Face Anti-Spoofing Based on Dynamic Color Texture Analysis Using Local Directional Number Pattern

Junwei Zhou, Ke Shu, Peng Liu, Jianwen Xiang, Shengwu Xiong

Responsive image

Auto-TLDR; LDN-TOP Representation followed by ProCRC Classification for Face Anti-Spoofing

Slides Poster

Face anti-spoofing is becoming increasingly indispensable for face recognition systems, which are vulnerable to various spoofing attacks performed using fake photos and videos. In this paper, a novel "LDN-TOP representation followed by ProCRC classification" pipeline for face anti-spoofing is proposed. We use local directional number pattern (LDN) with the derivative-Gaussian mask to capture detailed appearance information resisting illumination variations and noises, which can influence the texture pattern distribution. To further capture motion information, we extend LDN to a spatial-temporal variant named local directional number pattern from three orthogonal planes (LDN-TOP). The multi-scale LDN-TOP capturing complete information is extracted from color images to generate the feature vector with powerful representation capacity. Finally, the feature vector is fed into the probabilistic collaborative representation based classifier (ProCRC) for face anti-spoofing. Our method is evaluated on three challenging public datasets, namely CASIA FASD, Replay-Attack database, and UVAD database using sequence-based evaluation protocol. The experimental results show that our method can achieve promising performance with 0.37% EER on CASIA and 5.73% HTER on UVAD. The performance on Replay-Attack database is also competitive.

Similar papers

Face Anti-Spoofing Using Spatial Pyramid Pooling

Lei Shi, Zhuo Zhou, Zhenhua Guo

Responsive image

Auto-TLDR; Spatial Pyramid Pooling for Face Anti-Spoofing

Slides Poster Similar

Face recognition system is vulnerable to many kinds of presentation attacks, so how to effectively detect whether the image is from the real face is particularly important. At present, many deep learning-based anti-spoofing methods have been proposed. But these approaches have some limitations, for example, global average pooling (GAP) easily loses local information of faces, single-scale features easily ignore information differences in different scales, while a complex network is prune to be overfitting. In this paper, we propose a face anti-spoofing approach using spatial pyramid pooling (SPP). Firstly, we use ResNet-18 with a small amount of parameter as the basic model to avoid overfitting. Further, we use spatial pyramid pooling module in the single model to enhance local features while fusing multi-scale information. The effectiveness of the proposed method is evaluated on three databases, CASIA-FASD, Replay-Attack and CASIA-SURF. The experimental results show that the proposed approach can achieve state-of-the-art performance.

Disentangled Representation Based Face Anti-Spoofing

Zhao Liu, Zunlei Feng, Yong Li, Zeyu Zou, Rong Zhang, Mingli Song, Jianping Shen

Responsive image

Auto-TLDR; Face Anti-Spoofing using Motion Information and Disentangled Frame Work

Slides Poster Similar

Face anti-spoofing is an important problem for both academic research and industrial face recognition systems. Most of the existing face anti-spoofing methods take it as a classification task on individual static images, where motion pattern differences in consecutive real or fake face sequences are ignored. In this work, we propose a novel method to identify spoofing patterns using motion information. Different from previous methods, the proposed method makes the real or fake decision on the disentangled feature level, based on the observation that motion and spoofing pattern features could be disentangled from original image frames. We design a representation disentangling frame- work for this task, which is able to reconstruct both real and fake face sequences from the input. Meanwhile, the disentangled representations could be used to classify whether the input faces are real or fake. We perform several experiments on Casia-FASD and ReplayAttack datasets. The proposed method achieves SOTA results compared with existing face anti-spoofing methods.

MixNet for Generalized Face Presentation Attack Detection

Nilay Sanghvi, Sushant Singh, Akshay Agarwal, Mayank Vatsa, Richa Singh

Responsive image

Auto-TLDR; MixNet: A Deep Learning-based Network for Detection of Presentation Attacks in Cross-Database and Unseen Setting

Slides Poster Similar

The non-intrusive nature and high accuracy of face recognition algorithms have led to their successful deployment across multiple applications ranging from border access to mobile unlocking and digital payments. However, their vulnerability against sophisticated and cost-effective presentation attack mediums raises essential questions regarding its reliability. Several presentation attack detection algorithms are presented; however, they are still far behind from reality. The major problem with the existing work is the generalizability against multiple attacks both in the seen and unseen setting. The algorithms which are useful for one kind of attack (such as print) fail miserably for another type of attack (such as silicone masks). In this research, we have proposed a deep learning-based network called MixNet to detect presentation attacks in cross-database and unseen attack settings. The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category. Experiments are performed using multiple challenging face presentation attack databases such as Silicone Mask Attack Database (SMAD) and Spoof In the Wild with Multiple Attack (SiW-M). Extensive experiments and comparison with the existing state of the art algorithms show the effectiveness of the proposed algorithm.

A Cross Domain Multi-Modal Dataset for Robust Face Anti-Spoofing

Qiaobin Ji, Shugong Xu, Xudong Chen, Shan Cao, Shunqing Zhang

Responsive image

Auto-TLDR; Cross domain multi-modal FAS dataset GREAT-FASD and several evaluation protocols for academic community

Slides Poster Similar

Face Anti-spoofing (FAS) is a challenging problem due to the complex serving scenario and diverse face presentation attack patterns. Using single modal images which are usually captured with RGB cameras is not able to deal with the former because of serious overfitting problems. The existing multi-modal FAS datasets rarely pay attention to the cross domain problems, trainingFASsystemonthesedataleadstoinconsistenciesandlow generalization capabilities in deployment since imaging principles(structured light, TOF, etc.) and pre-processing methods vary between devices. We explore the subtle fine-grained differences betweeen multi-modal cameras and proposed a cross domain multi-modal FAS dataset GREAT-FASD and several evaluation protocols for academic community. Furthermore, we incorporate the multiplicative attention and center loss to enhance the representative power of CNN via seeking out complementary information as a powerful baseline. In addition, extensive experiments have been conducted on the proposed dataset to analyze the robustness to distinguish spoof faces and bona-fide faces. Experimental results show the effectiveness of proposed method and achieve the state-of-the-art competitive results. Finally, we visualize our future distribution in hidden space and observe that the proposed method is able to lead the network to generate a large margin for face anti-spoofing task

Detection of Makeup Presentation Attacks Based on Deep Face Representations

Christian Rathgeb, Pawel Drozdowski, Christoph Busch

Responsive image

Auto-TLDR; An Attack Detection Scheme for Face Recognition Using Makeup Presentation Attacks

Slides Poster Similar

Facial cosmetics have the ability to substantially alter the facial appearance, which can negatively affect the decisions of a face recognition. In addition, it was recently shown that the application of makeup can be abused to launch so-called makeup presentation attacks. In such attacks, the attacker might apply heavy makeup in order to achieve the facial appearance of a target subject for the purpose of impersonation. In this work, we assess the vulnerability of a COTS face recognition system to makeup presentation attacks employing the publicly available Makeup Induced Face Spoofing (MIFS) database. It is shown that makeup presentation attacks might seriously impact the security of the face recognition system. Further, we propose an attack detection scheme which distinguishes makeup presentation attacks from genuine authentication attempts by analysing differences in deep face representations obtained from potential makeup presentation attacks and corresponding target face images. The proposed detection system employs a machine learning-based classifier, which is trained with synthetically generated makeup presentation attacks utilizing a generative adversarial network for facial makeup transfer in conjunction with image warping. Experimental evaluations conducted using the MIFS database reveal a detection equal error rate of 0.7% for the task of separating genuine authentication attempts from makeup presentation attacks.

Dynamically Mitigating Data Discrepancy with Balanced Focal Loss for Replay Attack Detection

Yongqiang Dou, Haocheng Yang, Maolin Yang, Yanyan Xu, Dengfeng Ke

Responsive image

Auto-TLDR; Anti-Spoofing with Balanced Focal Loss Function and Combination Features

Slides Poster Similar

It becomes urgent to design effective anti-spoofing algorithms for vulnerable automatic speaker verification systems due to the advancement of high-quality playback devices. Current studies mainly treat anti-spoofing as a binary classification problem between bonafide and spoofed utterances, while lack of indistinguishable samples makes it difficult to train a robust spoofing detector. In this paper, we argue that for anti-spoofing, it needs more attention for indistinguishable samples over easily-classified ones in the modeling process, to make correct discrimination a top priority. Therefore, to mitigate the data discrepancy between training and inference, we propose to leverage a balanced focal loss function as the training objective to dynamically scale the loss based on the traits of the sample itself. Besides, in the experiments, we select three kinds of features that contain both magnitude-based and phase-based information to form complementary and informative features. Experimental results on the ASVspoof2019 dataset demonstrate the superiority of the proposed methods by comparison between our systems and top-performing ones. Systems trained with the balanced focal loss perform significantly better than conventional cross-entropy loss. With complementary features, our fusion system with only three kinds of features outperforms other systems containing five or more complex single models by 22.5% for min-tDCF and 7% for EER, achieving a min-tDCF and an EER of 0.0124 and 0.55% respectively. Furthermore, we present and discuss the evaluation results on real replay data apart from the simulated ASVspoof2019 data, indicating that research for anti-spoofing still has a long way to go.

ResMax: Detecting Voice Spoofing Attacks with Residual Network and Max Feature Map

Il-Youp Kwak, Sungsu Kwag, Junhee Lee, Jun Ho Huh, Choong-Hoon Lee, Youngbae Jeon, Jeonghwan Hwang, Ji Won Yoon

Responsive image

Auto-TLDR; ASVspoof 2019: A Lightweight Automatic Speaker Verification Spoofing and Countermeasures System

Slides Poster Similar

The ``2019 Automatic Speaker Verification Spoofing And Countermeasures Challenge'' (ASVspoof) competition aimed to facilitate the design of highly accurate voice spoofing attack detection systems. the competition did not emphasize model complexity and latency requirements; such constraints are strict and integral in real-world deployment. Hence, most of the top performing solutions from the competition all used an ensemble approach, and combined multiple complex deep learning models to maximize detection accuracy -- this kind of approach would sit uneasily with real-world deployment constraints. To design a lightweight system, we combined the notions of skip connection (from ResNet) and max feature map (from Light CNN), and evaluated the accuracy of the system using the ASVspoof 2019 dataset. With an optimized constant Q transform (CQT) feature, our single model achieved a replay attack detection equal error rate (EER) of 0.37% on the evaluation set, outperforming the top ensemble system from the competition that achieved an EER of 0.39%.

Generalized Iris Presentation Attack Detection Algorithm under Cross-Database Settings

Mehak Gupta, Vishal Singh, Akshay Agarwal, Mayank Vatsa, Richa Singh

Responsive image

Auto-TLDR; MVNet: A Deep Learning-based PAD Network for Iris Recognition against Presentation Attacks

Slides Poster Similar

The deployment of biometrics features based person identification has increased significantly from border access to mobile unlock to electronic transactions. Iris recognition is considered as one of the most accurate biometric modality for person identification. However, the vulnerability of this recognition towards presentation attacks, especially towards the 3D contact lenses, can limit its potential deployments. The textured lenses are so effective in hiding the real texture of iris that it can fool not only the automatic recognition algorithms but also the human examiners. While in literature, several presentation attack detection (PAD) algorithms are presented; however, the significant limitation is the generalizability against an unseen database, unseen sensor, and different imaging environment. Inspired by the success of the hybrid algorithm or fusion of multiple detection networks, we have proposed a deep learning-based PAD network that utilizes multiple feature representation layers. The computational complexity is an essential factor in training the deep neural networks; therefore, to limit the computational complexity while learning multiple feature representation layers, a base model is kept the same. The network is trained end-to-end using a softmax classifier. We have evaluated the performance of the proposed network termed as MVNet using multiple databases such as IIITD-WVU MUIPA, IIITD-WVU UnMIPA database under cross-database training-testing settings. The experiments are performed extensively to assess the generalizability of the proposed algorithm.

Are Spoofs from Latent Fingerprints a Real Threat for the Best State-Of-Art Liveness Detectors?

Roberto Casula, Giulia Orrù, Daniele Angioni, Xiaoyi Feng, Gian Luca Marcialis, Fabio Roli

Responsive image

Auto-TLDR; ScreenSpoof: Attacks using latent fingerprints against state-of-art fingerprint liveness detectors and verification systems

Slides Similar

We investigated the threat level of realistic attacks using latent fingerprints against sensors equipped with state-of-art liveness detectors and fingerprint verification systems which integrate such liveness algorithms. To the best of our knowledge, only a previous investigation was done with spoofs from latent prints. In this paper, we focus on using snapshot pictures of latent fingerprints. These pictures provide molds, that allows, after some digital processing, to fabricate high-quality spoofs. Taking a snapshot picture is much simpler than developing fingerprints left on a surface by magnetic powders and lifting the trace by a tape. What we are interested here is to evaluate preliminary at which extent attacks of the kind can be considered a real threat for state-of-art fingerprint liveness detectors and verification systems. To this aim, we collected a novel data set of live and spoof images fabricated with snapshot pictures of latent fingerprints. This data set provide a set of attacks at the most favourable conditions. We refer to this method and the related data set as "ScreenSpoof". Then, we tested with it the performances of the best liveness detection algorithms, namely, the three winners of the LivDet competition. Reported results point out that the ScreenSpoof method is a threat of the same level, in terms of detection and verification errors, than that of attacks using spoofs fabricated with the full consensus of the victim. We think that this is a notable result, never reported in previous work.

Depth Videos for the Classification of Micro-Expressions

Ankith Jain Rakesh Kumar, Bir Bhanu, Christopher Casey, Sierra Cheung, Aaron Seitz

Responsive image

Auto-TLDR; RGB-D Dataset for the Classification of Facial Micro-expressions

Slides Poster Similar

Facial micro-expressions are spontaneous, subtle, involuntary muscle movements occurring briefly on the face. The spotting and recognition of these expressions are difficult due to the subtle behavior, and the time duration of these expressions is about half a second, which makes it difficult for humans to identify them. These micro-expressions have many applications in our daily life, such as in the field of online learning, game playing, lie detection, and therapy sessions. Traditionally, researchers use RGB images/videos to spot and classify these micro-expressions, which pose challenging problems, such as illumination, privacy concerns and pose variation. The use of depth videos solves these issues to some extent, as the depth videos are not susceptible to the variation in illumination. This paper describes the collection of a first RGB-D dataset for the classification of facial micro-expressions into 6 universal expressions: Anger, Happy, Sad, Fear, Disgust, and Surprise. This paper shows the comparison between the RGB and Depth videos for the classification of facial micro-expressions. Further, a comparison of results shows that depth videos alone can be used to classify facial micro-expressions correctly in a decision tree structure by using the traditional and deep learning approaches with good classification accuracy. The dataset will be released to the public in the near future.

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Magnifying Spontaneous Facial Micro Expressions for Improved Recognition

Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurence Taggart, Pradeepa Samarasinghe

Responsive image

Auto-TLDR; Eulerian Video Magnification for Micro Expression Recognition

Slides Poster Similar

Building an effective automatic micro expression recognition (MER) system is becoming increasingly desirable in computer vision applications. However, it is also very challenging given the fine-grained nature of the expressions to be recognized. Hence, we investigate if amplifying micro facial muscle movements as a pre-processing phase, by employing Eulerian Video Magnification (EVM), can boost performance of Local Phase Quantization with Three Orthogonal Planes (LPQ-TOP) to achieve improved facial MER across various datasets. In addition, we examine the rate of increase for recognition to determine if it is uniform across datasets using EVM. Ultimately, we classify the extracted features using Support Vector Machines (SVM). We evaluate and compare the performance with various methods on seven different datasets namely CASME, CAS(ME)2, CASME2, SMIC-HS, SMIC-VIS, SMIC-NIR and SAMM. The results obtained demonstrate that EVM can enhance LPQ-TOP to achieve improved recognition accuracy on the majority of the datasets.

Color Texture Description Based on Holistic and Hierarchical Order-Encoding Patterns

Tiecheng Song, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; Holistic and Hierarchical Order-Encoding Patterns for Color Texture Classification

Slides Poster Similar

Local binary pattern (LBP), as one of the most representative texture operators, has attracted much attention in computer vision applications. Many LBP variants were developed in the literature. However, most of them were designed for gray images and their performance remains to be improved for color images. In this paper, we propose a novel color image descriptor named Holistic and Hierarchical Order-Encoding Patterns (H2OEP) for texture classification. In H2OEP, the holistic order-encoding pattern compactly encodes color order variation tendencies for each pixel in color space. The hierarchical order-encoding pattern leverages min ordering, median ordering and max ordering to encode local neighboring relationships across different color channels. Finally, the generated order-encoding patterns are aggregated via central pixel encoding to build 3D joint histograms for image representation. Experiments on four benchmark texture databases demonstrate the effectiveness of the proposed descriptor for color texture classification.

Detecting Manipulated Facial Videos: A Time Series Solution

Zhang Zhewei, Ma Can, Gao Meilin, Ding Bowen

Responsive image

Auto-TLDR; Face-Alignment Based Bi-LSTM for Fake Video Detection

Slides Poster Similar

We propose a new method to expose fake videos based on a time series solution. The method is based on bidirectional long short-term memory (Bi-LSTM) backbone architecture with two different types of features: {Face-Alignment} and {Dense-Face-Alignment}, in which both of them are physiological signals that can be distinguished between fake and original videos. We choose 68 landmark points as the feature of {Face-Alignment} and Pose Adaptive Feature (PAF) for {Dense-Face-Alignment}. Based on these two facial features, we designed two deep networks. In addition, we optimize our network by adding an attention mechanism that improves detection precision. Our method is tested over benchmarks of Face Forensics/Face Forensics++ dataset and show a promising performance on inference speed while maintaining accuracy with state-of art solutions that deal against DeepFake.

Exposing Deepfake Videos by Tracking Eye Movements

Meng Li, Beibei Liu, Yujiang Hu, Yufei Wang

Responsive image

Auto-TLDR; A Novel Approach to Detecting Deepfake Videos

Slides Poster Similar

It has recently become a major threat to the public media that fake videos are rapidly spreading over the Internet. The advent of Deepfake, a deep-learning based toolkit, has facilitated a massive abuse of improper synthesized videos, which may influence the media credibility and human rights. A worldwide alert has been set off that finding ways to detect such fake videos is not only crucial but also urgent. This paper reports a novel approach to expose deepfake videos. We found that most fake videos are markedly different from the real ones in the way the eyes move. We are thus motivated to define four features that could well capture such differences. The features are then fed to SVM for classification. It is shown to be a promising approach that without high dimensional features and complicated neural networks, we are able to achieve competitive results on several public datasets. Moreover, the proposed features could well participate with other existing methods in the confrontation with deepfakes.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

Local Grouped Invariant Order Pattern for Grayscale-Inversion and Rotation Invariant Texture Classification

Yankai Huang, Tiecheng Song, Shuang Li, Yuanjing Han

Responsive image

Auto-TLDR; Local grouped invariant order pattern for grayscale-inversion and rotation invariant texture classification

Slides Poster Similar

Local binary pattern (LBP) based descriptors have shown effectiveness for texture classification. However, most of them encode the intensity relationships between neighboring pixels and a central pixel into binary forms, thereby failing to capture the complete ordering information among neighbors. Several methods have explored intensity order information for feature description, but they do not address the grayscale-inversion problem. In this paper, we propose an image descriptor called local grouped invariant order pattern (LGIOP) for grayscale-inversion and rotation invariant texture classification. Our LGIOP is a histogram representation which jointly encodes neighboring order information and central pixels. In particular, two new order encoding methods, i.e., intensity order encoding and distance order encoding, are proposed to describe the neighboring relationships. These two order encoding methods are not only complementary but also invariant to grayscale-inversion and rotation changes. Experiments for texture classification demonstrate that the proposed LGIOP descriptor is robust to (linear or nonlinear) grayscale inversion and image rotation.

Local Attention and Global Representation Collaborating for Fine-Grained Classification

He Zhang, Yunming Bai, Hui Zhang, Jing Liu, Xingguang Li, Zhaofeng He

Responsive image

Auto-TLDR; Weighted Region Network for Cosmetic Contact Lenses Detection

Slides Poster Similar

The cosmetic contact lenses over an iris may change its original textural pattern that is the foundation for iris recognition, making the cosmetic lenses a possible and easy-to-use iris presentation attack means. Aiming at cosmetic contact lenses detection of practical application system, some approaches have been proposed but still facing unsolved problems, such as low quality iris images and inaccurate localized iris boundaries. In this paper, we propose a novel framework called Weighted Region Network (WRN) for the cosmetic contact lenses detection. The WRN includes both the local attention Weight Network and the global classification Region Network. With the inherent attention mechanism, the proposed network is able to find the most discriminative regions, which reduces the requirement for target detection and improves the ability of classification based on some specific areas and patterns. The Weight Network can be trained by using Rank loss and MSE loss without manual discriminative region annotations. Experiments are conducted on several databases and a new collected low-quality iris image database. The proposed method outperforms state-of-the-art fake iris detection algorithms, and is also effective for the fine-grained image classification task.

Viability of Optical Coherence Tomography for Iris Presentation Attack Detection

Renu Sharma, Arun Ross

Responsive image

Auto-TLDR; Optical Coherence Tomography Imaging for Iris Presentation Attack Detection

Slides Poster Similar

In this paper, we first propose the use of Optical Coherence Tomography (OCT) imaging for the problem of iris presentation attack (PA) detection. Secondly, we assess its viability by comparing its performance with respect to traditional modalities, viz., near-infrared (NIR) and visible spectrum. OCT imaging provides a cross-sectional view of an eye, whereas NIR and visible spectrum imaging provide 2D iris textural information. Implementation is performed using three state-of-the-art deep architectures (VGG19, ResNet50 and DenseNet121) to differentiate between bonafide and PA samples for each of the three imaging modalities. Experiments are performed on a dataset of 2,169 bonafide, 177 Van Dyke eyes and 360 cosmetic contact images acquired using all three imaging modalities under intra-attack (known PAs) and cross-attack (unknown PAs) scenario. We observe promising results demonstrating OCT as a viable solution for iris PA detection.

Age Gap Reducer-GAN for Recognizing Age-Separated Faces

Daksha Yadav, Naman Kohli, Mayank Vatsa, Richa Singh, Afzel Noore

Responsive image

Auto-TLDR; Generative Adversarial Network for Age-separated Face Recognition

Slides Poster Similar

In this paper, we propose a novel algorithm for matching faces with temporal variations caused due to age progression. The proposed generative adversarial network algorithm is a unified framework which combines facial age estimation and age-separated face verification. The key idea of this approach is to learn the age variations across time by conditioning the input image on the subject's gender and the target age group to which the face needs to be progressed. The loss function accounts for reducing the age gap between the original image and generated face image as well as preserving the identity. Both visual fidelity and quantitative evaluations demonstrate the efficacy of the proposed architecture on different facial age databases for age-separated face recognition.

Two-Level Attention-Based Fusion Learning for RGB-D Face Recognition

Hardik Uppal, Alireza Sepas-Moghaddam, Michael Greenspan, Ali Etemad

Responsive image

Auto-TLDR; Fused RGB-D Facial Recognition using Attention-Aware Feature Fusion

Slides Poster Similar

With recent advances in RGB-D sensing technologies as well as improvements in machine learning and fusion techniques, RGB-D facial recognition has become an active area of research. A novel attention aware method is proposed to fuse two image modalities, RGB and depth, for enhanced RGB-D facial recognition. The proposed method first extracts features from both modalities using a convolutional feature extractor. These features are then fused using a two layer attention mechanism. The first layer focuses on the fused feature maps generated by the feature extractor, exploiting the relationship between feature maps using LSTM recurrent learning. The second layer focuses on the spatial features of those maps using convolution. The training database is preprocessed and augmented through a set of geometric transformations, and the learning process is further aided using transfer learning from a pure 2D RGB image training process. Comparative evaluations demonstrate that the proposed method outperforms other state-of-the-art approaches, including both traditional and deep neural network-based methods, on the challenging CurtinFaces and IIIT-D RGB-D benchmark databases, achieving classification accuracies over 98.2% and 99.3% respectively. The proposed attention mechanism is also compared with other attention mechanisms, demonstrating more accurate results.

Electroencephalography Signal Processing Based on Textural Features for Monitoring the Driver’s State by a Brain-Computer Interface

Giulia Orrù, Marco Micheletto, Fabio Terranova, Gian Luca Marcialis

Responsive image

Auto-TLDR; One-dimensional Local Binary Pattern Algorithm for Estimating Driver Vigilance in a Brain-Computer Interface System

Slides Poster Similar

In this study we investigate a textural processing method of electroencephalography (EEG) signal as an indicator to estimate the driver's vigilance in a hypothetical Brain-Computer Interface (BCI) system. The novelty of the solution proposed relies on employing the one-dimensional Local Binary Pattern (1D-LBP) algorithm for feature extraction from pre-processed EEG data. From the resulting feature vector, the classification is done according to three vigilance classes: awake, tired and drowsy. The claim is that the class transitions can be detected by describing the variations of the micro-patterns' occurrences along the EEG signal. The 1D-LBP is able to describe them by detecting mutual variations of the signal temporarily "close" as a short bit-code. Our analysis allows to conclude that the 1D-LBP adoption has led to significant performance improvement. Moreover, capturing the class transitions from the EEG signal is effective, although the overall performance is not yet good enough to develop a BCI for assessing the driver's vigilance in real environments.

Local Binary Quaternion Rotation Pattern for Colour Texture Retrieval

Hela Jebali, Noel Richard, Mohamed Naouai

Responsive image

Auto-TLDR; Local Binary Quaternion Rotation Pattern for Color Texture Classification

Poster Similar

Color is very important feature for image representation, it assumes very essential in the human visual recognition process. Most existing approaches usually extract features from the three color channels separately (Marginal way). Although, it exists few vector expressions of texture features. Aware of the high interaction that exists between different channels in the color image, this work introduces a compact texture descriptor, named Local Binary Quaternion Rotation Pattern (LBQRP). In this LBQRP purpose, the quaternion representation is used to represent color texture. The distance between two color can be expressed as the angle of rotation between two unit quaternions using the geodesic distance. After a LBQRP coding, local histograms are extracted and used as features. Experiments on three challenging color datasets: Vistex, Outex-TC13 and USPtex are carried out to evaluate the LBQRP performance in texture classification. Results show the high efficiency of the proposed approach facing to several stat-of-art methods.

First and Second-Order Sorted Local Binary Pattern Features for Grayscale-Inversion and Rotation Invariant Texture Classification

Tiecheng Song, Yuanjing Han, Jie Feng, Yuanlin Wang, Chenqiang Gao

Responsive image

Auto-TLDR; First- and Secondorder Sorted Local Binary Pattern for texture classification under inverse grayscale changes and image rotation

Slides Poster Similar

Local binary pattern (LBP) is sensitive to inverse grayscale changes. Several methods address this problem by mapping each LBP code and its complement to the minimum one. However, without distinguishing LBP codes and their complements, these methods show limited discriminative power. In this paper, we introduce a histogram sorting method to preserve the distribution information of LBP codes and their complements. Based on this method, we propose first- and secondorder sorted LBP (SLBP) features which are robust to inverse grayscale changes and image rotation. The proposed method focuses on encoding difference-sign information and it can be generalized to embed other difference-magnitude features to obtain complementary representations. Experiments demonstrate the effectiveness of our method for texture classification under(linear or nonlinear) grayscale-inversion and rotation changes.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

Lightweight Low-Resolution Face Recognition for Surveillance Applications

Yoanna Martínez-Díaz, Heydi Mendez-Vazquez, Luis S. Luevano, Leonardo Chang, Miguel Gonzalez-Mendoza

Responsive image

Auto-TLDR; Efficiency of Lightweight Deep Face Networks on Low-Resolution Surveillance Imagery

Slides Poster Similar

Typically, real-world requirements to deploy face recognition models in unconstrained surveillance scenarios demand to identify low-resolution faces with extremely low computational cost. In the last years, several methods based on complex deep learning models have been proposed with promising recognition results but at a high computational cost. Inspired by the compactness and computation efficiency of lightweight deep face networks and their high accuracy on general face recognition tasks, in this work we propose to benchmark two recently introduced lightweight face models on low-resolution surveillance imagery to enable efficient system deployment. In this way, we conduct a comprehensive evaluation on the two typical settings: LR-to-HR and LR-to-LR matching. In addition, we investigate the effect of using trained models with down-sampled synthetic data from high-resolution images, as well as the combination of different models, for face recognition on real low-resolution images. Experimental results show that the used lightweight face models achieve state-of-the-art results on low-resolution benchmarks with low memory footprint and computational complexity. Moreover, we observed that combining models trained with different degradations improves the recognition accuracy on low-resolution surveillance imagery, which is feasible due to their low computational cost.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

Appliance Identification Using a Histogram Post-Processing of 2D Local Binary Patterns for Smart Grid Applications

Yassine Himeur, Abdullah Alsalemi, Faycal Bensaali, Abbes Amira

Responsive image

Auto-TLDR; LBP-BEVM based Local Binary Patterns for Appliances Identification in the Smart Grid

Similar

Identifying domestic appliances in the smart grid leads to a better power usage management and further helps in detecting appliance-level abnormalities. An efficient identification can be achieved only if a robust feature extraction scheme is developed with a high ability to discriminate between different appliances on the smart grid. Accordingly, we propose in this paper a novel method to extract electrical power signatures after transforming the power signal to 2D space, which has more encoding possibilities. Following, an improved local binary patterns (LBP) is proposed that relies on improving the discriminative ability of conventional LBP using a post-processing stage. A binarized eigenvalue map (BEVM) is extracted from the 2D power matrix and then used to post-process the generated LBP representation. Next, two histograms are constructed, namely up and down histograms, and are then concatenated to form the global histogram. A comprehensive performance evaluation is performed on two different datasets, namely the GREEND and WITHED, in which power data were collected at 1 Hz and 44000 Hz sampling rates, respectively. The obtained results revealed the superiority of the proposed LBP-BEVM based system in terms of the identification performance versus other 2D descriptors and existing identification frameworks.

A Local Descriptor with Physiological Characteristic for Finger Vein Recognition

Liping Zhang, Weijun Li, Ning Xin

Responsive image

Auto-TLDR; Finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns

Slides Poster Similar

Local feature descriptors exhibit great superiority in finger vein recognition due to their stability and robustness against local changes in images. However, most of these are methods use general-purpose descriptors that do not consider finger vein-specific features. In this work, we propose a finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns, i.e., histogram of oriented physiological Gabor responses (HOPGR), for finger vein recognition. First, a prior of directional characteristic of finger vein patterns is obtained in an unsupervised manner. Then the physiological Gabor filter banks are set up based on the prior information to extract the physiological responses and orientation. Finally, to make the feature robust against local changes in images, a histogram is generated as output by dividing the image into non-overlapping cells and overlapping blocks. Extensive experimental results on several databases clearly demonstrate that the proposed method outperforms most current state-of-the-art finger vein recognition methods.

A Flatter Loss for Bias Mitigation in Cross-Dataset Facial Age Estimation

Ali Akbari, Muhammad Awais, Zhenhua Feng, Ammarah Farooq, Josef Kittler

Responsive image

Auto-TLDR; Cross-dataset Age Estimation for Neural Network Training

Slides Poster Similar

Existing studies in facial age estimation have mostly focused on intra-dataset protocols that assume training and test images captured under similar conditions. However, this is rarely valid in practical applications, where training and test sets usually have different characteristics. In this paper, we advocate a cross-dataset protocol for age estimation benchmarking. In order to improve the cross-dataset age estimation performance, we mitigate the inherent bias caused by the learning algorithm. To this end, we propose a novel loss function that is more effective for neural network training. The relative smoothness of the proposed loss function is its advantage with regards to the optimisation process performed by stochastic gradient decent. Its lower gradient, compared with existing loss functions, facilitates the discovery of and convergence to a better optimum, and consequently a better generalisation. The cross-dataset experimental results demonstrate the superiority of the proposed method over the state-of-the-art algorithms in terms of accuracy and generalisation capability.

Deep Multi-Task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing

Rui Zhao, Tianshan Liu, Jun Xiao, P. K. Daniel Lun, Kin-Man Lam

Responsive image

Auto-TLDR; Multi-task Learning for Facial Expression Recognition and Synthesis

Slides Poster Similar

Multi-task learning is an effective learning strategy for deep-learning-based facial expression recognition tasks. However, most existing methods take into limited consideration the feature selection, when transferring information between different tasks, which may lead to task interference when training the multi-task networks. To address this problem, we propose a novel selective feature-sharing method, and establish a multi-task network for facial expression recognition and facial expression synthesis. The proposed method can effectively transfer beneficial features between different tasks, while filtering out useless and harmful information. Moreover, we employ the facial expression synthesis task to enlarge and balance the training dataset to further enhance the generalization ability of the proposed method. Experimental results show that the proposed method achieves state-of-the-art performance on those commonly used facial expression recognition benchmarks, which makes it a potential solution to real-world facial expression recognition problems.

Documents Counterfeit Detection through a Deep Learning Approach

Darwin Danilo Saire Pilco, Salvatore Tabbone

Responsive image

Auto-TLDR; End-to-End Learning for Counterfeit Documents Detection using Deep Neural Network

Slides Poster Similar

The main topic of this work is on the detection of counterfeit documents and especially banknotes. We propose an end-to-end learning model using a deep learning approach based on Adapnet++ which manages feature extraction at multiple scale levels using several residual units. Unlike previous models based on regions of interest (ROI) and high-resolution documents, our network is feed with simple input images (i.e., a single patch) and we do not need high resolution images. Besides, discriminative regions can be visualized at different scales. Our network learns by itself which regions of interest predict the better results. Experimental results show that we are competitive compared with the state-of-the-art and our deep neural network has good ability to generalize and can be applied to other kind of documents like identity or administrative one.

Joint Compressive Autoencoders for Full-Image-To-Image Hiding

Xiyao Liu, Ziping Ma, Xingbei Guo, Jialu Hou, Lei Wang, Gerald Schaefer, Hui Fang

Responsive image

Auto-TLDR; J-CAE: Joint Compressive Autoencoder for Image Hiding

Slides Poster Similar

Image hiding has received significant attention due to the need of enhanced multimedia services, such as multimedia security and meta-information embedding for multimedia augmentation. Recently, deep learning-based methods have been introduced that are capable of significantly increasing the hidden capacity and supporting full size image hiding. However, these methods suffer from the necessity to balance the errors of the modified cover image and the recovered hidden image. In this paper, we propose a novel joint compressive autoencoder (J-CAE) framework to design an image hiding algorithm that achieves full-size image hidden capacity with small reconstruction errors of the hidden image. More importantly, it addresses the trade-off problem of previous deep learning-based methods by mapping the image representations in the latent spaces of the joint CAE models. Thus, both visual quality of the container image and recovery quality of the hidden image can be simultaneously improved. Extensive experimental results demonstrate that our proposed framework outperforms several state-of-the-art deep learning-based image hiding methods in terms of imperceptibility and recovery quality of the hidden images while maintaining full-size image hidden capacity.

Identity-Aware Facial Expression Recognition in Compressed Video

Xiaofeng Liu, Linghao Jin, Xu Han, Jun Lu, Jonghye Woo, Jane You

Responsive image

Auto-TLDR; Exploring Facial Expression Representation in Compressed Video with Mutual Information Minimization

Slides Similar

This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a novel collaborative min-min game for mutual information (MI) minimization in latent space. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$\times$ faster inference with compressed data.

Responsive Social Smile: A Machine-Learning Based Multimodal Behavior Assessment Framework towards Early Stage Autism Screening

Yueran Pan, Kunjing Cai, Ming Cheng, Xiaobing Zou, Ming Li

Responsive image

Auto-TLDR; Responsive Social Smile: A Machine Learningbased Assessment Framework for Early ASD Screening

Poster Similar

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which causes social deficits in social lives. Early ASD screening for children is an important method to reduce the impact of ASD on people’s whole lives. Traditional screening methods rely on protocol experiments and subjective evaluations from clinicians and domain experts and thereby cost a lot. To standardize the process of ASD screening, we 1 collaborate with a group of ASD experts, and design a ”Responsive Social Smile” protocol and an experiment environment. Also, we propose a machine learningbased assessment framework for early ASD screening. By integrating technologies of speech recognition and computer vision, the framework can quantitatively analyze the behaviors of children under well-designed protocols. By collecting 196 test samples from 41 children in the clinical treatments, our proposed method obtains 85.20% accuracy for the score prediction of individual protocol, and 80.49% unweighted accuracy for the final ASD prediction. This result indicates that our model reaches the average level of domain experts in ASD diagnosis.

Learning Metric Features for Writer-Independent Signature Verification Using Dual Triplet Loss

Qian Wan, Qin Zou

Responsive image

Auto-TLDR; A dual triplet loss based method for offline writer-independent signature verification

Poster Similar

Handwritten signature has long been a widely accepted biometric and applied in many verification scenarios. However, automatic signature verification remains an open research problem, which is mainly due to three reasons. 1) Skilled forgeries generated by persons who imitate the original writting pattern are very difficult to be distinguished from genuine signatures. It is especially so in the case of offline signatures, where only the signature image is captured as a feature for verification. 2) Most state-of-the-art models are writer-dependent, requiring a specific model to be trained whenever a new user is registered in verification, which is quite inconvenient. 3) Writer-independent models often have unsatisfactory performance. To this end, we propose a novel metric learning based method for offline writer-independent signature verification. Specifically, a dual triplet loss is used to train the model, where two different triplets are constructed for random and skilled forgeries, respectively. Experiments on three alphabet datasets — GPDS Synthetic, MCYT and CEDAR — show that the proposed method achieves competitive or superior performance to the state-of-the-art methods. Experiments are also conducted on a new offline Chinese signature dataset — CSIG-WHU, and the results show that the proposed method has a high feasibility on character-based signatures.

A Distinct Discriminant Canonical Correlation Analysis Network Based Deep Information Quality Representation for Image Classification

Lei Gao, Zheng Guo, Ling Guan Ling Guan

Responsive image

Auto-TLDR; DDCCANet: Deep Information Quality Representation for Image Classification

Slides Poster Similar

In this paper, we present a distinct discriminant canonical correlation analysis network (DDCCANet) based deep information quality representation with application to image classification. Specifically, to explore the sufficient discriminant information between different data sets, the within-class and between-class correlation matrices are employed and optimized jointly. Moreover, different from the existing canonical correlation analysis network (CCANet) and related algorithms, an information theoretic descriptor, information quality (IQ), is adopted to generate the deep-level feature representation for image classification. Benefiting from the explored discriminant information and IQ descriptor, it is potential to gain a more effective deep-level representation from multi-view data sets, leading to improved performance in classification tasks. To demonstrate the effectiveness of the proposed DDCCANet, we conduct experiments on the Olivetti Research Lab (ORL) face database, ETH80 database and CIFAR10 database. Experimental results show the superiority of the proposed solution on image classification.

A Quantitative Evaluation Framework of Video De-Identification Methods

Sathya Bursic, Alessandro D'Amelio, Marco Granato, Giuliano Grossi, Raffaella Lanzarotti

Responsive image

Auto-TLDR; Face de-identification using photo-reality and facial expressions

Slides Poster Similar

We live in an era of privacy concerns, motivating a large research effort in face de-identification. As in other fields, we are observing a general movement from hand-crafted methods to deep learning methods, mainly involving generative models. Although these methods produce more natural de-identified images or videos, we claim that the mere evaluation of the de-identification is not sufficient, especially when it comes to processing the images/videos further. In this note, we take into account the issue of preserving privacy, facial expressions, and photo-reality simultaneously, proposing a general testing framework. The method is applied to four open-source tools, producing a baseline for future de-identification methods.

Exploring Seismocardiogram Biometrics with Wavelet Transform

Po-Ya Hsu, Po-Han Hsu, Hsin-Li Liu

Responsive image

Auto-TLDR; Seismocardiogram Biometric Matching Using Wavelet Transform and Deep Learning Models

Slides Poster Similar

Seismocardiogram (SCG) has become easily accessible in the past decade owing to the advance of sensor technology. However, SCG biometric has not been widely explored. In this paper, we propose combining wavelet transform together with deep learning models, machine learning classifiers, or structural similarity metric to perform SCG biometric matching tasks. We validate the proposed methods on the publicly available dataset from PhysioNet database. The dataset contains one hour long electrocardiogram, breathing, and SCG data of 20 subjects. We train the models on the first five minute SCG and conduct identification on the last five minute SCG. We evaluate the identification and authentication performance with recognition rate and equal error rate, respectively. Based on the results, we show that wavelet transformed SCG biometric can achieve state-of-the-art performance when combined with deep learning models, machine learning classifiers, or structural similarity.

Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Nina Weng, Jiahao Wang, Annan Li, Yunhong Wang

Responsive image

Auto-TLDR; 2S-TCN: A Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Slides Poster Similar

In the field of facial attractiveness prediction, while deep models using static pictures have shown promising results, little attention is paid to dynamic facial information, which is proven to be influential by psychological studies. Meanwhile, the increasing popularity of short video apps creates an enormous demand of facial attractiveness prediction from short video clips. In this paper, we target on the dynamic facial attractiveness prediction problem. To begin with, a large-scale video-based facial attractiveness prediction dataset (VFAP) with more than one thousand clips from TikTok is collected. A two-stream temporal convolutional network (2S-TCN) is then proposed to capture dynamic attractiveness feature from both facial appearance and landmarks. We employ attentive feature enhancement along with specially designed modality and temporal fusion strategies to better explore the temporal dynamics. Extensive experiments on the proposed VFAP dataset demonstrate that 2S-TCN has a distinct advantage over the state-of-the-art static prediction methods.

Pose-Robust Face Recognition by Deep Meta Capsule Network-Based Equivariant Embedding

Fangyu Wu, Jeremy Simon Smith, Wenjin Lu, Bailing Zhang

Responsive image

Auto-TLDR; Deep Meta Capsule Network-based Equivariant Embedding Model for Pose-Robust Face Recognition

Similar

Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

ClusterFace: Joint Clustering and Classification for Set-Based Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Joint Clustering and Classification for Face Recognition in the Wild

Slides Poster Similar

Deep learning technology has enabled successful modeling of complex facial features when high quality images are available. Nonetheless, accurate modeling and recognition of human faces in real world scenarios 'on the wild' or under adverse conditions remains an open problem. When unconstrained faces are mapped into deep features, variations such as illumination, pose, occlusion, etc., can create inconsistencies in the resultant feature space. Hence, deriving conclusions based on direct associations could lead to degraded performance. This rises the requirement for a basic feature space analysis prior to face recognition. This paper devises a joint clustering and classification scheme which learns deep face associations in an easy-to-hard way. Our method is based on hierarchical clustering where the early iterations tend to preserve high reliability. The rationale of our method is that a reliable clustering result can provide insights on the distribution of the feature space, that can guide the classification that follows. Experimental evaluations on three tasks, face verification, face identification and rank-order search, demonstrates better or competitive performance compared to the state-of-the-art, on all three experiments.

Automatic Tuberculosis Detection Using Chest X-Ray Analysis with Position Enhanced Structural Information

Hermann Jepdjio Nkouanga, Szilard Vajda

Responsive image

Auto-TLDR; Automatic Chest X-ray Screening for Tuberculosis in Rural Population using Localized Region on Interest

Slides Poster Similar

For Tuberculosis (TB) detection beside the more expensive diagnosis solutions such as culture or sputum smear analysis one could consider the automatic analysis of the chest X-ray (CXR). This could mimic the lung region reading by the radiologist and it could provide a cheap solution to analyze and diagnose pulmonary abnormalities such as TB which often co- occurs with HIV. This software based pulmonary screening can be a reliable and affordable solution for rural population in different parts of the world such as India, Africa, etc. Our fully automatic system is processing the incoming CXR image by applying image processing techniques to detect the region on interest (ROI) followed by a computationally cheap feature extraction involving edge detection using Laplacian of Gaussian which we enrich by counting the local distribution of the intensities. The choice to ”zoom in” the ROI and look for abnormalities locally is motivated by the fact that some pulmonary abnormalities are localized in specific regions of the lungs. Later on the classifiers can decide about the normal or abnormal nature of each lung X-ray. Our goal is to find a simple feature, instead of a combination of several ones, -proposed and promoted in recent years’ literature, which can properly describe the different pathological alterations in the lungs. Our experiments report results on two publicly available data collections1, namely the Shenzhen and the Montgomery collection. For performance evaluation, measures such as area under the curve (AUC), and accuracy (ACC) were considered, achieving AUC = 0.81 (ACC = 83.33%) and AUC = 0.96 (ACC = 96.35%) for the Montgomery and Schenzen collections, respectively. Several comparisons are also provided to other state- of-the-art systems reported recently in the field.

RobusterNet: Improving Copy-Move Forgery Detection with Volterra-Based Convolutions

Efthimia Kafali, Nicholas Vretos, Theodoros Semertzidis, Petros Daras

Responsive image

Auto-TLDR; Convolutional Neural Networks with Nonlinear Inception for Copy-Move Forgery Detection

Slides Similar

Convolutional Neural Networks (CNNs) have recently been introduced for addressing copy-move forgery detection (CMFD). However, current CMFD CNN-based approaches have insufficient performance commitment regarding the localization of the positive class. In this paper, this issue is explored by considering both linear and nonlinear interactions between pixels. A nonlinear Inception module based on second-order Volterra kernels is proposed, in order to ameliorate the results of a state-of-the-art CMFD architecture. The outcome of this work shows that a combination of linear and nonlinear convolution kernels can make the input foreground and background pixels more separable. The proposed approach is evaluated on CASIA and CoMoFoD, two publicly available CMFD datasets, and results to an improved positive class localization performance. Moreover, the findings of the proposed method imply that the nonlinear Inception module stimulates immense robustness against miscellaneous post processing attacks.

Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins Using the CNN Triplet Loss

Georg Wimmer, Bernhard Prommegger, Andreas Uhl

Responsive image

Auto-TLDR; Finger vein recognition using CNNs and hard triplet online selection

Slides Poster Similar

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand crafted features, but only little work using CNN based recognition systems. This article proposes a new approach using CNNs that utilizes the triplet loss function together with hard triplet online selection for finger vein recognition. The CNNs are used for three different use cases: (1) the classical recognition use case, where every finger of a subject is considered as a separate class, (2) an evaluation of the similarity of left and right hand fingers from the same subject and (3) an evaluation of the similarity of different fingers of the same subject. The results show that the proposed approach achieves superior results compared to prior work on finger vein recognition using the triplet loss function. Furtherly, we show that different fingers of the same subject, especially same fingers from the left and right hand, show enough similarities to perform recognition. The last statement contradicts the current understanding in the literature for finger vein biometry, in which it is assumed that different fingers of the same subject are unique identities.

A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification

Shuwei Wang, Qiuyun Wang, Zhengwei Jiang, Xuren Wang, Rongqi Jing

Responsive image

Auto-TLDR; IMIR: An Improved Malware Image Rescaling Algorithm Using Semi-supervised Generative Adversarial Network

Slides Poster Similar

Malware classification helps to understand its purpose and is also an important part of attack detection. And it is also an important part of discovering attacks. Due to continuous innovation and development of artificial intelligence, it is a trend to combine deep learning with malware classification. In this paper, we propose an improved malware image rescaling algorithm (IMIR) based on local mean algorithm. Its main goal of IMIR is to reduce the loss of information from samples during the process of converting binary files to image files. Therefore, we construct a neural network structure based on VGG model, which is suitable for image classification. In the real world, a mass of malware family labels are inaccurate or lacking. To deal with this situation, we propose a novel method to train the deep neural network by Semi-supervised Generative Adversarial Network (SGAN), which only needs a small amount of malware that have accurate labels about families. By integrating SGAN with weak coupling, we can retain the weak links of supervised part and unsupervised part of SGAN. It improves the accuracy of malware classification by making classifiers more independent of discriminators. The results of experimental demonstrate that our model achieves exhibiting favorable performance. The recalls of each family in our data set are all higher than 93.75%.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.