Photometric Stereo with Twin-Fisheye Cameras

Jordan Caracotte, Fabio Morbidi, El Mustapha Mouaddib

Responsive image

Auto-TLDR; Photometric stereo problem for low-cost 360-degree cameras

Slides Poster

In this paper, we introduce and solve, for the first time, the photometric stereo problem for low-cost 360-degree cameras. In particular, we present a spherical image irradiance equation which is adapted to twin-fisheye cameras, and an original algorithm for the estimation of light directions based on the specular highlights observed on mirror balls. Extensive experiments with synthetic and real-world images captured by a Ricoh Theta V camera, demonstrate the effectiveness and robustness of the proposed 3D reconstruction pipeline. To foster reproducible research, the image dataset and code developed for this paper are made publicly available at the address: https://home.mis.u-picardie.fr/~fabio/PhotoSphere.html

Similar papers

RISEdb: A Novel Indoor Localization Dataset

Carlos Sanchez Belenguer, Erik Wolfart, Álvaro Casado Coscollá, Vitor Sequeira

Responsive image

Auto-TLDR; Indoor Localization Using LiDAR SLAM and Smartphones: A Benchmarking Dataset

Slides Poster Similar

In this paper we introduce a novel public dataset for developing and benchmarking indoor localization systems. We have selected and 3D mapped a set of representative indoor environments including a large office building, a conference room, a workshop, an exhibition area and a restaurant. Our acquisition pipeline is based on a portable LiDAR SLAM backpack to map the buildings and to accurately track the pose of the user as it moves freely inside them. We introduce the calibration procedures that enable us to acquire and geo-reference live data coming from different independent sensors rigidly attached to the backpack. This has allowed us to collect long sequences of spherical and stereo images, together with all the sensor readings coming from a consumer smartphone and locate them inside the map with centimetre accuracy. The dataset addresses many of the limitations of existing indoor localization datasets regarding the scale and diversity of the mapped buildings; the number of acquired sequences under varying conditions; the accuracy of the ground-truth trajectory; the availability of a detailed 3D model and the availability of different sensor types. It enables the benchmarking of existing and the development of new indoor localization approaches, in particular for deep learning based systems that require large amounts of labeled training data.

Camera Calibration Using Parallel Line Segments

Gaku Nakano

Responsive image

Auto-TLDR; Closed-Form Calibration of Surveillance Cameras using Parallel 3D Line Segment Projections

Slides Poster Similar

This paper proposes a camera calibration method suitable for surveillance cameras using the image projection of parallel 3D line segments of the same length. We assume that vertical line segments are perpendicular to the ground plane and their bottom end-points are on the ground plane. Under this assumption, the camera parameters can be directly solved by at least two line segments without estimating vanishing points. Extending the minimal solution, we derive a closed-form solution to the least squares case with more than two line segments. Lens distortion is jointly optimized in bundle adjustment. Synthetic data evaluation shows that the best depression angle of a camera is around 50 degrees. In real data evaluation, we use body joints of pedestrians as vertical line segments. The experimental results on publicly available datasets show that the proposed method with a human pose detector can correctly calibrate wide-angle cameras including radial distortion.

Learning Non-Rigid Surface Reconstruction from Spatio-Temporal Image Patches

Matteo Pedone, Abdelrahman Mostafa, Janne Heikkilä

Responsive image

Auto-TLDR; Dense Spatio-Temporal Depth Maps of Deformable Objects from Video Sequences

Slides Poster Similar

We present a method to reconstruct a dense spatio-temporal depth map of a non-rigidly deformable object directly from a video sequence. The estimation of depth is performed locally on spatio-temporal patches of the video, and then the full depth video of the entire shape is recovered by combining them together. Since the geometric complexity of a local spatio-temporal patch of a deforming non-rigid object is often simple enough to be faithfully represented with a parametric model, we artificially generate a database of small deforming rectangular meshes rendered with different material properties and light conditions, along with their corresponding depth videos, and use such data to train a convolutional neural network. We tested our method on both synthetic and Kinect data and experimentally observed that the reconstruction error is significantly lower than the one obtained using other approaches like conventional non-rigid structure from motion.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

Benchmarking Cameras for OpenVSLAM Indoors

Kevin Chappellet, Guillaume Caron, Fumio Kanehiro, Ken Sakurada, Abderrahmane Kheddar

Responsive image

Auto-TLDR; OpenVSLAM: Benchmarking Camera Types for Visual Simultaneous Localization and Mapping

Slides Poster Similar

In this paper we benchmark different types of cameras and evaluate their performance in terms of reliable localization reliability and precision in Visual Simultaneous Localization and Mapping (vSLAM). Such benchmarking is merely found for visual odometry, but never for vSLAM. Existing studies usually compare several algorithms for a given camera. %This work is the first to handle the dual of the latter, i.e. comparing several cameras for a given SLAM algorithm. The evaluation methodology we propose is applied to the recent OpenVSLAM framework. The latter is versatile enough to natively deal with perspective, fisheye, 360 cameras in a monocular or stereoscopic setup, an in RGB or RGB-D modalities. Results in various sequences containing light variation and scenery modifications in the scene assess quantitatively the maximum localization rate for 360 vision. In the contrary, RGB-D vision shows the lowest localization rate, but highest precision when localization is possible. Stereo-fisheye trades-off with localization rates and precision between 360 vision and RGB-D vision. The dataset with ground truth will be made available in open access to allow evaluating other/future vSLAM algorithms with respect to these camera types.

OmniFlowNet: A Perspective Neural Network Adaptation for Optical Flow Estimation in Omnidirectional Images

Charles-Olivier Artizzu, Haozhou Zhang, Guillaume Allibert, Cédric Demonceaux

Responsive image

Auto-TLDR; OmniFlowNet: A Convolutional Neural Network for Omnidirectional Optical Flow Estimation

Slides Poster Similar

Spherical cameras and the latest image processing techniques open up new horizons. In particular, methods based on Convolutional Neural Networks (CNNs) now give excellent results for optical flow estimation on perspective images. However, these approaches are highly dependent on their architectures and training datasets. This paper proposes to benefit from years of improvement in perspective images optical flow estimation and to apply it to omnidirectional ones without training on new datasets. Our network, OmniFlowNet, is built on a CNN specialized in perspective images. Its convolution operation is adapted to be consistent with the equirectangular projection. Tested on spherical datasets created with Blender and several equirectangular videos realized from real indoor and outdoor scenes, OmniFlowNet shows better performance than its original network.

Calibration and Absolute Pose Estimation of Trinocular Linear Camera Array for Smart City Applications

Martin Ahrnbom, Mikael Nilsson, Håkan Ardö, Kalle Åström, Oksana Yastremska-Kravchenko, Aliaksei Laureshyn

Responsive image

Auto-TLDR; Trinocular Linear Camera Array Calibration for Traffic Surveillance Applications

Slides Poster Similar

A method for calibrating a Trinocular Linear Camera Array (TLCA) for traffic surveillance applications, such as towards smart cities, is presented. A TLCA-specific parametrization guarantees that the calibration finds a model where all the cameras are on a straight line. The method uses both a chequerboard close to the camera, as well as measured 3D points far from the camera: points measured in world coordinates, as well as their corresponding 2D points found manually in the images. Superior calibration accuracy can be obtained compared to standard methods using only a single data source, largely due to the use of chequerboards, while the line constraint in the parametrization allows for joint rectification. The improved triangulation accuracy, from 8-12 cm to around 6 cm when calibrating with 30-50 points in our experiment, allowing better road user analysis. The method is demonstrated by a proof-of-concept application where a point cloud is generated from multiple disparity maps, visualizing road user detections in 3D.

A Globally Optimal Method for the PnP Problem with MRP Rotation Parameterization

Manolis Lourakis, George Terzakis

Responsive image

Auto-TLDR; A Direct least squares, algebraic PnP solver with modified Rodrigues parameters

Poster Similar

The perspective-n-point (PnP) problem is of fundamental importance in computer vision. A global optimality condition for PnP that is independent of a particular rotation parameterization was recently developed by Nakano. This paper puts forward a direct least squares, algebraic PnP solution that extends Nakano's work by combining his optimality condition with the modified Rodrigues parameters (MRPs) for parameterizing rotation. The result is a system of polynomials that is solved using the Groebner basis approach. An MRP vector has twice the rotational range of the classical Rodrigues (i.e., Cayley) vector used by Nakano to represent rotation. The proposed solver provides strong guarantees that the full rotation singularity associated with MRPs is avoided. Furthermore, detailed experiments provide evidence that our solver attains accuracy that is indistinguishable from Nakano's Cayley-based solution with a moderate increase in computational cost.

Novel View Synthesis from a 6-DoF Pose by Two-Stage Networks

Xiang Guo, Bo Li, Yuchao Dai, Tongxin Zhang, Hui Deng

Responsive image

Auto-TLDR; Novel View Synthesis from a 6-DoF Pose Using Generative Adversarial Network

Slides Poster Similar

Novel view synthesis is a challenging problem in 3D vision and robotics. Different from the existing works, which need the reference images or 3D model, we propose a novel paradigm to this problem. That is, we synthesize the novel view from a 6-DoF pose directly. Although this setting is the most straightforward way, there are few works addressing it. While, our experiments demonstrate that, with a concise CNN, we could get a meaningful parametric model which could reconstruct the correct scenery images only from the 6-DoF pose. To this end, we propose a two-stage learning strategy, which consists of two consecutive CNNs: GenNet and RefineNet. The GenNet generates a coarse image from a camera pose. The RefineNet is a generative adversarial network that could refine the coarse image. In this way, we decouple the geometric relationship mapping and texture detail rendering. Extensive experiments conducted on the public datasets prove the effectiveness of our method. We believe this paradigm is of high research and application value and could be an important direction in novel view synthesis. We will share our code after the acceptance of this work.

Extraction and Analysis of 3D Kinematic Parameters of Table Tennis Ball from a Single Camera

Jordan Calandre, Renaud Péteri, Laurent Mascarilla, Benoit Tremblais

Responsive image

Auto-TLDR; 3D Ball Trajectories Analysis using a Single Camera for Sport Gesture Analysis

Slides Poster Similar

Vision is the first indicator for coaches to assess the quality of a sport gesture. However, gesture analysis using computer vision is often restricted to laboratory experiments, far from the real conditions in which athletes train on a daily basis. In this perspective, we introduce 3D ball trajectories analysis using a single camera with very few acquisition constraints. A key point of the proposal is the estimation of the apparent ball size for obtaining ball to camera distance. For this purpose, a 2D CNN is trained using a generated dataset that enables a reliable ball size extraction, even in case of high motion blur. The final objective is not only to be able to determine ball trajectories, but most importantly to retrieve their relevant physical parameters. With a precise estimation of those trajectories, it is indeed possible to extract the ball tangential and rotation speed, related to the so-called Magnus effect. Validation experiments for characterizing table tennis strokes are presented on both a synthetic dataset and on real video sequences.

A New Geodesic-Based Feature for Characterization of 3D Shapes: Application to Soft Tissue Organ Temporal Deformations

Karim Makki, Amine Bohi, Augustin Ogier, Marc-Emmanuel Bellemare

Responsive image

Auto-TLDR; Spatio-Temporal Feature Descriptors for 3D Shape Characterization from Point Clouds

Slides Poster Similar

Spatio-temporal feature descriptors are of great importance for characterizing the local changes of 3D deformable shapes. In this study, we propose a method for characterizing 3D shapes from point clouds and we show a direct application on a study of organ temporal deformations. As an example, we characterize the behavior of the bladder during forced respiratory motion with a reduced number of 3D surface points: first, a set of equidistant points representing the vertices of quadrilateral mesh for the organ surface are tracked throughout a long dynamic MRI sequence using a large deformation diffeomorphic metric mapping (LDDMM) framework. Second, a novel 3D shape descriptor invariant to translation, scale and rotation is proposed for characterizing the temporal organ deformations by employing an Eulerian Partial Differential Equations (PDEs) methodology. We demonstrate the robustness of our feature on both synthetic 3D shapes and realistic dynamic Magnetic Resonance Imaging (MRI) data sequences portraying the bladder deformation during a forced breathing exercise. Promising results are obtained, showing that the proposed feature may be useful for several computer vision applications such as medical imaging, aerodynamics and robotics.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Generic Document Image Dewarping by Probabilistic Discretization of Vanishing Points

Gilles Simon, Salvatore Tabbone

Responsive image

Auto-TLDR; Robust Document Dewarping using vanishing points

Slides Poster Similar

Document images dewarping is still a challenge especially when documents are captured with one camera in an uncontrolled environment. In this paper we propose a generic approach based on vanishing points (VP) to reconstruct the 3D shape of document pages. Unlike previous methods we do not need to segment the text included in the documents. Therefore, our approach is less sensitive to pre-processing and segmentation errors. The computation of the VPs is robust and relies on the a-contrario framework, which has only one parameter whose setting is based on probabilistic reasoning instead of experimental tuning. Thus, our method can be applied to any kind of document including text and non-text blocks and extended to other kind of images. Experimental results show that the proposed method is robust to a variety of distortions.

P2D: A Self-Supervised Method for Depth Estimation from Polarimetry

Marc Blanchon, Desire Sidibe, Olivier Morel, Ralph Seulin, Daniel Braun, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Polarimetric Regularization for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to state-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.

Total Estimation from RGB Video: On-Line Camera Self-Calibration, Non-Rigid Shape and Motion

Antonio Agudo

Responsive image

Auto-TLDR; Joint Auto-Calibration, Pose and 3D Reconstruction of a Non-rigid Object from an uncalibrated RGB Image Sequence

Slides Poster Similar

In this paper we present a sequential approach to jointly retrieve camera auto-calibration, camera pose and the 3D reconstruction of a non-rigid object from an uncalibrated RGB image sequence, without assuming any prior information about the shape structure, nor the need for a calibration pattern, nor the use of training data at all. To this end, we propose a Bayesian filtering approach based on a sum-of-Gaussians filter composed of a bank of extended Kalman filters (EKF). For every EKF, we make use of dynamic models to estimate its state vector, which later will be Gaussianly combined to achieve a global solution. To deal with deformable objects, we incorporate a mechanical model solved by using the finite element method. Thanks to these ingredients, the resulting method is both efficient and robust to several artifacts such as missing and noisy observations as well as sudden camera motions, while being available for a wide variety of objects and materials, including isometric and elastic shape deformations. Experimental validation is proposed in real experiments, showing its strengths with respect to competing approaches.

Rotational Adjoint Methods for Learning-Free 3D Human Pose Estimation from IMU Data

Caterina Emilia Agelide Buizza, Yiannis Demiris

Responsive image

Auto-TLDR; Learning-free 3D Human Pose Estimation from Inertial Measurement Unit Data

Poster Similar

We present a new framework for learning-free 3D human pose estimation from Inertial Measurement Unit (IMU) data. The proposed method does not rely on a full motion sequence to calculate a pose for any particular time point and thus can operate in real-time. A cost function based only on joint rotations is used, removing the need for frequent transformations between rotations and 3D Cartesian coordinates. A Jacobian that preserves skeleton structure is derived using Adjoint methods from Variational Data Assimilation. To facilitate further research in IMU-based Motion Capture, we provide a dataset that combines RGB and depth images from an Intel RealSense camera, marker-based motion capture from an Optitrack system and Xsens IMU data. We have evaluated our method on both our dataset and the Total Capture dataset, showing an average error across 24 joints of 0.45 and 0.48 radians respectively.

Improving Image Matching with Varied Illumination

Sarah Braeger, Hassan Foroosh

Responsive image

Auto-TLDR; Optimizing Feature Matching for Stereo Image Pairs by Stereo Illumination

Slides Poster Similar

We present a method to maximize feature matching performance across stereo image pairs by varying illumination. We perform matching between views per lighting condition, finding unique SIFT correspondences for each condition. These feature matches are then collected together into a single set, selecting those features which present the highest quality match. Instead of capturing each view under each illumination, we approximate lighting changes with a pretrained relighting convo- lutional neural network which only requires each view captured under a single specified lighting condition. We then collect the best of these feature matches over all lighting conditions offered by the relighting network. We further present an optimization to limit the number of lighting conditions evaluated to gain a specified number of matches. Our method is evaluated on a set of indoor scenes excluded from training the network with comparison to features extracted from pretrained VGG16. Our method offers an average 5.5× improvement in number of correct matches while retaining similar precision than by the original lit image pair per scene alone.

A Two-Step Approach to Lidar-Camera Calibration

Yingna Su, Yaqing Ding, Jian Yang, Hui Kong

Responsive image

Auto-TLDR; Closed-Form Calibration of Lidar-camera System for Ego-motion Estimation and Scene Understanding

Slides Poster Similar

Autonomous vehicles and robots are typically equipped with Lidar and camera. Hence, calibrating the Lidar-camera system is of extreme importance for ego-motion estimation and scene understanding. In this paper, we propose a two-step approach (coarse + fine) for the external calibration between a camera and a multiple-line Lidar. First, a new closed-form solution is proposed to obtain the initial calibration parameters. We compare our solution with the state-of-the-art SVD-based algorithm, and show the benefits of both the efficiency and stability. With the initial calibration parameters, the ICP-based calibration framework is used to register the point clouds which extracted from the camera and Lidar coordinate frames, respectively. Our method has been applied to two Lidar-camera systems: an HDL-64E Lidar-camera system, and a VLP-16 Lidar-camera system. Experimental results demonstrate that our method achieves promising performance and higher accuracy than two open-source methods.

Distortion-Adaptive Grape Bunch Counting for Omnidirectional Images

Ryota Akai, Yuzuko Utsumi, Yuka Miwa, Masakazu Iwamura, Koichi Kise

Responsive image

Auto-TLDR; Object Counting for Omnidirectional Images Using Stereographic Projection

Poster Similar

This paper proposes the first object counting method for omnidirectional images. Because conventional object counting methods cannot handle the distortion of omnidirectional images, we propose to process them using stereographic projection, which enables conventional methods to obtain a good approximation of the density function. However, the images obtained by stereographic projection are still distorted. Hence, to manage this distortion, we propose two methods. One is a new data augmentation method designed for the stereographic projection of omnidirectional images. The other is a distortion-adaptive Gaussian kernel that generates a density map ground truth while taking into account the distortion of stereographic projection. Using the counting of grape bunches as a case study, we constructed an original grape-bunch image dataset consisting of omnidirectional images and conducted experiments to evaluate the proposed method. The results show that the proposed method performs better than a direct application of the conventional method, improving mean absolute error by 14.7% and mean squared error by 10.5%.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.

Facetwise Mesh Refinement for Multi-View Stereo

Andrea Romanoni, Matteo Matteucci

Responsive image

Auto-TLDR; Facetwise Refinement of Multi-View Stereo using Delaunay Triangulations

Slides Similar

Mesh refinement is a fundamental step for accurate Multi-View Stereo. It modifies the geometry of an initial manifold mesh to minimize the photometric error induced in a set of camera pairs. This initial mesh is usually the output of volumetric 3D reconstruction based on min-cut over Delaunay Triangulations. Such methods produce a significant amount of non-manifold vertices, therefore they require a vertex split step to explicitly repair them. In this paper we extend this method to preemptively fix the non-manifold vertices by reasoning directly on the Delaunay Triangulation and avoid most vertex splits. The main contribution of this paper addresses the problem of choosing the camera pairs adopted by the refinement process. We treat the problem as a mesh labeling process, where each label corresponds to a camera pair. Differently from the state-of-the-art methods, which use each camera pair to refine all the visible parts of the mesh, we choose, for each facet, the best pair that enforces both the overall visibility and coverage. The refinement step is applied for each facet using only the camera pair selected. This facetwise refinement helps the process to be applied in the most evenly way possible.

Generalized Shortest Path-Based Superpixels for Accurate Segmentation of Spherical Images

Rémi Giraud, Rodrigo Borba Pinheiro, Yannick Berthoumieu

Responsive image

Auto-TLDR; SPS: Spherical Shortest Path-based Superpixels

Slides Poster Similar

Most of existing superpixel methods are designed to segment standard planar images as pre-processing for computer vision pipelines. Nevertheless, the increasing number of applications based on wide angle capture devices, mainly generating 360° spherical images, have enforced the need for dedicated superpixel approaches. In this paper, we introduce a new superpixel method for spherical images called SphSPS (for Spherical Shortest Path-based Superpixels). Our approach respects the spherical geometry and generalizes the notion of shortest path between a pixel and a superpixel center on the 3D spherical acquisition space. We show that the feature information on such path can be efficiently integrated into our clustering framework and jointly improves the respect of object contours and the shape regularity. To relevantly evaluate this last aspect in the spherical space, we also generalize a planar global regularity metric. Finally, the proposed SphSPS method obtains significantly better performances than both planar and spherical recent superpixel approaches on the reference 360 o spherical panorama segmentation dataset.

NetCalib: A Novel Approach for LiDAR-Camera Auto-Calibration Based on Deep Learning

Shan Wu, Amnir Hadachi, Damien Vivet, Yadu Prabhakar

Responsive image

Auto-TLDR; Automatic Calibration of LiDAR and Cameras using Deep Neural Network

Slides Poster Similar

A fusion of LiDAR and cameras have been widely used in many robotics applications such as classification, segmentation, object detection, and autonomous driving. It is essential that the LiDAR sensor can measure distances accurately, which is a good complement to the cameras. Hence, calibrating sensors before deployment is a mandatory step. The conventional methods include checkerboards, specific patterns, or human labeling, which is trivial and human-labor extensive if we do the same calibration process every time. The main propose of this research work is to build a deep neural network that is capable of automatically finding the geometric transformation between LiDAR and cameras. The results show that our model manages to find the transformations from randomly sampled artificial errors. Besides, our work is open-sourced for the community to fully utilize the advances of the methodology for developing more the approach, initiating collaboration, and innovation in the topic.

Polarimetric Image Augmentation

Marc Blanchon, Fabrice Meriaudeau, Olivier Morel, Ralph Seulin, Desire Sidibe

Responsive image

Auto-TLDR; Polarimetric Augmentation for Deep Learning in Robotics Applications

Poster Similar

This paper deals with new augmentation methods for an unconventional imaging modality sensitive to the physics of the observed scene called polarimetry. In nature, polarized light is obtained by reflection or scattering. Robotics applications in urban environments are subject to many obstacles that can be specular and therefore provide polarized light. These areas are prone to segmentation errors using standard modalities but could be solved using information carried by the polarized light. Deep Convolutional Neural Networks (DCNNs) have shown excellent segmentation results, but require a significant amount of data to achieve best performances. The lack of data is usually overcomed by using augmentation methods. However, unlike RGB images, polarization images are not only scalar (intensity) images and standard augmentation techniques cannot be applied straightforwardly. We propose enhancing deep learning models through a regularized augmentation procedure applied to polarimetric data in order to characterize scenes more effectively under challenging conditions. We subsequently observe an average of 18.1% improvement in IoU between not augmented and regularized training procedures on real world data.

Estimating Gaze Points from Facial Landmarks by a Remote Spherical Camera

Shigang Li

Responsive image

Auto-TLDR; Gaze Point Estimation from a Spherical Image from Facial Landmarks

Slides Poster Similar

From a spherical image, a gaze point, instead of gaze vectors, can be estimated directly because a remote spherical camera can observe a user's face and a gaze target simultaneously. This paper investigates the problem of estimating a gaze point in a spherical image from facial landmarks. In contrast with the existing methods which usually assume gaze points move on a narrow plane, the proposed method can cope with the situation where gaze points vary in depth for a relatively wide field of view. As shown in the results of comparative experiments, we find the orthogonal coordinates of facial landmarks on a unit sphere is a reasonable representation in comparison with spherical polar coordinates; the cues of head pose is helpful to improve the accuracy of gaze points. Consequently, the proposed method achieves a performance on the accuracy of gaze points estimation which is comparable to the state of the art methods.

Generic Merging of Structure from Motion Maps with a Low Memory Footprint

Gabrielle Flood, David Gillsjö, Patrik Persson, Anders Heyden, Kalle Åström

Responsive image

Auto-TLDR; A Low-Memory Footprint Representation for Robust Map Merge

Slides Poster Similar

With the development of cheap image sensors, the amount of available image data have increased enormously, and the possibility of using crowdsourced collection methods has emerged. This calls for development of ways to handle all these data. In this paper, we present new tools that will enable efficient, flexible and robust map merging. Assuming that separate optimisations have been performed for the individual maps, we show how only relevant data can be stored in a low memory footprint representation. We use these representations to perform map merging so that the algorithm is invariant to the merging order and independent of the choice of coordinate system. The result is a robust algorithm that can be applied to several maps simultaneously. The result of a merge can also be represented with the same type of low-memory footprint format, which enables further merging and updating of the map in a hierarchical way. Furthermore, the method can perform loop closing and also detect changes in the scene between the capture of the different image sequences. Using both simulated and real data — from both a hand held mobile phone and from a drone — we verify the performance of the proposed method.

Cost Volume Refinement for Depth Prediction

João L. Cardoso, Nuno Goncalves, Michael Wimmer

Responsive image

Auto-TLDR; Refining the Cost Volume for Depth Prediction from Light Field Cameras

Slides Poster Similar

Light-field cameras are becoming more popular in the consumer market. Their data redundancy allows, in theory, to accurately refocus images after acquisition and to predict the depth of each point visible from the camera. Combined, these two features allow for the generation of full-focus images, which is impossible in traditional cameras. Multiple methods for depth prediction from light fields (or stereo) have been proposed over the years. A large subset of these methods relies on cost-volume estimates -- 3D objects where each layer represents a heuristic of whether each point in the image is at a certain distance from the camera. Generally, this volume is used to regress a disparity map, which is then refined for better results. In this paper, we argue that refining the cost volumes is superior to refining the disparity maps in order to further increase the accuracy of depth predictions. We propose a set of cost-volume refinement algorithms and show their effectiveness.

Removing Raindrops from a Single Image Using Synthetic Data

Yoshihito Kokubo, Shusaku Asada, Hirotaka Maruyama, Masaru Koide, Kohei Yamamoto, Yoshihisa Suetsugu

Responsive image

Auto-TLDR; Raindrop Removal Using Synthetic Raindrop Data

Slides Poster Similar

We simulated the exact features of raindrops on a camera lens and conducted an experiment to evaluate the performance of a network trained to remove raindrops using synthetic raindrop data. Although research has been conducted to precisely evaluate methods to remove raindrops, with some evaluation networks trained on images with real raindrops and others trained on images with synthetic raindrops, there have not been any studies that have directly compared the performance of two networks trained on each respective kind of image. In a previous study wherein images with synthetic raindrops were used for training, the network did not work effectively on images with real raindrops because the shapes of the raindrops were simulated using simple arithmetic expressions. In this study, we focused on generating raindrop shapes that are closer to reality with the aim of using these synthetic raindrops in images to develop a technique for removing real-world raindrops. After categorizing raindrops by type, we further separated each raindrop type into its constituent elements, generated each element separately, and finally combined the generated elements. The proposed technique was used to add images with synthetic raindrops to the training data, and when we evaluated the model, we confirmed that the technique's precision exceeded that of when only images with actual raindrops were used for training. The evaluation results proved that images with synthetic raindrops can be used as training data for real-world images.

An Adaptive Model for Face Distortion Correction

Duong H. Nguyen, Tien D. Bui

Responsive image

Auto-TLDR; Adaptive Polynomial Model for Face Distortion Correction in Selfie Photos

Poster Similar

The age of social media insists on developing devices that are able to capture and share ones' moments with high fidelity. Handheld devices such as smartphones with wide-angle cameras have shown the current trend in mobile photography. Although one can take great delight in a wide field of view through modern cameras, nearby objects or faces may be distorted significantly. Recent works have obtained impressive results in this research area, but there is still a tradeoff between image quality and processing time to consider. This work introduces an adaptive polynomial model that automatically selects faces and performs image distortion correction. Since the photos are processed locally, faces are undistorted, and the background is close to the original state. Unlike other content-aware based methods which rely on heavy computing components and high image resolution, our model is suitable for mobile devices to tackle face distortion issue in selfie photos.

Local Binary Quaternion Rotation Pattern for Colour Texture Retrieval

Hela Jebali, Noel Richard, Mohamed Naouai

Responsive image

Auto-TLDR; Local Binary Quaternion Rotation Pattern for Color Texture Classification

Poster Similar

Color is very important feature for image representation, it assumes very essential in the human visual recognition process. Most existing approaches usually extract features from the three color channels separately (Marginal way). Although, it exists few vector expressions of texture features. Aware of the high interaction that exists between different channels in the color image, this work introduces a compact texture descriptor, named Local Binary Quaternion Rotation Pattern (LBQRP). In this LBQRP purpose, the quaternion representation is used to represent color texture. The distance between two color can be expressed as the angle of rotation between two unit quaternions using the geodesic distance. After a LBQRP coding, local histograms are extracted and used as features. Experiments on three challenging color datasets: Vistex, Outex-TC13 and USPtex are carried out to evaluate the LBQRP performance in texture classification. Results show the high efficiency of the proposed approach facing to several stat-of-art methods.

Minimal Solvers for Indoor UAV Positioning

Marcus Valtonen Örnhag, Patrik Persson, Mårten Wadenbäck, Kalle Åström, Anders Heyden

Responsive image

Auto-TLDR; Relative Pose Solvers for Visual Indoor UAV Navigation

Slides Poster Similar

In this paper we consider a collection of relative pose problems which arise naturally in applications for visual indoor UAV navigation. We focus on cases where additional information from an onboard IMU is available and thus provides a partial extrinsic calibration through the gravitational vector. The solvers are designed for a partially calibrated camera, for a variety of realistic indoor scenarios, which makes it possible to navigate using images of the ground floor. Current state-of-the-art solvers use more general assumptions, such as using arbitrary planar structures; however, these solvers do not yield adequate reconstructions for real scenes, nor do they perform fast enough to be incorporated in real-time systems. We show that the proposed solvers enjoy better numerical stability, are faster, and require fewer point correspondences, compared to state-of-the-art solvers. These properties are vital components for robust navigation in real-time systems, and we demonstrate on both synthetic and real data that our method outperforms other methods, and yields superior motion estimation.

Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Luigi Di Stefano

Responsive image

Auto-TLDR; Automated Deep Learning for Robotic Grasping Applications

Slides Poster Similar

In this paper we investigate how to effectively deploy deep learning in practical industrial settings, such as robotic grasping applications. When a deep-learning based solution is proposed, usually lacks of any simple method to generate the training data. In the industrial field, where automation is the main goal, not bridging this gap is one of the main reasons why deep learning is not as widespread as it is in the academic world. For this reason, in this work we developed a system composed by a 3-DoF Pose Estimator based on Convolutional Neural Networks (CNNs) and an effective procedure to gather massive amounts of training images in the field with minimal human intervention. By automating the labeling stage, we also obtain very robust systems suitable for production-level usage. An open source implementation of our solution is provided, alongside with the dataset used for the experimental evaluation.

User-Independent Gaze Estimation by Extracting Pupil Parameter and Its Mapping to the Gaze Angle

Sang Yoon Han, Nam Ik Cho

Responsive image

Auto-TLDR; Gaze Point Estimation using Pupil Shape for Generalization

Slides Poster Similar

Since gaze estimation plays a crucial role in recognizing human intentions, it has been researched for a long time, and its accuracy is ever increasing. However, due to the wide variation in eye shapes and focusing abilities between the individuals, accuracies of most algorithms vary depending on each person in the test group, especially when the initial calibration is not well performed. To alleviate the user-dependency, we attempt to derive features that are general for most people and use them as the input to a deep network instead of using the images as the input. Specifically, we use the pupil shape as the core feature because it is directly related to the 3D eyeball rotation, and thus the gaze direction. While existing deep learning methods learn the gaze point by extracting various features from the image, we focus on the mapping function from the eyeball rotation to the gaze point by using the pupil shape as the input. It is shown that the accuracy of gaze point estimation also becomes robust for the uncalibrated points by following the characteristics of the mapping function. Also, our gaze network learns the gaze difference to facilitate the re-calibration process to fix the calibration-drift problem that typically occurs with glass-type or head-mount devices.

Unconstrained Vision Guided UAV Based Safe Helicopter Landing

Arindam Sikdar, Abhimanyu Sahu, Debajit Sen, Rohit Mahajan, Ananda Chowdhury

Responsive image

Auto-TLDR; Autonomous Helicopter Landing in Hazardous Environments from Unmanned Aerial Images Using Constrained Graph Clustering

Slides Poster Similar

In this paper, we have addressed the problem of automated detection of safe zone(s) for helicopter landing in hazardous environments from images captured by an Unmanned Aerial Vehicle (UAV). The unconstrained motion of the image capturing drone (the UAV in our case) makes the problem further difficult. The solution pipeline consists of natural landmark detection and tracking, stereo-pair generation using constrained graph clustering, digital terrain map construction and safe landing zone detection. The main methodological contribution lies in mathematically formulating epipolar constraint and then using it in a Minimum Spanning Tree (MST) based graph clustering approach. We have also made publicly available AHL (Autonomous Helicopter Landing) dataset, a new aerial video dataset captured by a drone, with annotated ground-truths. Experimental comparisons with other competing clustering methods i) in terms of Dunn Index and Davies Bouldin Index as well as ii) for frame-level safe zone detection in terms of F-measure and confusion matrix clearly demonstrate the effectiveness of the proposed formulation.

5D Light Field Synthesis from a Monocular Video

Kyuho Bae, Andre Ivan, Hajime Nagahara, In Kyu Park

Responsive image

Auto-TLDR; Synthesis of Light Field Video from Monocular Video using Deep Learning

Slides Similar

Commercially available light field cameras have difficulty in capturing 5D (4D + time) light field videos. They can only capture still light filed images or are excessively expensive for normal users to capture the light field video. To tackle this problem, we propose a deep learning-based method for synthesizing a light field video from a monocular video. We propose a new synthetic light field video dataset that renders photorealistic scenes using Unreal Engine because no light field video dataset is available. The proposed deep learning framework synthesizes the light field video with a full set (9x9) of sub-aperture images from a normal monocular video. The proposed network consists of three sub-networks, namely, feature extraction, 5D light field video synthesis, and temporal consistency refinement. Experimental results show that our model can successfully synthesize the light field video for synthetic and real scenes and outperforms the previous frame-by-frame method quantitatively and qualitatively.

CARRADA Dataset: Camera and Automotive Radar with Range-Angle-Doppler Annotations

Arthur Ouaknine, Alasdair Newson, Julien Rebut, Florence Tupin, Patrick Pérez

Responsive image

Auto-TLDR; CARRADA: A dataset of synchronized camera and radar recordings with range-angle-Doppler annotations for autonomous driving

Slides Poster Similar

High quality perception is essential for autonomous driving (AD) systems. To reach the accuracy and robustness that are required by such systems, several types of sensors must be combined. Currently, mostly cameras and laser scanners (lidar) are deployed to build a representation of the world around the vehicle. While radar sensors have been used for a long time in the automotive industry, they are still under-used for AD despite their appealing characteristics (notably, their ability to measure the relative speed of obstacles and to operate even in adverse weather conditions). To a large extent, this situation is due to the relative lack of automotive datasets with real radar signals that are both raw and annotated. In this work, we introduce CARRADA, a dataset of synchronized camera and radar recordings with range-angle-Doppler annotations. We also present a semi-automatic annotation approach, which was used to annotate the dataset, and a radar semantic segmentation baseline, which we evaluate on several metrics. Both our code and dataset will be released.

AV-SLAM: Autonomous Vehicle SLAM with Gravity Direction Initialization

Kaan Yilmaz, Baris Suslu, Sohini Roychowdhury, L. Srikar Muppirisetty

Responsive image

Auto-TLDR; VI-SLAM with AGI: A combination of three SLAM algorithms for autonomous vehicles

Slides Poster Similar

Simultaneous localization and mapping (SLAM) algorithms that are aimed at autonomous vehicles (AVs) are required to utilize sensor redundancies specific to AVs and enable accurate, fast and repeatable estimations of pose and path trajectories. In this work, we present a combination of three SLAM algorithms that utilize a different subset of available sensors such as inertial measurement unit (IMU), a gray-scale mono-camera, and a Lidar. Also, we propose a novel acceleration-based gravity direction initialization (AGI) method for the visual-inertial SLAM algorithm. We analyze the SLAM algorithms and initialization methods for pose estimation accuracy, speed of convergence and repeatability on the KITTI odometry sequences. The proposed VI-SLAM with AGI method achieves relative pose errors less than 2\%, convergence in half a minute or less and convergence time variability less than 3s, which makes it preferable for AVs.

Revisiting Optical Flow Estimation in 360 Videos

Keshav Bhandari, Ziliang Zong, Yan Yan

Responsive image

Auto-TLDR; LiteFlowNet360: A Domain Adaptation Framework for 360 Video Optical Flow Estimation

Slides Similar

Nowadays 360 video analysis has become a significant research topic in the field since the appearance of high-quality and low-cost 360 wearable devices. In this paper, we propose a novel LiteFlowNet360 architecture for 360 videos optical flow estimation. We design LiteFlowNet360 as a domain adaptation framework from perspective video domain to 360 video domain. We adapt it from simple kernel transformation techniques inspired by Kernel Transformer Network (KTN) to cope with inherent distortion in 360 videos caused by the sphere-to-plane projection. First, we apply an incremental transformation of convolution layers in feature pyramid network and show that further transformation in inference and regularization layers are not important, hence reducing the network growth in terms of size and computation cost. Second, we refine the network by training with augmented data in a supervised manner. We perform data augmentation by projecting the images in a sphere and re-projecting to a plane. Third, we train LiteFlowNet360 in a self-supervised manner using target domain 360 videos. Experimental results show the promising results of 360 video optical flow estimation using the proposed novel architecture.

Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster Similar

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

Localization of Unmanned Aerial Vehicles in Corridor Environments Using Deep Learning

Ram Padhy, Shahzad Ahmad, Sachin Verma, Sambit Bakshi, Pankaj Kumar Sa

Responsive image

Auto-TLDR; A monocular vision assisted localization algorithm for indoor corridor environments

Slides Poster Similar

We propose a monocular vision assisted localization algorithm, that will help a UAV navigate safely in indoor corridor environments. Always, the aim is to navigate the UAV through a corridor in the forward direction by keeping it at the center with no orientation either to the left or right side. The algorithm makes use of the RGB image, captured from the UAV front camera, and passes it through a trained Deep Neural Network (DNN) to predict the position of the UAV as either on the left or center or right side of the corridor. Depending upon the divergence of the UAV with respect to an imaginary central line, known as the central bisector line (CBL) of the corridor, a suitable command is generated to bring the UAV to the center. When the UAV is at the center of the corridor, a new image is passed through another trained DNN to predict the orientation of the UAV with respect to the CBL of the corridor. If the UAV is either left or right tilted, an appropriate command is generated to rectify the orientation. We also propose a new corridor dataset, named UAVCorV1, which contains images as captured by the UAV front camera when the UAV is at all possible locations of a variety of corridors. An exhaustive set of experiments in different corridors reveal the efficacy of the proposed algorithm.

Multi-View Object Detection Using Epipolar Constraints within Cluttered X-Ray Security Imagery

Brian Kostadinov Shalon Isaac-Medina, Chris G. Willcocks, Toby Breckon

Responsive image

Auto-TLDR; Exploiting Epipolar Constraints for Multi-View Object Detection in X-ray Security Images

Slides Poster Similar

Automatic detection for threat object items is an increasing emerging area of future application in X-ray security imagery. Although modern X-ray security scanners can provide two or more views, the integration of such object detectors across the views has not been widely explored with rigour. Therefore, we investigate the application of geometric constraints using the epipolar nature of multi-view imagery to improve object detection performance. Furthermore, we assume that images come from uncalibrated views, such that a method to estimate the fundamental matrix using ground truth bounding box centroids from multiple view object detection labels is proposed. In addition, detections are given a score based on its similarity with respect to the distribution of the error of the epipolar estimation. This score is used as confidence weights for merging duplicated predictions using non-maximum suppression. Using a standard object detector (YOLOv3), our technique increases the average precision of detection by 2.8% on a dataset composed of firearms, laptops, knives and cameras. These results indicate that the integration of images at different views significantly improves the detection performance of threat items of cluttered X-ray security images.

Position-Aware and Symmetry Enhanced GAN for Radial Distortion Correction

Yongjie Shi, Xin Tong, Jingsi Wen, He Zhao, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Generative Adversarial Network for Radial Distorted Image Correction

Slides Poster Similar

This paper presents a novel method based on the generative adversarial network for radial distortion correction. Instead of generating a corrected image, our generator predicts a pixel flow map to measure the pixel offset between the distorted and corrected image. The quality of the generated pixel flow map and the warped image are judged by the discriminator. As texture far away from the image center has strong distortion, we develop an Adaptive Inverted Foveal layer which can transform the deformation to the intensity of the image to exploit this property. Rotation symmetry enhanced convolution kernels are applied to extract geometric features of different orientations explicitly. These learned features are recalibrated using the Squeeze-and-Excitation block to assign different weights for different directions. Moreover, we construct a first real-world radial distorted image dataset RD600 annotated with ground truth to evaluate our proposed method. We conduct extensive experiments to validate the effectiveness of each part of our framework. The further experiment shows our approach outperforms previous methods in both synthetic and real-world datasets quantitatively and qualitatively.

RONELD: Robust Neural Network Output Enhancement for Active Lane Detection

Zhe Ming Chng, Joseph Mun Hung Lew, Jimmy Addison Lee

Responsive image

Auto-TLDR; Real-Time Robust Neural Network Output Enhancement for Active Lane Detection

Slides Poster Similar

Accurate lane detection is critical for navigation in autonomous vehicles, particularly the active lane which demarcates the single road space that the vehicle is currently traveling on. Recent state-of-the-art lane detection algorithms utilize convolutional neural networks (CNNs) to train deep learning models on popular benchmarks such as TuSimple and CULane. While each of these models works particularly well on train and test inputs obtained from the same dataset, the performance drops significantly on unseen datasets of different environments. In this paper, we present a real-time robust neural network output enhancement for active lane detection (RONELD) method to identify, track, and optimize active lanes from deep learning probability map outputs. We first adaptively extract lane points from the probability map outputs, followed by detecting curved and straight lanes before using weighted least squares linear regression on straight lanes to fix broken lane edges resulting from fragmentation of edge maps in real images. Lastly, we hypothesize true active lanes through tracking preceding frames. Experimental results demonstrate an up to two-fold increase in accuracy using RONELD on cross-dataset validation tests.

Fast Region-Adaptive Defogging and Enhancement for Outdoor Images Containing Sky

Zhan Li, Xiaopeng Zheng, Bir Bhanu, Shun Long, Qingfeng Zhang, Zhenghao Huang

Responsive image

Auto-TLDR; Image defogging and enhancement of hazy outdoor scenes using region-adaptive segmentation and region-ratio-based adaptive Gamma correction

Slides Poster Similar

Inclement weather, haze, and fog severely decrease the performance of outdoor imaging systems. Due to a large range of the depth-of-field, most image dehazing or enhancement methods suffer from color distortions and halo artifacts when applied to real-world hazy outdoor scenes, especially those with the sky. To effectively recover details in both distant and nearby regions as well as to preserve color fidelity of the sky, in this study, we propose a novel image defogging and enhancement approach based on a replaceable plug-in segmentation module and region-adaptive processing. First, regions of the grayish sky, pure white objects, and other parts are separated. Several segmentation methods are studied, including an efficient threshold-based one used for this work. Second, a luminance-inverted multi-scale Retinex with color restoration (MSRCR) and region-ratio-based adaptive Gamma correction are applied to non-grayish and non-white areas. Finally, the enhanced regions are stitched seamlessly by using a mean-filtered region mask. The proposed method is efficient in defogging natural outdoor scenes and requires no training data or prior knowledge. Extensive experiments show that the proposed approach not only outperforms several state-of-the-art defogging methods in terms of both visibility and color fidelity, but also provides enhanced outputs with fewer artifacts and halos, particularly in sky regions.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Surface IR Reflectance Estimation and Material Recognition Using ToF Camera

Seokyeong Lee, Seungkyu Lee

Responsive image

Auto-TLDR; Material Type Recognition Using IR Reflectance Based Material Type Recognitions

Slides Poster Similar

Recently, various material recognition methods have been introduced that use a single color or light field camera. In prior methods, color and texture information of an object are used as key features. However, there exists fundamental limitation in using color features for material recognition in that material type can be characterized better by surface reflectance, visual appearance rather than its color and textures. In this work, we propose IR surface reflectance based material type recognition method. We use off-the-shelf ToF camera to estimate the IR reflectance of arbitrary surface. Material type recognition is performed on both color and surface IR reflectance features. Several network structures including gradual convolutional neural network are proposed and verified for our material recognition within our own 3D data sets.

Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem Formulation

Dimche Kostadinov, Davide Scarammuza

Responsive image

Auto-TLDR; Unsupervised Representation Learning from Local Event Data for Pattern Recognition

Slides Poster Similar

Event-based cameras record asynchronous streamof per-pixel brightness changes. As such, they have numerous advantages over the common frame-based cameras, including high temporal resolution, high dynamic range, and no motion blur. Due to the asynchronous nature, efficient learning of compact representation for event data is challenging. While the extend to which the spatial and temporal event "information" is useful for pattern recognition tasks is not fully explored. In this paper, we focus on single layer architectures. We analyze the performance of two general problem formulations,i.e., the direct and the inverse, for unsupervised feature learning from local event data,i.e., local volumes of events that are described in space and time. We identify and show the main advantages of each approach. Theoretically, we analyze guarantees for local optimal solution, possibility for asynchronous and parallel parameter update as well as the computational complexity. We present numerical experiments for the task of object recognition, where we evaluate the solution under the direct and the inverse problem.We give a comparison with the state-of-the-art methods. Our empirical results highlight the advantages of the both approaches for representation learning from event data. Moreover, we show improvements of up to 9% in the recognition accuracy compared to the state-of-the-art methods from the same class of methods.

Derivation of Geometrically and Semantically Annotated UAV Datasets at Large Scales from 3D City Models

Sidi Wu, Lukas Liebel, Marco Körner

Responsive image

Auto-TLDR; Large-Scale Dataset of Synthetic UAV Imagery for Geometric and Semantic Annotation

Slides Poster Similar

While in high demand for the development of deep learning approaches, extensive datasets of annotated UAV imagery are still scarce today. Manual annotation, however, is time-consuming and, thus, has limited the potential for creating large-scale datasets. We tackle this challenge by presenting a procedure for the automatic creation of simulated UAV image sequences in urban areas and pixel-level annotations from publicly available data sources. We synthesize photo-realistic UAV imagery from Goole Earth Studio and derive annotations from an open CityGML model that not only provides geometric but also semantic information. The first dataset we exemplarily created using our approach contains 144000 images of Berlin, Germany, with four types of annotations, namely semantic labels as well as depth, surface normals, and edge maps. In the future, a complete pipeline regarding all the technical problems will be provided, together with more accurate models to refine some of the empirical settings currently, to automatically generate a large-scale dataset with reliable ground-truth annotations over the whole city of Berlin. The dataset, as well as the source code, will be published by then. Different methods will also be facilitated to test the usability of the dataset. We believe our dataset can be used for, and not limited to, tasks like pose estimation, geo-localization, monocular depth estimation, edge detection, building/surface classification, and plane segmentation. A potential research pipeline for geo-localization based on the synthetic dataset is provided.