Embedding Shared Low-Rank and Feature Correlation for Multi-View Data Analysis

Zhan Wang, Lizhi Wang, Hua Huang

Responsive image

Auto-TLDR; embedding shared low-rank and feature correlation for multi-view data analysis

Slides Poster

The diversity of multimedia data in the real-world usually forms multi-view features. How to explore the structure information and correlations among multi-view features is still an open problem. In this paper, we propose a novel multi-view subspace learning method, named embedding shared low-rank and feature correlation (ESLRFC), for multi-view data analysis. First, in the embedding subspace, we propose a robust low-rank model on each feature set and enforce a shared low-rank constraint to characterize the common structure information of multiple feature data. Second, we develop an enhanced correlation analysis in the embedding subspace for simultaneously removing the redundancy of each feature set and exploring the correlations of multiple feature data. Finally, we incorporate the low-rank model and the correlation analysis into a unified framework. The shared low-rank constraint not only depicts the data distribution consistency among multiple feature data, but also assists robust subspace learning. Experimental results on recognition tasks demonstrate the superior performance and noise robustness of the proposed method.

Similar papers

Low Rank Representation on Product Grassmann Manifolds for Multi-viewSubspace Clustering

Jipeng Guo, Yanfeng Sun, Junbin Gao, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Low Rank Representation on Product Grassmann Manifold for Multi-View Data Clustering

Slides Poster Similar

Clustering high dimension multi-view data with complex intrinsic properties and nonlinear manifold structure is a challenging task since these data are always embedded in low dimension manifolds. Inspired by Low Rank Representation (LRR), some researchers extended classic LRR on Grassmann manifold or Product Grassmann manifold to represent data with non-linear metrics. However, most of these methods utilized convex nuclear norm to leverage a low-rank structure, which was over-relaxation of true rank and would lead to the results deviated from the true underlying ones. And, the computational complexity of singular value decomposition of matrix is high for nuclear norm minimization. In this paper, we propose a new low rank model for high-dimension multi-view data clustering on Product Grassmann Manifold with the matrix tri-factorization which is used to control the upper bound of true rank of representation matrix. And, the original problem can be transformed into the nuclear norm minimization with smaller scale matrices. An effective solution and theoretical analysis are also provided. The experimental results show that the proposed method obviously outperforms other state-of-the-art methods on several multi-source human/crowd action video datasets.

A Spectral Clustering on Grassmann Manifold Via Double Low Rank Constraint

Xinglin Piao, Yongli Hu, Junbin Gao, Yanfeng Sun, Xin Yang, Baocai Yin

Responsive image

Auto-TLDR; Double Low Rank Representation for High-Dimensional Data Clustering on Grassmann Manifold

Slides Similar

High-dimension data clustering is a fundamental topic in machine learning and data mining areas. In recent year, researchers have proposed a series of effective methods based on Low Rank Representation (LRR) which could explore low-dimension subspace structure embedded in original data effectively. The traditional LRR methods usually treat original data as samples in Euclidean space. They generally adopt linear metric to measure the distance between two data. However, high-dimension data (such as video clip or imageset) are always considered as non-linear manifold data such as Grassmann manifold. Therefore, the traditional linear Euclidean metric would be no longer suitable for these special data. In addition, traditional LRR clustering method always adopt nuclear norm as low rank constraint which would lead to suboptimal solution and decrease the clustering accuracy. In this paper, we proposed a new low rank method on Grassmann manifold for high-dimension data clustering task. In the proposed method, a double low rank representation approach is proposed by combining the nuclear norm and bilinear representation for better construct the representation matrix. The experimental results on several public datasets show that the proposed method outperforms the state-of-the-art clustering methods.

Double Manifolds Regularized Non-Negative Matrix Factorization for Data Representation

Jipeng Guo, Shuai Yin, Yanfeng Sun, Yongli Hu

Responsive image

Auto-TLDR; Double Manifolds Regularized Non-negative Matrix Factorization for Clustering

Slides Poster Similar

Non-negative matrix factorization (NMF) is an important method in learning latent data representation. The local geometrical structure can make the learned representation more effectively and significantly improve the performance of NMF. However, most of existing graph-based learning methods are determined by a predefined similarity graph which may be not optimal for specific tasks. To solve the above the problem, we propose the Double Manifolds Regularized NMF (DMR-NMF) model which jointly learns an adaptive affinity matrix with the non-negative matrix factorization. The learned affinity matrix can guide the NMF to fit the clustering task. Moreover, we develop the iterative updating optimization schemes for DMR-NMF, and provide the strict convergence proof of our optimization strategy. Empirical experiments on four different real-world data sets demonstrate the state-of-the-art performance of DMR-NMF in comparison with the other related algorithms.

Feature Extraction by Joint Robust Discriminant Analysis and Inter-Class Sparsity

Fadi Dornaika, Ahmad Khoder

Responsive image

Auto-TLDR; Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS)

Slides Similar

Feature extraction methods have been successfully applied to many real-world applications. The classical Linear Discriminant Analysis (LDA) and its variants are widely used as feature extraction methods. Although they have been used for different classification tasks, these methods have some shortcomings. The main one is that the projection axes obtained are not informative about the relevance of original features. In this paper, we propose a linear embedding method that merges two interesting properties: Robust LDA and inter-class sparsity. Furthermore, the targeted projection transformation focuses on the most discriminant original features. The proposed method is called Robust Discriminant Analysis with Feature Selection and Inter-class Sparsity (RDA_FSIS). Two kinds of sparsity are explicitly included in the proposed model. The first kind is obtained by imposing the $\ell_{2,1}$ constraint on the projection matrix in order to perform feature ranking. The second kind is obtained by imposing the inter-class sparsity constraint used for getting a common sparsity structure in each class. Comprehensive experiments on five real-world image datasets demonstrate the effectiveness and advantages of our framework over existing linear methods.

Subspace Clustering Via Joint Unsupervised Feature Selection

Wenhua Dong, Xiaojun Wu, Hui Li, Zhenhua Feng, Josef Kittler

Responsive image

Auto-TLDR; Unsupervised Feature Selection for Subspace Clustering

Poster Similar

Any high-dimensional data arising from practical applications usually contains irrelevant features, which may impact on the performance of existing subspace clustering methods. This paper proposes a novel subspace clustering method, which reconstructs the feature matrix by the means of unsupervised feature selection (UFS) to achieve a better dictionary for subspace clustering (SC). Different from most existing clustering methods, the proposed approach uses a reconstructed feature matrix as the dictionary rather than the original data matrix. As the feature matrix reconstructed by representative features is more discriminative and closer to the ground-truth, it results in improved performance. The corresponding non-convex optimization problem is effectively solved using the half-quadratic and augmented Lagrange multiplier methods. Extensive experiments on four real datasets demonstrate the effectiveness of the proposed method.

Fast Subspace Clustering Based on the Kronecker Product

Lei Zhou, Xiao Bai, Liang Zhang, Jun Zhou, Edwin Hancock

Responsive image

Auto-TLDR; Subspace Clustering with Kronecker Product for Large Scale Datasets

Slides Poster Similar

Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank representation to learn a block diagonal self-representation matrix for subspace generation. However, existing methods require solving a large scale convex optimization problem with a large set of data, with computational complexity reaches O(N^3) for N data points. Therefore, the efficiency and scalability of traditional spectral clustering methods can not be guaranteed for large scale datasets. In this paper, we propose a subspace clustering model based on the Kronecker product. Due to the property that the Kronecker product of a block diagonal matrix with any other matrix is still a block diagonal matrix, we can efficiently learn the representation matrix which is formed by the Kronecker product of k smaller matrices. By doing so, our model significantly reduces the computational complexity to O(kN^{3/k}). Furthermore, our model is general in nature, and can be adapted to different regularization based subspace clustering methods. Experimental results on two public datasets show that our model significantly improves the efficiency compared with several state-of-the-art methods. Moreover, we have conducted experiments on synthetic data to verify the scalability of our model for large scale datasets.

Feature Extraction and Selection Via Robust Discriminant Analysis and Class Sparsity

Ahmad Khoder, Fadi Dornaika

Responsive image

Auto-TLDR; Hybrid Linear Discriminant Embedding for supervised multi-class classification

Slides Poster Similar

The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multi-class classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Inter-class sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.

Soft Label and Discriminant Embedding Estimation for Semi-Supervised Classification

Fadi Dornaika, Abdullah Baradaaji, Youssof El Traboulsi

Responsive image

Auto-TLDR; Semi-supervised Semi-Supervised Learning for Linear Feature Extraction and Label Propagation

Slides Poster Similar

In recent times, graph-based semi-supervised learning proved to be a powerful paradigm for processing and mining large datasets. The main advantage relies on the fact that these methods can be useful in propagating a small set of known labels to a large set of unlabeled data. The scarcity of labeled data may affect the performance of the semi-learning. This paper introduces a new semi-supervised framework for simultaneous linear feature extraction and label propagation. The proposed method simultaneously estimates a discriminant transformation and the unknown label by exploiting both labeled and unlabeled data. In addition, the unknowns of the learning model are estimated by integrating two types of graph-based smoothness constraints. The resulting semi-supervised model is expected to learn more discriminative information. Experiments are conducted on six public image datasets. These experimental results show that the performance of the proposed method can be better than that of many state-of-the-art graph-based semi-supervised algorithms.

Webly Supervised Image-Text Embedding with Noisy Tag Refinement

Niluthpol Mithun, Ravdeep Pasricha, Evangelos Papalexakis, Amit Roy-Chowdhury

Responsive image

Auto-TLDR; Robust Joint Embedding for Image-Text Retrieval Using Web Images

Slides Similar

In this paper, we address the problem of utilizing web images in training robust joint embedding models for the image-text retrieval task. Prior webly supervised approaches directly leverage weakly annotated web images in the joint embedding learning framework. The objective of these approaches would suffer significantly when the ratio of noisy and missing tags associated with the web images is very high. In this regard, we propose a CP decomposition based tensor completion framework to refine the tags of web images by modeling observed ternary inter-relations between the sets of labeled images, tags, and web images as a tensor. To effectively deal with the high ratio of missing entries likely in our case, we incorporate intra-modal correlation as side information in the proposed framework. Our tag refinement approach combined with existing web supervised image-text embedding approaches provide a more principled way for learning the joint embedding models in the presence of significant noise from web data and limited clean labeled data. Experiments on benchmark datasets demonstrate that the proposed approach helps to achieve a significant performance gain in image-text retrieval.

A Distinct Discriminant Canonical Correlation Analysis Network Based Deep Information Quality Representation for Image Classification

Lei Gao, Zheng Guo, Ling Guan Ling Guan

Responsive image

Auto-TLDR; DDCCANet: Deep Information Quality Representation for Image Classification

Slides Poster Similar

In this paper, we present a distinct discriminant canonical correlation analysis network (DDCCANet) based deep information quality representation with application to image classification. Specifically, to explore the sufficient discriminant information between different data sets, the within-class and between-class correlation matrices are employed and optimized jointly. Moreover, different from the existing canonical correlation analysis network (CCANet) and related algorithms, an information theoretic descriptor, information quality (IQ), is adopted to generate the deep-level feature representation for image classification. Benefiting from the explored discriminant information and IQ descriptor, it is potential to gain a more effective deep-level representation from multi-view data sets, leading to improved performance in classification tasks. To demonstrate the effectiveness of the proposed DDCCANet, we conduct experiments on the Olivetti Research Lab (ORL) face database, ETH80 database and CIFAR10 database. Experimental results show the superiority of the proposed solution on image classification.

Directionally Paired Principal Component Analysis for Bivariate Estimation Problems

Navdeep Dahiya, Yifei Fan, Samuel Bignardi, Tony Yezzi, Romeil Sandhu

Responsive image

Auto-TLDR; Asymmetrically-Paired Principal Component Analysis for Linear Dimension-Reduction

Slides Poster Similar

We propose Asymmetrically-Paired Principal Component Analysis (APPCA), a novel linear dimension-reduction model for estimating coupled yet partially available variable sets. Unlike partial least square methods (e.g., partial least square regression and canonical correlation analysis) which maximize correlation/covariance between the two datasets, our APPCA directly minimizes, either conditionally or unconditionally, the reconstruction and prediction errors for the observable and unobservable part, respectively. We demonstrate the optimality of the proposed APPCA approach, we compare and evaluate relevant linear cross-decomposition methods with data reconstruction and prediction experiments on synthetic Gaussian data, multi-target regression datasets and single-channel image datasets. Results show that when only a single pair of bases is allowed, the conditional APPCA achieves lowest reconstruction error on the observable part and the total variable sets as a whole, meanwhile the unconditional APPCA reaches lowest prediction errors on the unobservable part. When extra budget is allowed for the PCA basis of the observable part, one can reach optimal solution using a combine method: standard PCA for the observable part and unconditional APPCA for the unobservable part.

Label Self-Adaption Hashing for Image Retrieval

Jianglin Lu, Zhihui Lai, Hailing Wang, Jie Zhou

Responsive image

Auto-TLDR; Label Self-Adaption Hashing for Large-Scale Image Retrieval

Slides Poster Similar

Hashing has attracted widespread attention in image retrieval because of its fast retrieval speed and low storage cost. Compared with supervised methods, unsupervised hashing methods are more reasonable and suitable for large-scale image retrieval since it is always difficult and expensive to collect true labels of the massive data. Without label information, however, unsupervised hashing methods can not guarantee the quality of learned binary codes. To resolve this dilemma, this paper proposes a novel unsupervised hashing method called Label Self-Adaption Hashing (LSAH), which contains effective hashing function learning part and self-adaption label generation part. In the first part, we utilize anchor graph to keep the local structure of the data and introduce joint sparsity into the model to extract effective features for high-quality binary code learning. In the second part, a self-adaptive cluster label matrix is learned from the data under the assumption that the nearest neighbor points should have a large probability to be in the same cluster. Therefore, the proposed LSAH can make full use of the potential discriminative information of the data to guide the learning of binary code. It is worth noting that LSAH can learn effective binary codes, hashing function and cluster labels simultaneously in a unified optimization framework. To solve the resulting optimization problem, an Augmented Lagrange Multiplier based iterative algorithm is elaborately designed. Extensive experiments on three large-scale data sets indicate the promising performance of the proposed LSAH.

Fast Discrete Cross-Modal Hashing Based on Label Relaxation and Matrix Factorization

Donglin Zhang, Xiaojun Wu, Zhen Liu, Jun Yu, Josef Kittler

Responsive image

Auto-TLDR; LRMF: Label Relaxation and Discrete Matrix Factorization for Cross-Modal Retrieval

Poster Similar

In recent years, cross-media retrieval has drawn considerable attention due to the exponential growth of multimedia data. Many hashing approaches have been proposed for the cross-media search task. However, there are still open problems that warrant investigation. For example, most existing supervised hashing approaches employ a binary label matrix, which achieves small margins between wrong labels (0) and true labels (1). This may affect the retrieval performance by generating many false negatives and false positives. In addition, some methods adopt a relaxation scheme to solve the binary constraints, which may cause large quantization errors. There are also some discrete hashing methods that have been presented, but most of them are time-consuming. To conquer these problems, we present a label relaxation and discrete matrix factorization method (LRMF) for cross-modal retrieval. It offers a number of innovations. First of all, the proposed approach employs a novel label relaxation scheme to control the margins adaptively, which has the benefit of reducing the quantization error. Second, by virtue of the proposed discrete matrix factorization method designed to learn the binary codes, large quantization errors caused by relaxation can be avoided. The experimental results obtained on two widely-used databases demonstrate that LRMF outperforms state-of-the-art cross-media methods.

Classification and Feature Selection Using a Primal-Dual Method and Projections on Structured Constraints

Michel Barlaud, Antonin Chambolle, Jean_Baptiste Caillau

Responsive image

Auto-TLDR; A Constrained Primal-dual Method for Structured Feature Selection on High Dimensional Data

Slides Poster Similar

This paper deals with feature selection using supervised classification on high dimensional datasets. A classical approach is to project data on a low dimensional space and classify by minimizing an appropriate quadratic cost. Our first contribution is to introduce a matrix of centers in the definition of this cost. Moreover, as quadratic costs are not robust to outliers, we propose to use an $\ell_1$ cost instead (or Huber loss to mitigate overfitting issues). While control on sparsity is commonly obtained by adding an $\ell_1$ constraint on the vectorized matrix of weights used for projecting the data, our second contribution is to enforce structured sparsity. To this end we propose constraints that take into account the matrix structure of the data, based either on the nuclear norm, on the $\ell_{2,1}$ norm, or on the $\ell_{1,2}$ norm for which we provide a new projection algorithm. We optimize simultaneously the projection matrix and the matrix of centers thanks to a new tailored constrained primal-dual method. The primal-dual framework is general enough to encompass the various robust losses and structured constraints we use, and allows a convergence analysis. We demonstrate the effectiveness of the approach on three biological datasets. Our primal-dual method with robust losses, adaptive centers and structured constraints does significantly better than classical methods, both in terms of accuracy and computational time.

Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems

Navdeep Dahiya, Yifei Fan, Samuel Bignardi, Tony Yezzi, Romeil Sandhu

Responsive image

Auto-TLDR; Asymmetric Principal Component Analysis between Paired Data in an Asymmetric manner

Slides Poster Similar

Principal Component Analysis (PCA) is a widely used technique for dimensionality reduction in various problem domains including data compression, image processing, visualization, exploratory data analysis, pattern recognition, time series prediction and machine learning. Often, data is presented in a correlated paired manner such there exists observable and correlated unobservable measurements. Unfortunately, traditional PCA techniques generally fail to optimally capture the leverageable correlations between such paired data as it does not yield a maximally correlated basis between the observable and unobservable counterparts. This instead is the objective of Canonical Correlation Analysis (and the more general Partial Least Squares methods); however, such techniques are still symmetric in maximizing correlation (covariance for PLSR) over all choices of basis for both datasets without differentiating between observable and unobservable variables (except for the regression phase of PLSR). Further, these methods deviate from PCA's formulation objective to minimize approximation error, seeking instead to maximize correlation or covariance. While these are sensible optimization objectives, they are not equivalent to error minimization. We therefore introduce a new method of leveraging PCA between paired datasets in an asymmetric manner which is optimal with respect to approximation error during training. We generate an asymmetrically paired basis for which we relax orthogonality constraints on the orthogonality in decomposing unreliable unobservable measurements. In doing so, this allows us to optimally capture the variations of the observable data while conditionally minimizing the expected prediction error for the unobservable component. We show preliminary results that demonstrate improved learning of our proposed method compared to that of traditional techniques.

Object Classification of Remote Sensing Images Based on Optimized Projection Supervised Discrete Hashing

Qianqian Zhang, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; Optimized Projection Supervised Discrete Hashing for Large-Scale Remote Sensing Image Object Classification

Slides Poster Similar

Recently, with the increasing number of large-scale remote sensing images, the demand for large-scale remote sensing image object classification is growing and attracting the interest of many researchers. Hashing, because of its low memory requirements and high time efficiency, has been widely solve the problem of large-scale remote sensing image. Supervised hashing methods mainly leverage the label information of remote sensing image to learn hash function, however, the similarity of the original feature space cannot be well preserved, which can not meet the accurate requirements for object classification of remote sensing image. To solve the mentioned problem, we propose a novel method named Optimized Projection Supervised Discrete Hashing(OPSDH), which jointly learns a discrete binary codes generation and optimized projection constraint model. It uses an effective optimized projection method to further constraint the supervised hash learning and generated hash codes preserve the similarity based on the data label while retaining the similarity of the original feature space. The experimental results show that OPSDH reaches improved performance compared with the existing hash learning methods and demonstrate that the proposed method is more efficient for operational applications

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Supervised Feature Embedding for Classification by Learning Rank-Based Neighborhoods

Ghazaal Sheikhi, Hakan Altincay

Responsive image

Auto-TLDR; Supervised Feature Embedding with Representation Learning of Rank-based Neighborhoods

Slides Similar

In feature embedding, the recovery of associated discriminative information in the reduced subspace is critical for downstream classifiers. In this study, a supervised feature embedding method is proposed inspired by the well-known word embedding technique, word2vec. Proposed embedding method is implemented as representative learning of rank-based neighborhoods. The notion of context words in word2vec is extended into neighboring instances within a given window. Neighborship is defined using ranks of instances rather than their values so that regions with different densities are captured properly. Each sample is represented by a unique one-hot vector whereas its neighbors are encoded by several two-hot vectors. The two-hot vectors are identical for neighboring samples of the same class. A feed-forward neural network with a continuous projection layer, then learns the mapping from one-hot vectors to multiple two-hot vectors. The hidden layer determines the reduced subspace for the train samples. The obtained transformation is then applied on test data to find a lower-dimensional representation. Proposed method is tested in classification problems on 10 UCI data sets. Experimental results confirm that the proposed method is effective in finding a discriminative representation of the features and outperforms several supervised embedding approaches in terms of classification performance.

T-SVD Based Non-Convex Tensor Completion and Robust Principal Component Analysis

Tao Li, Jinwen Ma

Responsive image

Auto-TLDR; Non-Convex tensor rank surrogate function and non-convex sparsity measure for tensor recovery

Slides Poster Similar

In this paper, we propose a novel non-convex tensor rank surrogate function and a novel non-convex sparsity measure. The basic idea is to sidestep the bias of $\ell_1-$norm by introducing the concavity. Furthermore, we employ this non-convex penalty in tensor recovery problems such as tensor completion and tensor robust principal component analysis. Due to the concavity, the parameters of these models are difficult to solve. To tackle this problem, we devise a majorization minimization algorithm that can optimize the upper bound of the original function in each iteration, and every sub-problem is solved by the alternating direction multiplier method. We also analyze the theoretical properties of the proposed algorithm. Finally, the experimental results on natural and hyperspectral images demonstrate the efficacy and efficiency of the proposed method.

More Correlations Better Performance: Fully Associative Networks for Multi-Label Image Classification

Yaning Li, Liu Yang

Responsive image

Auto-TLDR; Fully Associative Network for Fully Exploiting Correlation Information in Multi-Label Classification

Slides Poster Similar

Recent researches demonstrate that correlation modeling plays a key role in high-performance multi-label classification methods. However, existing methods do not take full advantage of correlation information, especially correlations in feature and label spaces of each image, which limits the performance of correlation-based multi-label classification methods. With more correlations considered, in this study, a Fully Associative Network (FAN) is proposed for fully exploiting correlation information, which involves both visual feature and label correlations. Specifically, FAN introduces a robust covariance pooling to summarize convolution features as global image representation for capturing feature correlation in the multi-label task. Moreover, it constructs an effective label correlation matrix based on a re-weighted scheme, which is fed into a graph convolution network for capturing label correlation. Then, correlation between covariance representations (i.e., feature correlation ) and the outputs of GCN (i.e., label correlation) are modeled for final prediction. Experimental results on two datasets illustrate the effectiveness and efficiency of our proposed FAN compared with state-of-the-art methods.

Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Jianyang Qin, Lunke Fei, Shaohua Teng, Wei Zhang, Genping Zhao, Haoliang Yuan

Responsive image

Auto-TLDR; Discrete Semantic Matrix Factorization Hashing for Cross-Modal Retrieval

Slides Poster Similar

Hashing has been widely studied for cross-modal retrieval due to its promising efficiency and effectiveness in massive data analysis. However, most existing supervised hashing has the limitations of inefficiency for very large-scale search and intractable discrete constraint for hash codes learning. In this paper, we propose a new supervised hashing method, namely, Discrete Semantic Matrix Factorization Hashing (DSMFH), for cross-modal retrieval. First, we conduct the matrix factorization via directly utilizing the available label information to obtain a latent representation, so that both the inter-modality and intra-modality similarities are well preserved. Then, we simultaneously learn the discriminative hash codes and corresponding hash functions by deriving the matrix factorization into a discrete optimization. Finally, we adopt an alternatively iterative procedure to efficiently optimize the matrix factorization and discrete learning. Extensive experimental results on three widely used image-tag databases demonstrate the superiority of the DSMFH over state-of-the-art cross-modal hashing methods.

Scalable Direction-Search-Based Approach to Subspace Clustering

Yicong He, George Atia

Responsive image

Auto-TLDR; Fast Direction-Search-Based Subspace Clustering

Slides Similar

Subspace clustering finds a multi-subspace representation that best fits a high-dimensional dataset. The computational and storage complexities of existing algorithms limit their usefulness for large scale data. In this paper, we develop a novel scalable approach to subspace clustering termed Fast Direction-Search-Based Subspace Clustering (Fast DiSC). In sharp contrast to existing scalable solutions which are mostly based on the self-expressiveness property of the data, Fast DiSC rests upon a new representation obtained from projections on computed data-dependent directions. These directions are derived from a convex formulation for optimal direction search to gauge hidden similarity relations. The computational complexity is significantly reduced by performing direction search in partitions of sampled data, followed by a retrieval step to cluster out-of-sample data using projections on the computed directions. A theoretical analysis underscores the ability of the proposed formulation to construct local similarity relations for the different data points. Experiments on both synthetic and real data demonstrate that the proposed algorithm can often outperform the state-of-the-art clustering methods.

Unveiling Groups of Related Tasks in Multi-Task Learning

Jordan Frecon, Saverio Salzo, Massimiliano Pontil

Responsive image

Auto-TLDR; Continuous Bilevel Optimization for Multi-Task Learning

Slides Poster Similar

A common approach in multi-task learning is to encourage the tasks to share a low dimensional representation. This has led to the popular method of trace norm regularization, which has proved effective in many applications. In this paper, we extend this approach by allowing the tasks to partition into different groups, within which trace norm regularization is separately applied. We propose a continuous bilevel optimization framework to simultaneously identify groups of related tasks and learn a low dimensional representation within each group. Hinging on recent results on the derivative of generalized matrix functions, we devise a smooth approximation of the upper-level objective via a dual forward-backward algorithm with Bregman distances. This allows us to solve the bilevel problem by a gradient-based scheme. Numerical experiments on synthetic and benchmark datasets support the effectiveness of the proposed method.

Snapshot Hyperspectral Imaging Based on Weighted High-Order Singular Value Regularization

Hua Huang, Cheng Niankai, Lizhi Wang

Responsive image

Auto-TLDR; High-Order Tensor Optimization for Hyperspectral Imaging

Slides Poster Similar

Snapshot hyperspectral imaging can capture the 3D hyperspectral image (HSI) with a single 2D measurement and has attracted increasing attention recently. Recovering the underlying HSI from the compressive measurement is an ill-posed problem and exploiting the image prior is essential for solving this ill-posed problem. However, existing reconstruction methods always start from modeling image prior with the 1D vector or 2D matrix and cannot fully exploit the structurally spectral-spatial nature in 3D HSI, thus leading to a poor fidelity. In this paper, we propose an effective high-order tensor optimization based method to boost the reconstruction fidelity for snapshot hyperspectral imaging. We first build high-order tensors by exploiting the spatial-spectral correlation in HSI. Then, we propose a weight high-order singular value regularization (WHOSVR) based low-rank tensor recovery model to characterize the structure prior of HSI. By integrating the structure prior in WHOSVR with the system imaging process, we develop an optimization framework for HSI reconstruction, which is finally solved via the alternating minimization algorithm. Extensive experiments implemented on two representative systems demonstrate that our method outperforms state-of-the-art methods.

Cross-spectrum Face Recognition Using Subspace Projection Hashing

Hanrui Wang, Xingbo Dong, Jin Zhe, Jean-Luc Dugelay, Massimo Tistarelli

Responsive image

Auto-TLDR; Subspace Projection Hashing for Cross-Spectrum Face Recognition

Slides Poster Similar

Cross-spectrum face recognition, e.g. visible to thermal matching, remains a challenging task due to the large variation originated from different domains. This paper proposed a subspace projection hashing (SPH) to enable the cross-spectrum face recognition task. The intrinsic idea behind SPH is to project the features from different domains onto a common subspace, where matching the faces from different domains can be accomplished. Notably, we proposed a new loss function that can (i) preserve both inter-domain and intra-domain similarity; (ii) regularize a scaled-up pairwise distance between hashed codes, to optimize projection matrix. Three datasets, Wiki, EURECOM VIS-TH paired face and TDFace are adopted to evaluate the proposed SPH. The experimental results indicate that the proposed SPH outperforms the original linear subspace ranking hashing (LSRH) in the benchmark dataset (Wiki) and demonstrates a reasonably good performance for visible-thermal, visible-near-infrared face recognition, therefore suggests the feasibility and effectiveness of the proposed SPH.

A Multi-Task Multi-View Based Multi-Objective Clustering Algorithm

Sayantan Mitra, Sriparna Saha

Responsive image

Auto-TLDR; MTMV-MO: Multi-task multi-view multi-objective optimization for multi-task clustering

Slides Poster Similar

In recent years, multi-view multi-task clustering has received much attention. There are several real-life problems that involve both multi-view clustering and multi-task clustering, i.e., the tasks are closely related, and each task can be analyzed using multiple views. Traditional multi-task multi-view clustering algorithms use single-objective optimization-based approaches and cannot apply too-many regularization terms. However, these problems are inherently some multi-objective optimization problems because conflict may be between different views within a given task and also between different tasks, necessitating a trade-off. Based on these observations, in this paper, we have proposed a novel multi-task multi-view multi-objective optimization (MTMV-MO) algorithm which simultaneously optimizes three objectives, i.e., within-view task relation, within-task view relation and the quality of the clusters obtained. The proposed methodology (MTMV-MO) is evaluated on four different datasets and the results are compared with five state-of-the-art algorithms in terms of Adjusted Rand Index (ARI) and Classification Accuracy (%CoA). MTMV-MO illustrates an improvement of 1.5-2% in terms of ARI and 4-5% in terms of %CoA compared to the state-of-the-art algorithms.

Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning

Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, Alessio Del Bue

Responsive image

Auto-TLDR; Unsupervised Learning for Human Action Recognition from Skeletal Data

Slides Similar

This paper tackles the problem of human action recognition, defined as classifying which action is displayed in a trimmed sequence, from skeletal data. Albeit state-of-the-art approaches designed for this application are all supervised, in this paper we pursue a more challenging direction: Solving the problem with unsupervised learning. To this end, we propose a novel subspace clustering method, which exploits covariance matrix to enhance the action’s discriminability and a timestamp pruning approach that allow us to better handle the temporal dimension of the data. Through a broad experimental validation, we show that our computational pipeline surpasses existing unsupervised approaches but also can result in favorable performances as compared to supervised methods.

Sparse-Dense Subspace Clustering

Shuai Yang, Wenqi Zhu, Yuesheng Zhu

Responsive image

Auto-TLDR; Sparse-Dense Subspace Clustering with Piecewise Correlation Estimation

Slides Poster Similar

Subspace clustering refers to the problem of clustering high-dimensional data into a union of low-dimensional subspaces. Current subspace clustering approaches are usually based on a two-stage framework. In the first stage, an affinity matrix is generated from data. In the second one, spectral clustering is applied on the affinity matrix. However, the affinity matrix produced by two-stage methods cannot fully reveal the similarity between data points from the same subspace, resulting in inaccurate clustering. Besides, most approaches fail to solve large-scale clustering problems due to poor efficiency. In this paper, we first propose a new scalable sparse method called Iterative Maximum Correlation (IMC) to learn the affinity matrix from data. Then we develop Piecewise Correlation Estimation (PCE) to densify the intra-subspace similarity produced by IMC. Finally we extend our work into a Sparse-Dense Subspace Clustering (SDSC) framework with a dense stage to optimize the affinity matrix for two-stage methods. We show that IMC is efficient for large-scale tasks, and PCE ensures better performance for IMC. We show the universality of our SDSC framework for current two-stage methods as well. Experiments on benchmark data sets demonstrate the effectiveness of our approaches.

Person Recognition with HGR Maximal Correlation on Multimodal Data

Yihua Liang, Fei Ma, Yang Li, Shao-Lun Huang

Responsive image

Auto-TLDR; A correlation-based multimodal person recognition framework that learns discriminative embeddings of persons by joint learning visual features and audio features

Slides Poster Similar

Multimodal person recognition is a common task in video analysis and public surveillance, where information from multiple modalities, such as images and audio extracted from videos, are used to jointly determine the identity of a person. Previous person recognition techniques either use only uni-modal data or only consider shared representations between different input modalities, while leaving the extraction of their relationship with identity information to downstream tasks. Furthermore, real-world data often contain noise, which makes recognition more challenging practical situations. In our work, we propose a novel correlation-based multimodal person recognition framework that is relatively simple but can efficaciously learn supervised information in multimodal data fusion and resist noise. Specifically, our framework learns a discriminative embeddings of persons by joint learning visual features and audio features while maximizing HGR maximal correlation among multimodal input and persons' identities. Experiments are done on a subset of Voxceleb2. Compared with state-of-the-art methods, the proposed method demonstrates an improvement of accuracy and robustness to noise.

Exploiting Elasticity in Tensor Ranks for Compressing Neural Networks

Jie Ran, Rui Lin, Hayden Kwok-Hay So, Graziano Chesi, Ngai Wong

Responsive image

Auto-TLDR; Nuclear-Norm Rank Minimization Factorization for Deep Neural Networks

Slides Poster Similar

Elasticities in depth, width, kernel size and resolution have been explored in compressing deep neural networks (DNNs). Recognizing that the kernels in a convolutional neural network (CNN) are 4-way tensors, we further exploit a new elasticity dimension along the input-output channels. Specifically, a novel nuclear-norm rank minimization factorization (NRMF) approach is proposed to dynamically and globally search for the reduced tensor ranks during training. Correlation between tensor ranks across multiple layers is revealed, and a graceful tradeoff between model size and accuracy is obtained. Experiments then show the superiority of NRMF over the previous non-elastic variational Bayesian matrix factorization (VBMF) scheme.

JECL: Joint Embedding and Cluster Learning for Image-Text Pairs

Sean Yang, Kuan-Hao Huang, Bill Howe

Responsive image

Auto-TLDR; JECL: Clustering Image-Caption Pairs with Parallel Encoders and Regularized Clusters

Poster Similar

We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes.

Ultrasound Image Restoration Using Weighted Nuclear Norm Minimization

Hanmei Yang, Ye Luo, Jianwei Lu, Jian Lu

Responsive image

Auto-TLDR; A Nonconvex Low-Rank Matrix Approximation Model for Ultrasound Images Restoration

Poster Similar

Ultrasound images are often contaminated by speckle noise during the acquisition process, which influences the performance of subsequent application. The paper introduces a nonconvex low-rank matrix approximation model for ultrasound images restoration, which integrates the weighted unclear norm minimization (WNNM) and data fidelity term. WNNM can adaptively assign weights on differnt singular values to preserve more details in restored images. The fidelity term about ultrasound images do not be utilized in existing low-rank ultrasound denoising methods. This optimization question can effectively solved by alternating direction method of multipliers (ADMM). The experimental results on simulated images and real medical ultrasound images demonstrate the excellent performance of the proposed method compared with other four state-of-the-art methods.

Sketch-Based Community Detection Via Representative Node Sampling

Mahlagha Sedghi, Andre Beckus, George Atia

Responsive image

Auto-TLDR; Sketch-based Clustering of Community Detection Using a Small Sketch

Slides Poster Similar

This paper proposes a sketch-based approach to the community detection problem which clusters the full graph through the use of an informative and concise sketch. The reduced sketch is built through an effective sampling approach which selects few nodes that best represent the complete graph and operates on a pairwise node similarity measure based on the average commute time. After sampling, the proposed algorithm clusters the nodes in the sketch, and then infers the cluster membership of the remaining nodes in the full graph based on their aggregate similarity to nodes in the partitioned sketch. By sampling nodes with strong representation power, our approach can improve the success rates over full graph clustering. In challenging cases with large node degree variation, our approach not only maintains competitive accuracy with full graph clustering despite using a small sketch, but also outperforms existing sampling methods. The use of a small sketch allows considerable storage savings, and computational and timing improvements for further analysis such as clustering and visualization. We provide numerical results on synthetic data based on the homogeneous, heterogeneous and degree corrected versions of the stochastic block model, as well as experimental results on real-world data.

Learning Sign-Constrained Support Vector Machines

Kenya Tajima, Kouhei Tsuchida, Esmeraldo Ronnie Rey Zara, Naoya Ohta, Tsuyoshi Kato

Responsive image

Auto-TLDR; Constrained Sign Constraints for Learning Linear Support Vector Machine

Poster Similar

Domain knowledge is useful to improve the generalization performance of learning machines. Sign constraints are a handy representation to combine domain knowledge with learning machine. In this paper, we consider constraining the signs of the weight coefficients in learning the linear support vector machine, and develop two optimization algorithms for minimizing the empirical risk under the sign constraints. One of the two algorithms is based on the projected gradient method, in which each iteration of the projected gradient method takes O(nd) computational cost and the sublinear convergence of the objective error is guaranteed. The second algorithm is based on the Frank-Wolfe method that also converges sublinearly and possesses a clear termination criterion. We show that each iteration of the Frank-Wolfe also requires O(nd) cost. Furthermore, we derive the explicit expression for the minimal iteration number to ensure an epsilon-accurate solution by analyzing the curvature of the objective function. Finally, we empirically demonstrate that the sign constraints are a promising technique when similarities to the training examples compose the feature vector.

Supervised Domain Adaptation Using Graph Embedding

Lukas Hedegaard, Omar Ali Sheikh-Omar, Alexandros Iosifidis

Responsive image

Auto-TLDR; Domain Adaptation from the Perspective of Multi-view Graph Embedding and Dimensionality Reduction

Slides Poster Similar

Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of multi-view graph embedding and dimensionality reduction. Instead of solving the generalised eigenvalue problem to perform the embedding, we formulate the graph-preserving criterion as loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework which generalises the prior methods CCSA and d-SNE, and enables simple and effective loss designs; an LDA-inspired instantiation of the framework leads to performance on par with the state-of-the-art on the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.

Randomized Transferable Machine

Pengfei Wei, Tze Yun Leong

Responsive image

Auto-TLDR; Randomized Transferable Machine for Suboptimal Feature-based Transfer Learning

Slides Poster Similar

Feature-based transfer method is one of the most effective methodologies for transfer learning. Existing works usually claim the learned new feature representation is truly \emph{domain-invariant}, and thus directly train a transfer model $\mathcal{M}$ on source domain. In this paper, we work on a more realistic scenario where the new feature representation is suboptimal where small divergence still exists across domains. We propose a new learning strategy and name the transfer model following the learning strategy as Randomized Transferable Machine (RTM). More specifically, we work on source data with the new feature representation learned from existing feature-based transfer methods. Our key idea is to enlarge source training data populations by randomly corrupting source data using some noises, and then train a transfer model $\widetilde{\mathcal{M}}$ performing well on all these corrupted source data populations. In principle, the more corruptions are made, the higher probability of the target data can be covered by the constructed source populations and thus a better transfer performance can be achieved by $\widetilde{\mathcal{M}}$. An ideal case is with infinite corruptions, which however is infeasible in reality. We instead develop a marginalized solution. With a marginalization trick, we can train an RTM that is equivalently trained using infinite source noisy populations without truly conducting any corruption. More importantly, such an RTM has a closed-form solution, which enables a super fast and efficient training. Extensive experiments on various real-world transfer tasks show that RTM is a very promising transfer model.

Nonlinear Ranking Loss on Riemannian Potato Embedding

Byung Hyung Kim, Yoonje Suh, Honggu Lee, Sungho Jo

Responsive image

Auto-TLDR; Riemannian Potato for Rank-based Metric Learning

Slides Poster Similar

We propose a rank-based metric learning method by leveraging a concept of the Riemannian Potato for better separating non-linear data. By exploring the geometric properties of Riemannian manifolds, the proposed loss function optimizes the measure of dispersion using the distribution of Riemannian distances between a reference sample and neighbors and builds a ranked list according to the similarities. We show the proposed function can learn a hypersphere for each class, preserving the similarity structure inside it on Riemannian manifold. As a result, compared with Euclidean distance-based metric, our method can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features, consistently outperforming state-of-the-art methods on three widely used non-linear datasets.

Vision-Based Multi-Modal Framework for Action Recognition

Djamila Romaissa Beddiar, Mourad Oussalah, Brahim Nini

Responsive image

Auto-TLDR; Multi-modal Framework for Human Activity Recognition Using RGB, Depth and Skeleton Data

Slides Poster Similar

Human activity recognition plays a central role in the development of intelligent systems for video surveillance, public security, health care and home monitoring, where detection and recognition of activities can improve the quality of life and security of humans. Typically, automated, intuitive and real-time systems are required to recognize human activities and identify accurately unusual behaviors in order to prevent dangerous situations. In this work, we explore the combination of three modalities (RGB, depth and skeleton data) to design a robust multi-modal framework for vision-based human activity recognition. Especially, spatial information, body shape/posture and temporal evolution of actions are highlighted using illustrative representations obtained from a combination of dynamic RGB images, dynamic depth images and skeleton data representations. Therefore, each video is represented with three images that summarize the ongoing action. Our framework takes advantage of transfer learning from pre trained models to extract significant features from these newly created images. Next, we fuse extracted features using Canonical Correlation Analysis and train a Long Short-Term Memory network to classify actions from visual descriptive images. Experimental results demonstrated the reliability of our feature-fusion framework that allows us to capture highly significant features and enables us to achieve the state-of-the-art performance on the public UTD-MHAD and NTU RGB+D datasets.

Object Detection on Monocular Images with Two-Dimensional Canonical Correlation Analysis

Zifan Yu, Suya You

Responsive image

Auto-TLDR; Multi-Task Object Detection from Monocular Images Using Multimodal RGB and Depth Data

Slides Poster Similar

Accurate and robust detection objects from monocular images is a fundamental vision task. This paper describes a novel approach of holistic scene understanding that can simultaneously achieve multiple tasks of scene reconstruction and object detection from a single monocular camera. Rather than pursuing an independent solution for each individual task as most existing work does, we seek a globally optimal solution that holistically resolves the multiple perception and reasoning tasks in an effective manner. The approach explores the complementary properties of multimodal RGB imagery and depth data to improve scene perception tasks. It uniquely combines the techniques of canonical correlation analysis and deep learning to learn the most correlated features to maximize the modal cross-correlation for improving the performance and robustness of object detection in complex environments. Extensive experiments have been conducted to evaluate and demonstrate the performances of the proposed approach.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

A Unified Framework for Distance-Aware Domain Adaptation

Fei Wang, Youdong Ding, Huan Liang, Yuzhen Gao, Wenqi Che

Responsive image

Auto-TLDR; distance-aware domain adaptation

Slides Poster Similar

Unsupervised domain adaptation has achieved significant results by leveraging knowledge from a source domain to learn a related but unlabeled target domain. Previous methods are insufficient to model domain discrepancy and class discrepancy, which may lead to misalignment and poor adaptation performance. To address this problem, in this paper, we propose a unified framework, called distance-aware domain adaptation, which is fully aware of both cross-domain distance and class-discriminative distance. In addition, second-order statistics distance and manifold alignment are also exploited to extract more information from data. In this manner, the generalization error of the target domain in classification problems can be reduced substantially. To validate the proposed method, we conducted experiments on five public datasets and an ablation study. The results demonstrate the good performance of our proposed method.

AdaFilter: Adaptive Filter Design with Local Image Basis Decomposition for Optimizing Image Recognition Preprocessing

Aiga Suzuki, Keiichi Ito, Takahide Ibe, Nobuyuki Otsu

Responsive image

Auto-TLDR; Optimal Preprocessing Filtering for Pattern Recognition Using Higher-Order Local Auto-Correlation

Slides Poster Similar

Image preprocessing is an important process during pattern recognition which increases the recognition performance. Linear convolution filtering is a primary preprocessing method used to enhance particular local patterns of the image which are essential for recognizing the images. However, because of the vast search space of the preprocessing filter, almost no earlier studies have tackled the problem of identifying an optimal preprocessing filter that yields effective features for input images. This paper proposes a novel design method for the optimal preprocessing filter corresponding to a given task. Our method calculates local image bases of the training dataset and represents the optimal filter as a linear combination of these local image bases with the optimized coefficients to maximize the expected generalization performance. Thereby, the optimization problem of the preprocessing filter is converted to a lower-dimensional optimization problem. Our proposed method combined with a higher-order local auto-correlation (HLAC) feature extraction exhibited the best performance both in the anomaly detection task with the conventional pattern recognition algorithm and in the classification task using the deep convolutional neural network compared with typical preprocessing filters.

Learning Sparse Deep Neural Networks Using Efficient Structured Projections on Convex Constraints for Green AI

Michel Barlaud, Frederic Guyard

Responsive image

Auto-TLDR; Constrained Deep Neural Network with Constrained Splitting Projection

Slides Poster Similar

In recent years, deep neural networks (DNN) have been applied to different domains and achieved dramatic performance improvements over state-of-the-art classical methods. These performances of DNNs were however often obtained with networks containing millions of parameters and which training required heavy computational power. In order to cope with this computational issue a huge literature deals with proximal regularization methods which are time consuming.\\ In this paper, we propose instead a constrained approach. We provide the general framework for our new splitting projection gradient method. Our splitting algorithm iterates a gradient step and a projection on convex sets. We study algorithms for different constraints: the classical $\ell_1$ unstructured constraint and structured constraints such as the nuclear norm, the $\ell_{2,1} $ constraint (Group LASSO). We propose a new $\ell_{1,1} $ structured constraint for which we provide a new projection algorithm We demonstrate the effectiveness of our method on three popular datasets (MNIST, Fashion MNIST and CIFAR). Experiments on these datasets show that our splitting projection method with our new $\ell_{1,1} $ structured constraint provides the best reduction of memory and computational power. Experiments show that fully connected linear DNN are more efficient for green AI.

Heterogeneous Graph-Based Knowledge Transfer for Generalized Zero-Shot Learning

Junjie Wang, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenjie Zhang, Hongyuan Zha

Responsive image

Auto-TLDR; Heterogeneous Graph-based Knowledge Transfer for Generalized Zero-Shot Learning

Slides Poster Similar

Generalized zero-shot learning (GZSL) tackles the problem of learning to classify instances involving both seen classes and unseen ones. The key issue is how to effectively transfer the model learned from seen classes to unseen classes. Existing works in GZSL usually assume that some prior information about unseen classes are available. However, such an assumption is unrealistic when new unseen classes appear dynamically. To this end, we propose a novel heterogeneous graph-based knowledge transfer method (HGKT) for GZSL, agnostic to unseen classes and instances, by leveraging graph neural network. Specifically, a structured heterogeneous graph is constructed with high-level representative nodes for seen classes, which are chosen through Wasserstein barycenter in order to simultaneously capture inter-class and intra-class relationship. The aggregation and embedding functions can be learned throughgraph neural network, which can be used to compute the embeddings of unseen classes by transferring the knowledge from their neighbors. Extensive experiments on public benchmark datasets show that our method achieves state-of-the-art results.

Feature-Aware Unsupervised Learning with Joint Variational Attention and Automatic Clustering

Wang Ru, Lin Li, Peipei Wang, Liu Peiyu

Responsive image

Auto-TLDR; Deep Variational Attention Encoder-Decoder for Clustering

Slides Poster Similar

Deep clustering aims to cluster unlabeled real-world samples by mining deep feature representation. Most of existing methods remain challenging when handling high-dimensional data and simultaneously exploring the complementarity of deep feature representation and clustering. In this paper, we propose a novel Deep Variational Attention Encoder-decoder for Clustering (DVAEC). Our DVAEC improves the representation learning ability by fusing variational attention. Specifically, we design a feature-aware automatic clustering module to mitigate the unreliability of similarity calculation and guide network learning. Besides, to further boost the performance of deep clustering from a global perspective, we define a joint optimization objective to promote feature representation learning and automatic clustering synergistically. Extensive experimental results show the promising performance achieved by our DVAEC on six datasets comparing with several popular baseline clustering methods.

Adaptive Context-Aware Discriminative Correlation Filters for Robust Visual Object Tracking

Tianyang Xu, Zhenhua Feng, Xiaojun Wu, Josef Kittler

Responsive image

Auto-TLDR; ACA-DCF: Adaptive Context-Aware Discriminative Correlation Filter with complementary attention mechanisms

Slides Poster Similar

In recent years, Discriminative Correlation Filters (DCFs) have gained popularity due to their superior performance in visual object tracking. However, existing DCF trackers usually learn filters using fixed attention mechanisms that focus on the centre of an image and suppresses filter amplitudes in surroundings. In this paper, we propose an Adaptive Context-Aware Discriminative Correlation Filter (ACA-DCF) that is able to improve the existing DCF formulation with complementary attention mechanisms. Our ACA-DCF integrates foreground attention and background attention for complementary context-aware filter learning. More importantly, we ameliorate the design using an adaptive weighting strategy that takes complex appearance variations into account. The experimental results obtained on several well-known benchmarks demonstrate the effectiveness and superiority of the proposed method over the state-of-the-art approaches.

Prior Knowledge about Attributes: Learning a More Effective Potential Space for Zero-Shot Recognition

Chunlai Chai, Yukuan Lou

Responsive image

Auto-TLDR; Attribute Correlation Potential Space Generation for Zero-Shot Learning

Slides Poster Similar

Zero-shot learning (ZSL) aims to recognize unseen classes accurately by learning seen classes and known attributes, but correlations in attributes were ignored by previous study which lead to classification results confused. To solve this problem, we build an Attribute Correlation Potential Space Generation (ACPSG) model which uses a graph convolution network and attribute correlation to generate a more discriminating potential space. Combining potential discrimination space and user-defined attribute space, we can better classify unseen classes. Our approach outperforms some existing state-of-the-art methods on several benchmark datasets, whether it is conventional ZSL or generalized ZSL.