Junbin Gao

Papers from this author

Low Rank Representation on Product Grassmann Manifolds for Multi-viewSubspace Clustering

Jipeng Guo, Yanfeng Sun, Junbin Gao, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Low Rank Representation on Product Grassmann Manifold for Multi-View Data Clustering

Slides Poster Similar

Clustering high dimension multi-view data with complex intrinsic properties and nonlinear manifold structure is a challenging task since these data are always embedded in low dimension manifolds. Inspired by Low Rank Representation (LRR), some researchers extended classic LRR on Grassmann manifold or Product Grassmann manifold to represent data with non-linear metrics. However, most of these methods utilized convex nuclear norm to leverage a low-rank structure, which was over-relaxation of true rank and would lead to the results deviated from the true underlying ones. And, the computational complexity of singular value decomposition of matrix is high for nuclear norm minimization. In this paper, we propose a new low rank model for high-dimension multi-view data clustering on Product Grassmann Manifold with the matrix tri-factorization which is used to control the upper bound of true rank of representation matrix. And, the original problem can be transformed into the nuclear norm minimization with smaller scale matrices. An effective solution and theoretical analysis are also provided. The experimental results show that the proposed method obviously outperforms other state-of-the-art methods on several multi-source human/crowd action video datasets.

Regularized Flexible Activation Function Combinations for Deep Neural Networks

Renlong Jie, Junbin Gao, Andrey Vasnev, Minh-Ngoc Tran

Responsive image

Auto-TLDR; Flexible Activation in Deep Neural Networks using ReLU and ELUs

Slides Poster Similar

Activation in deep neural networks is fundamental to achieving non-linear mappings. Traditional studies mainly focus on finding fixed activations for a particular set of learning tasks or model architectures. The research on flexible activation is quite limited in both designing philosophy and application scenarios. In this study, three principles of choosing flexible activation components are proposed and a general combined form of flexible activation functions is implemented. Based on this, a novel family of flexible activation functions that can replace sigmoid or tanh in LSTM cells are implemented, as well as a new family by combining ReLU and ELUs. Also, two new regularisation terms based on assumptions as prior knowledge are introduced. It has been shown that LSTM models with proposed flexible activations P-Sig-Ramp provide significant improvements in time series forecasting, while the proposed P-E2-ReLU achieves better and more stable performance on lossy image compression tasks with convolutional auto-encoders. In addition, the proposed regularization terms improve the convergence,performance and stability of the models with flexible activation functions. The code for this paper is available at https://github.com/9NXJRDDRQK/Flexible Activation.