Yuanjing Han

Papers from this author

First and Second-Order Sorted Local Binary Pattern Features for Grayscale-Inversion and Rotation Invariant Texture Classification

Tiecheng Song, Yuanjing Han, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; First- and Secondorder Sorted Local Binary Pattern for texture classification under inverse grayscale changes and image rotation

Slides Poster Similar

Local binary pattern (LBP) is sensitive to inverse grayscale changes. Several methods address this problem by mapping each LBP code and its complement to the minimum one. However, without distinguishing LBP codes and their complements, these methods show limited discriminative power. In this paper, we introduce a histogram sorting method to preserve the distribution information of LBP codes and their complements. Based on this method, we propose first- and secondorder sorted LBP (SLBP) features which are robust to inverse grayscale changes and image rotation. The proposed method focuses on encoding difference-sign information and it can be generalized to embed other difference-magnitude features to obtain complementary representations. Experiments demonstrate the effectiveness of our method for texture classification under(linear or nonlinear) grayscale-inversion and rotation changes.

Local Grouped Invariant Order Pattern for Grayscale-Inversion and Rotation Invariant Texture Classification

Yankai Huang, Tiecheng Song, Shuang Li, Yuanjing Han

Responsive image

Auto-TLDR; Local grouped invariant order pattern for grayscale-inversion and rotation invariant texture classification

Slides Poster Similar

Local binary pattern (LBP) based descriptors have shown effectiveness for texture classification. However, most of them encode the intensity relationships between neighboring pixels and a central pixel into binary forms, thereby failing to capture the complete ordering information among neighbors. Several methods have explored intensity order information for feature description, but they do not address the grayscale-inversion problem. In this paper, we propose an image descriptor called local grouped invariant order pattern (LGIOP) for grayscale-inversion and rotation invariant texture classification. Our LGIOP is a histogram representation which jointly encodes neighboring order information and central pixels. In particular, two new order encoding methods, i.e., intensity order encoding and distance order encoding, are proposed to describe the neighboring relationships. These two order encoding methods are not only complementary but also invariant to grayscale-inversion and rotation changes. Experiments for texture classification demonstrate that the proposed LGIOP descriptor is robust to (linear or nonlinear) grayscale inversion and image rotation.