve improved recognition accuracy on the majority of the datasets.

Electroencephalography Signal Processing Based on Textural Features for Monitoring the Driver’s State by a Brain-Computer Interface

Giulia Orrù, Marco Micheletto, Fabio Terranova, Gian Luca Marcialis

Responsive image

Auto-TLDR; One-dimensional Local Binary Pattern Algorithm for Estimating Driver Vigilance in a Brain-Computer Interface System

Slides Poster Similar

In this study we investigate a textural processing method of electroencephalography (EEG) signal as an indicator to estimate the driver's vigilance in a hypothetical Brain-Computer Interface (BCI) system. The novelty of the solution proposed relies on employing the one-dimensional Local Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data. From the resulting feature vector, the classification is done according to three vigilance classes: awake, tired and drowsy. The claim is that the class transitions can be detected by describing the variations of the micro-patterns' occurrences along the EEG signal. The 1D-LBP is able to describe them by detecting mutual variations of the signal temporarily "close" as a short bit-code. Our analysis allows to conclude that the 1D-LBP adoption has led to significant performance improvement. Moreover, capturing the class transitions from the EEG signal is effective, although the overall performance is not yet good enough to develop a BCI for assessing the driver's vigilance in real environments.

A Distinct Discriminant Canonical Correlation Analysis Network Based Deep Information Quality Representation for Image Classification

Lei Gao, Zheng Guo, Ling Guan Ling Guan

Responsive image

Auto-TLDR; DDCCANet: Deep Information Quality Representation for Image Classification

Slides Poster Similar

In this paper, we present a distinct discriminant canonical correlation analysis network (DDCCANet) based deep information quality representation with application to image classification. Specifically, to explore the sufficient discriminant information between different data sets, the within-class and between-class correlation matrices are employed and optimized jointly. Moreover, different from the existing canonical correlation analysis network (CCANet) and related algorithms, an information theoretic descriptor, information quality (IQ), is adopted to generate the deep-level feature representation for image classification. Benefiting from the explored discriminant information and IQ descriptor, it is potential to gain a more effective deep-level representation from multi-view data sets, leading to improved performance in classification tasks. To demonstrate the effectiveness of the proposed DDCCANet, we conduct experiments on the Olivetti Research Lab (ORL) face database, ETH80 database and CIFAR10 database. Experimental results show the superiority of the proposed solution on image classification.

Label Self-Adaption Hashing for Image Retrieval

Jianglin Lu, Zhihui Lai, Hailing Wang, Jie Zhou

Responsive image

Auto-TLDR; Label Self-Adaption Hashing for Large-Scale Image Retrieval

Slides Poster Similar

Hashing has attracted widespread attention in image retrieval because of its fast retrieval speed and low storage cost. Compared with supervised methods, unsupervised hashing methods are more reasonable and suitable for large-scale image retrieval since it is always difficult and expensive to collect true labels of the massive data. Without label information, however, unsupervised hashing methods can not guarantee the quality of learned binary codes. To resolve this dilemma, this paper proposes a novel unsupervised hashing method called Label Self-Adaption Hashing (LSAH), which contains effective hashing function learning part and self-adaption label generation part. In the first part, we utilize anchor graph to keep the local structure of the data and introduce joint sparsity into the model to extract effective features for high-quality binary code learning. In the second part, a self-adaptive cluster label matrix is learned from the data under the assumption that the nearest neighbor points should have a large probability to be in the same cluster. Therefore, the proposed LSAH can make full use of the potential discriminative information of the data to guide the learning of binary code. It is worth noting that LSAH can learn effective binary codes, hashing function and cluster labels simultaneously in a unified optimization framework. To solve the resulting optimization problem, an Augmented Lagrange Multiplier based iterative algorithm is elaborately designed. Extensive experiments on three large-scale data sets indicate the promising performance of the proposed LSAH.

Multi-Scale Keypoint Matching

Sina Lotfian, Hassan Foroosh

Responsive image

Auto-TLDR; Multi-Scale Keypoint Matching Using Multi-Scale Information

Slides Poster Similar

We propose a new hierarchical method to match keypoints by exploiting information across multiple scales. Traditionally, for each keypoint a single scale is detected and the matching process is done in the specific scale. We replace this approach with matching across scale-space. The holistic information from higher scales are used for early rejection of candidates that are far away in the feature space. The more localized and finer details of lower scale are then used to decide between remaining possible points. The proposed multi-scale solution is more consistent with the multi-scale processing that is present in the human visual system and is therefore biologically plausible. We evaluate our method on several datasets and achieve state of the art accuracy, while significantly outperforming others in extraction time.

Face Anti-Spoofing Using Spatial Pyramid Pooling

Lei Shi, Zhuo Zhou, Zhenhua Guo

Responsive image

Auto-TLDR; Spatial Pyramid Pooling for Face Anti-Spoofing

Slides Poster Similar

Face recognition system is vulnerable to many kinds of presentation attacks, so how to effectively detect whether the image is from the real face is particularly important. At present, many deep learning-based anti-spoofing methods have been proposed. But these approaches have some limitations, for example, global average pooling (GAP) easily loses local information of faces, single-scale features easily ignore information differences in different scales, while a complex network is prune to be overfitting. In this paper, we propose a face anti-spoofing approach using spatial pyramid pooling (SPP). Firstly, we use ResNet-18 with a small amount of parameter as the basic model to avoid overfitting. Further, we use spatial pyramid pooling module in the single model to enhance local features while fusing multi-scale information. The effectiveness of the proposed method is evaluated on three databases, CASIA-FASD, Replay-Attack and CASIA-SURF. The experimental results show that the proposed approach can achieve state-of-the-art performance.

A Multi-Focus Image Fusion Method Based on Fractal Dimension and Guided Filtering

Nikoo Dehghani, Ehsanollah Kabir

Responsive image

Auto-TLDR; Fractal Dimension-based Multi-focus Image Fusion with Guide Filtering

Slides Poster Similar

Fractal Dimension (FD) is widely used for image segmentation because of its successful approach toward quantifying texture information. In this paper, we present a FD-based multi-focus image fusion method that utilizes FD to identify focused regions, as the primary step for the multi-focus image fusion process. The algorithm aims to extract the local FD features of each multi-focus pair estimated using the differential box-counting method. A guided filter is employed to further specify the spatial information and increase the robustness of the FD features to noise. The outcome would be analyzed to achieve a focus map that identifies sharp regions in each partially focused image. Afterwards, the detected regions are combined into a single all-focused image. The experiments, along with the objective assessments, demonstrate the competitive performance of the proposed method compared to several state-of-the-art multi-focus image fusion methods.

DSPNet: Deep Learning-Enabled Blind Reduction of Speckle Noise

Yuxu Lu, Meifang Yang, Liu Wen

Responsive image

Auto-TLDR; Deep Blind DeSPeckling Network for Imaging Applications

Poster Similar

Blind reduction of speckle noise has become a long-standing unsolved problem in several imaging applications, such as medical ultrasound imaging, synthetic aperture radar (SAR) imaging, and underwater sonar imaging, etc. The unwanted noise could lead to negative effects on the reliable detection and recognition of objects of interest. From a statistical point of view, speckle noise could be assumed to be multiplicative, significantly different from the common additive Gaussian noise. The purpose of this study is to blindly reduce the speckle noise under non-ideal imaging conditions. The multiplicative relationship between latent sharp image and random noise will be first converted into an additive version through a logarithmic transformation. To promote imaging performance, we introduced the feature pyramid network (FPN) and atrous spatial pyramid pooling (ASPP), contributing to a more powerful deep blind DeSPeckling Network (named as DSPNet). In particular, DSPNet is mainly composed of two subnetworks, i.e., Log-NENet (i.e., noise estimation network in logarithmic domain) and Log-DNNet (i.e., denoising network in logarithmic domain). Log-NENet and Log-DNNet are, respectively, proposed to estimate noise level map and reduce random noise in logarithmic domain. The multi-scale mixed loss function is further proposed to improve the robust generalization of DSPNet. The proposed deep blind despeckling network is capable of reducing random noise and preserving salient image details. Both synthetic and realistic experiments have demonstrated the superior performance of our DSPNet in terms of quantitative evaluations and visual image qualities.

Attention-Based Deep Metric Learning for Near-Duplicate Video Retrieval

Kuan-Hsun Wang, Chia Chun Cheng, Yi-Ling Chen, Yale Song, Shang-Hong Lai

Responsive image

Auto-TLDR; Attention-based Deep Metric Learning for Near-duplicate Video Retrieval

Slides Similar

Near-duplicate video retrieval (NDVR) is an important and challenging problem due to the increasing amount of videos uploaded to the Internet. In this paper, we propose an attention-based deep metric learning method for NDVR. Our method is based on well-established principles: We leverage two-stream networks to combine RGB and optical flow features, and incorporate an attention module to effectively deal with distractor frames commonly observed in near duplicate videos. We further aggregate the features corresponding to multiple video segments to enhance the discriminative power. The whole system is trained using a deep metric learning objective with a Siamese architecture. Our experiments show that the attention module helps eliminate redundant and noisy frames, while focusing on visually relevant frames for solving NVDR. We evaluate our approach on recent large-scale NDVR datasets, CC_WEB_VIDEO, VCDB, FIVR and SVD. To demonstrate the generalization ability of our approach, we report results in both within- and cross-dataset settings, and show that the proposed method significantly outperforms state-of-the-art approaches.

Video Lightening with Dedicated CNN Architecture

Li-Wen Wang, Wan-Chi Siu, Zhi-Song Liu, Chu-Tak Li, P. K. Daniel Lun

Responsive image

Auto-TLDR; VLN: Video Lightening Network for Driving Assistant Systems in Dark Environment

Slides Poster Similar

Darkness brings us uncertainty, worry and low confidence. This is a problem not only applicable to us walking in a dark evening but also for drivers driving a car on the road with very dim or even without lighting condition. To address this problem, we propose a new CNN structure named as Video Lightening Network (VLN) that regards the low-light enhancement as a residual learning task, which is useful as reference to indirectly lightening the environment, or for vision-based application systems, such as driving assistant systems. The VLN consists of several Lightening Back-Projection (LBP) and Temporal Aggregation (TA) blocks. Each LBP block enhances the low-light frame by domain transfer learning that iteratively maps the frame between the low- and normal-light domains. A TA block handles the motion among neighboring frames by investigating the spatial and temporal relationships. Several TAs work in a multi-scale way, which compensates the motions at different levels. The proposed architecture has a consistent enhancement for different levels of illuminations, which significantly increases the visual quality even in the extremely dark environment. Extensive experimental results show that the proposed approach outperforms other methods under both objective and subjective metrics.

Documents Counterfeit Detection through a Deep Learning Approach

Darwin Danilo Saire Pilco, Salvatore Tabbone

Responsive image

Auto-TLDR; End-to-End Learning for Counterfeit Documents Detection using Deep Neural Network

Slides Poster Similar

The main topic of this work is on the detection of counterfeit documents and especially banknotes. We propose an end-to-end learning model using a deep learning approach based on Adapnet++ which manages feature extraction at multiple scale levels using several residual units. Unlike previous models based on regions of interest (ROI) and high-resolution documents, our network is feed with simple input images (i.e., a single patch) and we do not need high resolution images. Besides, discriminative regions can be visualized at different scales. Our network learns by itself which regions of interest predict the better results. Experimental results show that we are competitive compared with the state-of-the-art and our deep neural network has good ability to generalize and can be applied to other kind of documents like identity or administrative one.

Embedding Shared Low-Rank and Feature Correlation for Multi-View Data Analysis

Zhan Wang, Lizhi Wang, Hua Huang

Responsive image

Auto-TLDR; embedding shared low-rank and feature correlation for multi-view data analysis

Slides Poster Similar

The diversity of multimedia data in the real-world usually forms multi-view features. How to explore the structure information and correlations among multi-view features is still an open problem. In this paper, we propose a novel multi-view subspace learning method, named embedding shared low-rank and feature correlation (ESLRFC), for multi-view data analysis. First, in the embedding subspace, we propose a robust low-rank model on each feature set and enforce a shared low-rank constraint to characterize the common structure information of multiple feature data. Second, we develop an enhanced correlation analysis in the embedding subspace for simultaneously removing the redundancy of each feature set and exploring the correlations of multiple feature data. Finally, we incorporate the low-rank model and the correlation analysis into a unified framework. The shared low-rank constraint not only depicts the data distribution consistency among multiple feature data, but also assists robust subspace learning. Experimental results on recognition tasks demonstrate the superior performance and noise robustness of the proposed method.

Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem Formulation

Dimche Kostadinov, Davide Scarammuza

Responsive image

Auto-TLDR; Unsupervised Representation Learning from Local Event Data for Pattern Recognition

Slides Poster Similar

Event-based cameras record asynchronous streamof per-pixel brightness changes. As such, they have numerous advantages over the common frame-based cameras, including high temporal resolution, high dynamic range, and no motion blur. Due to the asynchronous nature, efficient learning of compact representation for event data is challenging. While the extend to which the spatial and temporal event "information" is useful for pattern recognition tasks is not fully explored. In this paper, we focus on single layer architectures. We analyze the performance of two general problem formulations,i.e., the direct and the inverse, for unsupervised feature learning from local event data,i.e., local volumes of events that are described in space and time. We identify and show the main advantages of each approach. Theoretically, we analyze guarantees for local optimal solution, possibility for asynchronous and parallel parameter update as well as the computational complexity. We present numerical experiments for the task of object recognition, where we evaluate the solution under the direct and the inverse problem.We give a comparison with the state-of-the-art methods. Our empirical results highlight the advantages of the both approaches for representation learning from event data. Moreover, we show improvements of up to 9% in the recognition accuracy compared to the state-of-the-art methods from the same class of methods.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

Improving Image Matching with Varied Illumination

Sarah Braeger, Hassan Foroosh

Responsive image

Auto-TLDR; Optimizing Feature Matching for Stereo Image Pairs by Stereo Illumination

Slides Poster Similar

We present a method to maximize feature matching performance across stereo image pairs by varying illumination. We perform matching between views per lighting condition, finding unique SIFT correspondences for each condition. These feature matches are then collected together into a single set, selecting those features which present the highest quality match. Instead of capturing each view under each illumination, we approximate lighting changes with a pretrained relighting convo- lutional neural network which only requires each view captured under a single specified lighting condition. We then collect the best of these feature matches over all lighting conditions offered by the relighting network. We further present an optimization to limit the number of lighting conditions evaluated to gain a specified number of matches. Our method is evaluated on a set of indoor scenes excluded from training the network with comparison to features extracted from pretrained VGG16. Our method offers an average 5.5× improvement in number of correct matches while retaining similar precision than by the original lit image pair per scene alone.

Photometric Stereo with Twin-Fisheye Cameras

Jordan Caracotte, Fabio Morbidi, El Mustapha Mouaddib

Responsive image

Auto-TLDR; Photometric stereo problem for low-cost 360-degree cameras

Slides Poster Similar

In this paper, we introduce and solve, for the first time, the photometric stereo problem for low-cost 360-degree cameras. In particular, we present a spherical image irradiance equation which is adapted to twin-fisheye cameras, and an original algorithm for the estimation of light directions based on the specular highlights observed on mirror balls. Extensive experiments with synthetic and real-world images captured by a Ricoh Theta V camera, demonstrate the effectiveness and robustness of the proposed 3D reconstruction pipeline. To foster reproducible research, the image dataset and code developed for this paper are made publicly available at the address: https://home.mis.u-picardie.fr/~fabio/PhotoSphere.html

Supervised Feature Embedding for Classification by Learning Rank-Based Neighborhoods

Ghazaal Sheikhi, Hakan Altincay

Responsive image

Auto-TLDR; Supervised Feature Embedding with Representation Learning of Rank-based Neighborhoods

Slides Similar

In feature embedding, the recovery of associated discriminative information in the reduced subspace is critical for downstream classifiers. In this study, a supervised feature embedding method is proposed inspired by the well-known word embedding technique, word2vec. Proposed embedding method is implemented as representative learning of rank-based neighborhoods. The notion of context words in word2vec is extended into neighboring instances within a given window. Neighborship is defined using ranks of instances rather than their values so that regions with different densities are captured properly. Each sample is represented by a unique one-hot vector whereas its neighbors are encoded by several two-hot vectors. The two-hot vectors are identical for neighboring samples of the same class. A feed-forward neural network with a continuous projection layer, then learns the mapping from one-hot vectors to multiple two-hot vectors. The hidden layer determines the reduced subspace for the train samples. The obtained transformation is then applied on test data to find a lower-dimensional representation. Proposed method is tested in classification problems on 10 UCI data sets. Experimental results confirm that the proposed method is effective in finding a discriminative representation of the features and outperforms several supervised embedding approaches in terms of classification performance.

Visual Saliency Oriented Vehicle Scale Estimation

Qixin Chen, Tie Liu, Jiali Ding, Zejian Yuan, Yuanyuan Shang

Responsive image

Auto-TLDR; Regularized Intensity Matching for Vehicle Scale Estimation with salient object detection

Slides Poster Similar

Vehicle scale estimation with a single camera is a typical application for intelligent transportation and it faces the challenges from visual computing while intensity-based method and descriptor-based method should be balanced. This paper proposed a vehicle scale estimation method based on salient object detection to resolve this problem. The regularized intensity matching method is proposed in Lie Algebra to achieve robust and accurate scale estimation, and descriptor matching and intensity matching are combined to minimize the proposed loss function. The visual attention mechanism is designed to select image patches with texture and remove the occluded image patches. Then the weights are assigned to pixels from the selected image patches which alleviates the influence of noise-corrupted pixels. The experiments show that the proposed method significantly outperforms state-of-the-art methods with regard to the robustness and accuracy of vehicle scale estimation.

Convolutional Feature Transfer via Camera-Specific Discriminative Pooling for Person Re-Identification

Tetsu Matsukawa, Einoshin Suzuki

Responsive image

Auto-TLDR; A small-scale CNN feature transfer method for person re-identification

Slides Poster Similar

Modern Convolutional Neural Networks~(CNNs) have been improving the accuracy of person re-identification (re-id) using a large number of training samples. Such a re-id system suffers from a lack of training samples for deployment to practical security applications. To address this problem, we focus on the approach that transfers CNN features pre-trained on a large-scale person re-id dataset to a small-scale dataset. Most of the ordinal CNN feature transfer methods use the features of fully connected layers that entangle locally pooled features of different spatial locations on an image. Unfortunately, due to the difference of view angles and the bias of walking directions of the persons, each camera view in a dataset has a unique spatial property in the person image, which reduces the generality of the local pooling for different cameras/datasets. To account for the camera- and dataset-specific spatial bias, we propose a method to learn camera and dataset-specific position weight maps for discriminative local pooling of convolutional features. Our experiments on four public datasets confirm the effectiveness of the proposed feature transfer with a small number of training samples in the target datasets.

Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

Hyunseung Chung, Woo-Jeoung Nam, Seong-Whan Lee

Responsive image

Auto-TLDR; Robust Remote Sensing Image Retrieval Using Group Convolution with Attention Mechanism and Metric Learning

Slides Poster Similar

Remote sensing image retrieval (RSIR) is the process of ranking database images depending on the degree of similarity compared to the query image. As the complexity of RSIR increases due to the diversity in shooting range, angle, and location of remote sensors, there is an increasing demand for methods to address these issues and improve retrieval performance. In this work, we introduce a novel method for retrieving aerial images by merging group convolution with attention mechanism and metric learning, resulting in robustness to rotational variations. For refinement and emphasis on important features, we applied channel attention in each group convolution stage. By utilizing the characteristics of group convolution and channel-wise attention, it is possible to acknowledge the equality among rotated but identically located images. The training procedure has two main steps: (i) training the network with Aerial Image Dataset (AID) for classification, (ii) fine-tuning the network with triplet-loss for retrieval with Google Earth South Korea and NWPU-RESISC45 datasets. Results show that the proposed method performance exceeds other state-of-the-art retrieval methods in both rotated and original environments. Furthermore, we utilize class activation maps (CAM) to visualize the distinct difference of main features between our method and baseline, resulting in better adaptability in rotated environments.

PointSpherical: Deep Shape Context for Point Cloud Learning in Spherical Coordinates

Hua Lin, Bin Fan, Yongcheng Liu, Yirong Yang, Zheng Pan, Jianbo Shi, Chunhong Pan, Huiwen Xie

Responsive image

Auto-TLDR; Spherical Hierarchical Modeling of 3D Point Cloud

Slides Poster Similar

We propose Spherical Hierarchical modeling of 3D point cloud. Inspired by Shape Context, we design a receptive field on each 3D point by placing a spherical coordinate on it. We sample points using the furthest point method and creating overlapping balls of points. For each ball, we divide the space into radial, polar angular and azimuthal angular bins on which we form a Spherical Hierarchy. We apply 1x1 CNN convolution on points to start the initial feature extraction. Repeated 3D CNN and max pooling over the Spherical bins propagate contextual information until all the information is condensed in the center bin. Extensive experiments on five datasets strongly evidence that our method outperform current models on various Point Cloud Learning tasks, including 2D/3D shape classification, 3D part segmentation and 3D semantic segmentation.

Aggregating Object Features Based on Attention Weights for Fine-Grained Image Retrieval

Hongli Lin, Yongqi Song, Zixuan Zeng, Weisheng Wang

Responsive image

Auto-TLDR; DSAW: Unsupervised Dual-selection for Fine-Grained Image Retrieval

Similar

Object localization and local feature representation are key issues in fine-grained image retrieval. However, the existing unsupervised methods still need to be improved in these two aspects. For conquering these issues in a unified framework, a novel unsupervised scheme, named DSAW for short, is presented in this paper. Firstly, we proposed a dual-selection (DS) method, which achieves more accurate object localization by using adaptive threshold method to perform feature selection on local and global activation map in turn. Secondly, a novel and faster self-attention weights (AW) method is developed to weight local features by measuring their importance in the global context. Finally, we also evaluated the performance of the proposed method on five fine-grained image datasets and the results showed that our DSAW outperformed the existing best method.

Local Attention and Global Representation Collaborating for Fine-Grained Classification

He Zhang, Yunming Bai, Hui Zhang, Jing Liu, Xingguang Li, Zhaofeng He

Responsive image

Auto-TLDR; Weighted Region Network for Cosmetic Contact Lenses Detection

Slides Poster Similar

The cosmetic contact lenses over an iris may change its original textural pattern that is the foundation for iris recognition, making the cosmetic lenses a possible and easy-to-use iris presentation attack means. Aiming at cosmetic contact lenses detection of practical application system, some approaches have been proposed but still facing unsolved problems, such as low quality iris images and inaccurate localized iris boundaries. In this paper, we propose a novel framework called Weighted Region Network (WRN) for the cosmetic contact lenses detection. The WRN includes both the local attention Weight Network and the global classification Region Network. With the inherent attention mechanism, the proposed network is able to find the most discriminative regions, which reduces the requirement for target detection and improves the ability of classification based on some specific areas and patterns. The Weight Network can be trained by using Rank loss and MSE loss without manual discriminative region annotations. Experiments are conducted on several databases and a new collected low-quality iris image database. The proposed method outperforms state-of-the-art fake iris detection algorithms, and is also effective for the fine-grained image classification task.

DFH-GAN: A Deep Face Hashing with Generative Adversarial Network

Bo Xiao, Lanxiang Zhou, Yifei Wang, Qiangfang Xu

Responsive image

Auto-TLDR; Deep Face Hashing with GAN for Face Image Retrieval

Slides Poster Similar

Face Image retrieval is one of the key research directions in computer vision field. Thanks to the rapid development of deep neural network in recent years, deep hashing has achieved good performance in the field of image retrieval. But for large-scale face image retrieval, the performance needs to be further improved. In this paper, we propose Deep Face Hashing with GAN (DFH-GAN), a novel deep hashing method for face image retrieval, which mainly consists of three components: a generator network for generating synthesized images, a discriminator network with a shared CNN to learn multi-domain face feature, and a hash encoding network to generate compact binary hash codes. The generator network is used to perform data augmentation so that the model could learn from both real images and diverse synthesized images. We adopt a two-stage training strategy. In the first stage, the GAN is trained to generate fake images, while in the second stage, to make the network convergence faster. The model inherits the trained shared CNN of discriminator to train the DFH model by using many different supervised loss functions not only in the last layer but also in the middle layer of the network. Extensive experiments on two widely used datasets demonstrate that DFH-GAN can generate high-quality binary hash codes and exceed the performance of the state-of-the-art model greatly.

Feature Extraction and Selection Via Robust Discriminant Analysis and Class Sparsity

Ahmad Khoder, Fadi Dornaika

Responsive image

Auto-TLDR; Hybrid Linear Discriminant Embedding for supervised multi-class classification

Slides Poster Similar

The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multi-class classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Inter-class sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.

Learning Recurrent High-Order Statistics for Skeleton-Based Hand Gesture Recognition

Xuan Son Nguyen, Luc Brun, Olivier Lezoray, Sébastien Bougleux

Responsive image

Auto-TLDR; Exploiting High-Order Statistics in Recurrent Neural Networks for Hand Gesture Recog-nition

Slides Similar

High-order statistics have been proven useful inthe framework of Convolutional Neural Networks (CNN) fora variety of computer vision tasks. In this paper, we proposeto exploit high-order statistics in the framework of RecurrentNeural Networks (RNN) for skeleton-based hand gesture recog-nition. Our method is based on the Statistical Recurrent Units(SRU), an un-gated architecture that has been introduced as analternative model for Long-Short Term Memory (LSTM) andGate Recurrent Unit (GRU). The SRU captures sequential infor-mation by generating recurrent statistics that depend on a contextof previously seen data and by computing moving averages atdifferent scales. The integration of high-order statistics in theSRU significantly improves the performance of the original one,resulting in a model that is competitive to state-of-the-art methodson the Dynamic Hand Gesture (DHG) dataset, and outperformsthem on the First-Person Hand Action (FPHA) dataset.

MixNet for Generalized Face Presentation Attack Detection

Nilay Sanghvi, Sushant Singh, Akshay Agarwal, Mayank Vatsa, Richa Singh

Responsive image

Auto-TLDR; MixNet: A Deep Learning-based Network for Detection of Presentation Attacks in Cross-Database and Unseen Setting

Slides Poster Similar

The non-intrusive nature and high accuracy of face recognition algorithms have led to their successful deployment across multiple applications ranging from border access to mobile unlocking and digital payments. However, their vulnerability against sophisticated and cost-effective presentation attack mediums raises essential questions regarding its reliability. Several presentation attack detection algorithms are presented; however, they are still far behind from reality. The major problem with the existing work is the generalizability against multiple attacks both in the seen and unseen setting. The algorithms which are useful for one kind of attack (such as print) fail miserably for another type of attack (such as silicone masks). In this research, we have proposed a deep learning-based network called MixNet to detect presentation attacks in cross-database and unseen attack settings. The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category. Experiments are performed using multiple challenging face presentation attack databases such as Silicone Mask Attack Database (SMAD) and Spoof In the Wild with Multiple Attack (SiW-M). Extensive experiments and comparison with the existing state of the art algorithms show the effectiveness of the proposed algorithm.

Modeling Extent-Of-Texture Information for Ground Terrain Recognition

Shuvozit Ghose, Pinaki Nath Chowdhury, Partha Pratim Roy, Umapada Pal

Responsive image

Auto-TLDR; Extent-of-Texture Guided Inter-domain Message Passing for Ground Terrain Recognition

Slides Poster Similar

Ground Terrain Recognition is a difficult task as the context information varies significantly over the regions of a ground terrain image. In this paper, we propose a novel approach towards ground-terrain recognition via modeling the Extent-of-Texture information to establish a balance between the order-less texture component and ordered-spatial information locally. At first, the proposed method uses a CNN backbone feature extractor network to capture meaningful information of a ground terrain image, and model the extent of texture and shape information locally. Then, the order-less texture information and ordered shape information are encoded in a patch-wise manner, which is utilized by intra-domain message passing module to make every patch aware of each other for rich feature learning. Next, the Extent-of-Texture (EoT) Guided Inter-domain Message Passing module combines the extent of texture and shape information with the encoded texture and shape information in a patch-wise fashion for sharing knowledge to balance out the order-less texture information with ordered shape information. Further, Bilinear model generates a pairwise correlation between the order-less texture information and ordered shape information. Finally, the ground-terrain image classification is performed by a fully connected layer. The experimental results indicate superior performance of the proposed model over existing state-of-the-art techniques on publicly available datasets like DTD, MINC and GTOS-mobile.

Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Jianyang Qin, Lunke Fei, Shaohua Teng, Wei Zhang, Genping Zhao, Haoliang Yuan

Responsive image

Auto-TLDR; Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Slides Poster Similar

Hashing has been widely studied for cross-modal retrieval due to its promising efficiency and effectiveness in massive data analysis. However, most existing supervised hashing has the limitations of inefficiency for very large-scale search and intractable discrete constraint for hash codes learning. In this paper, we propose a new supervised hashing method, namely, Discrete Semantic Matrix Factorization Hashing (DSMFH), for cross-modal retrieval. First, we conduct the matrix factorization via directly utilizing the available label information to obtain a latent representation, so that both the inter-modality and intra-modality similarities are well preserved. Then, we simultaneously learn the discriminative hash codes and corresponding hash functions by deriving the matrix factorization into a discrete optimization. Finally, we adopt an alternatively iterative procedure to efficiently optimize the matrix factorization and discrete learning. Extensive experimental results on three widely used image-tag databases demonstrate the superiority of the DSMFH over state-of-the-art cross-modal hashing methods.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater Videos

Mygel Andrei Martija, Prospero Naval

Responsive image

Auto-TLDR; Underwater Multi-Object Tracking in the Wild with Deep Hungarian Network

Slides Poster Similar

In this paper, we seek to extend multi-object tracking research on a relatively less explored domain, that of, underwater multi-object tracking in the wild. Multi-object fish tracking is an important task because it can provide fish monitoring systems with richer information (e.g. multiple views of the same fish) as compared to detections and it can be an invaluable input to fish behavior analysis. However, there is a lack of an annotated benchmark dataset with enough samples for this task. To circumvent the need for manual ground truth tracking annotation, we craft a synthetic dataset. Using this synthetic dataset, we train an integrated detector and tracker called SynDHN. SynDHN uses the Deep Hungarian Network (DHN), which is a differentiable approximation of the Hungarian assignment algorithm. We repurpose DHN to become the tracking component of our algorithm by performing the task of affinity estimation between detector predictions. We consider both spatial and appearance features for affinity estimation. Our results show that despite being trained on a synthetic dataset, SynDHN generalizes well to real underwater video tracking and performs better against our baseline algorithms.

Understanding When Spatial Transformer Networks Do Not Support Invariance, and What to Do about It

Lukas Finnveden, Ylva Jansson, Tony Lindeberg

Responsive image

Auto-TLDR; Spatial Transformer Networks are unable to support invariance when transforming CNN feature maps

Slides Poster Similar

Spatial transformer networks (STNs) were designed to enable convolutional neural networks (CNNs) to learn invariance to image transformations. STNs were originally proposed to transform CNN feature maps as well as input images. This enables the use of more complex features when predicting transformation parameters. However, since STNs perform a purely spatial transformation, they do not, in the general case, have the ability to align the feature maps of a transformed image with those of its original. STNs are therefore unable to support invariance when transforming CNN feature maps. We present a simple proof for this and study the practical implications, showing that this inability is coupled with decreased classification accuracy. We therefore investigate alternative STN architectures that make use of complex features. We find that while deeper localization networks are difficult to train, localization networks that share parameters with the classification network remain stable as they grow deeper, which allows for higher classification accuracy on difficult datasets. Finally, we explore the interaction between localization network complexity and iterative image alignment.

Adaptive Context-Aware Discriminative Correlation Filters for Robust Visual Object Tracking

Tianyang Xu, Zhenhua Feng, Xiaojun Wu, Josef Kittler

Responsive image

Auto-TLDR; ACA-DCF: Adaptive Context-Aware Discriminative Correlation Filter with complementary attention mechanisms

Slides Poster Similar

In recent years, Discriminative Correlation Filters (DCFs) have gained popularity due to their superior performance in visual object tracking. However, existing DCF trackers usually learn filters using fixed attention mechanisms that focus on the centre of an image and suppresses filter amplitudes in surroundings. In this paper, we propose an Adaptive Context-Aware Discriminative Correlation Filter (ACA-DCF) that is able to improve the existing DCF formulation with complementary attention mechanisms. Our ACA-DCF integrates foreground attention and background attention for complementary context-aware filter learning. More importantly, we ameliorate the design using an adaptive weighting strategy that takes complex appearance variations into account. The experimental results obtained on several well-known benchmarks demonstrate the effectiveness and superiority of the proposed method over the state-of-the-art approaches.

Unconstrained Vision Guided UAV Based Safe Helicopter Landing

Arindam Sikdar, Abhimanyu Sahu, Debajit Sen, Rohit Mahajan, Ananda Chowdhury

Responsive image

Auto-TLDR; Autonomous Helicopter Landing in Hazardous Environments from Unmanned Aerial Images Using Constrained Graph Clustering

Slides Poster Similar

In this paper, we have addressed the problem of automated detection of safe zone(s) for helicopter landing in hazardous environments from images captured by an Unmanned Aerial Vehicle (UAV). The unconstrained motion of the image capturing drone (the UAV in our case) makes the problem further difficult. The solution pipeline consists of natural landmark detection and tracking, stereo-pair generation using constrained graph clustering, digital terrain map construction and safe landing zone detection. The main methodological contribution lies in mathematically formulating epipolar constraint and then using it in a Minimum Spanning Tree (MST) based graph clustering approach. We have also made publicly available AHL (Autonomous Helicopter Landing) dataset, a new aerial video dataset captured by a drone, with annotated ground-truths. Experimental comparisons with other competing clustering methods i) in terms of Dunn Index and Davies Bouldin Index as well as ii) for frame-level safe zone detection in terms of F-measure and confusion matrix clearly demonstrate the effectiveness of the proposed formulation.

Second-Order Attention Guided Convolutional Activations for Visual Recognition

Shannan Chen, Qian Wang, Qiule Sun, Bin Liu, Jianxin Zhang, Qiang Zhang

Responsive image

Auto-TLDR; Second-order Attention Guided Network for Convolutional Neural Networks for Visual Recognition

Slides Poster Similar

Recently, modeling deep convolutional activations by the global second-order pooling has shown great advance on visual recognition tasks. However, most of the existing deep second-order statistical models mainly compute second-order statistics of activations of the last convolutional layer as image representations, and they seldom introduce second-order statistics into earlier layers to better fit network topology, thus limiting the representational ability to a certain extent. Motivated by the flexibility of attention blocks that are commonly plugged into intermediate layers of deep convolutional networks (ConvNets), this work makes an attempt to combine deep second-order statistics with attention mechanisms in ConvNets, and further proposes a novel Second-order Attention Guided Network (SoAG-Net) for visual recognition. More specifically, SoAG-Net involves several SoAG modules seemingly inserted into intermediate layers of the network, in which SoAG collects second-order statistics of convolutional activations by polynomial kernel approximation to predict channel-wise attention maps utilized for guiding the learning of convolutional activations through tensor scaling along channel dimension. SoAG improves the nonlinearity of ConvNets and enables ConvNets to fit more complicated distribution of convolutional activations. Experiment results on three commonly used datasets illuminate that SoAG-Net outperforms its counterparts and achieves competitive performance with state-of-the-art models under the same backbone.