Finger Vein Recognition and Intra-Subject Similarity Evaluation of Finger Veins Using the CNN Triplet Loss

Georg Wimmer, Bernhard Prommegger, Andreas Uhl

Responsive image

Auto-TLDR; Finger vein recognition using CNNs and hard triplet online selection

Slides Poster

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. There is a lot of prior work using hand crafted features, but only little work using CNN based recognition systems. This article proposes a new approach using CNNs that utilizes the triplet loss function together with hard triplet online selection for finger vein recognition. The CNNs are used for three different use cases: (1) the classical recognition use case, where every finger of a subject is considered as a separate class, (2) an evaluation of the similarity of left and right hand fingers from the same subject and (3) an evaluation of the similarity of different fingers of the same subject. The results show that the proposed approach achieves superior results compared to prior work on finger vein recognition using the triplet loss function. Furtherly, we show that different fingers of the same subject, especially same fingers from the left and right hand, show enough similarities to perform recognition. The last statement contradicts the current understanding in the literature for finger vein biometry, in which it is assumed that different fingers of the same subject are unique identities.

Similar papers

Rotation Detection in Finger Vein Biometrics Using CNNs

Bernhard Prommegger, Georg Wimmer, Andreas Uhl

Responsive image

Auto-TLDR; A CNN based rotation detector for finger vein recognition

Slides Poster Similar

Finger vein recognition deals with the identification of subjects based on their venous pattern within the fingers. The recognition accuracy of finger vein recognition systems suffers from different internal and external factors. One of the major problems are misplacements of the finger during acquisition. In particular longitudinal finger rotation poses a severe problem for such recognition systems. The detection and correction of such rotations is a difficult task as typically finger vein scanners acquire only a single image from the vein pattern. Therefore, important information such as the shape of the finger or the depth of the veins within the finger, which are needed for the rotation detection, are not available. This work presents a CNN based rotation detector that is capable of estimating the rotational difference between vein images of the same finger without providing any additional information. The experiments executed not only show that the method delivers highly accurate results, but it also generalizes so that the trained CNN can also be applied on data sets which have not been included during the training of the CNN. Correcting the rotation difference between images using the CNN's rotation prediction leads to EER improvements between 50-260% for a well-established vein-pattern based method (Maximum Curvature) on four public finger vein databases.

A Local Descriptor with Physiological Characteristic for Finger Vein Recognition

Liping Zhang, Weijun Li, Ning Xin

Responsive image

Auto-TLDR; Finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns

Slides Poster Similar

Local feature descriptors exhibit great superiority in finger vein recognition due to their stability and robustness against local changes in images. However, most of these are methods use general-purpose descriptors that do not consider finger vein-specific features. In this work, we propose a finger vein-specific local feature descriptors based physiological characteristic of finger vein patterns, i.e., histogram of oriented physiological Gabor responses (HOPGR), for finger vein recognition. First, a prior of directional characteristic of finger vein patterns is obtained in an unsupervised manner. Then the physiological Gabor filter banks are set up based on the prior information to extract the physiological responses and orientation. Finally, to make the feature robust against local changes in images, a histogram is generated as output by dividing the image into non-overlapping cells and overlapping blocks. Extensive experimental results on several databases clearly demonstrate that the proposed method outperforms most current state-of-the-art finger vein recognition methods.

Can You Really Trust the Sensor's PRNU? How Image Content Might Impact the Finger Vein Sensor Identification Performance

Dominik Söllinger, Luca Debiasi, Andreas Uhl

Responsive image

Auto-TLDR; Finger vein imagery can cause the PRNU estimate to be biased by image content

Slides Poster Similar

We study the impact of highly correlated image content on the estimated sensor PRNU and its impact on the sensor identification performance. Based on eight publicly available finger vein datasets, we show formally and experimentally that the nature of finger vein imagery can cause the estimated PRNU to be biased by image content and lead to a fairly bad PRNU estimate. Such bias can cause a false increase in sensor identification performance depending on the dataset composition. Our results indicate that independent of the biometric modality, examining the quality of the estimated PRNU is essential before claiming the sensor identification performance to be good.

One-Shot Representational Learning for Joint Biometric and Device Authentication

Sudipta Banerjee, Arun Ross

Responsive image

Auto-TLDR; Joint Biometric and Device Recognition from a Single Biometric Image

Slides Poster Similar

In this work, we propose a method to simultaneously perform (i) biometric recognition (\textit{i.e.}, identify the individual), and (ii) device recognition, (\textit{i.e.}, identify the device) from a single biometric image, say, a face image, using a one-shot schema. Such a joint recognition scheme can be useful in devices such as smartphones for enhancing security as well as privacy. We propose to automatically learn a joint representation that encapsulates both biometric-specific and sensor-specific features. We evaluate the proposed approach using iris, face and periocular images acquired using near-infrared iris sensors and smartphone cameras. Experiments conducted using 14,451 images from 13 sensors resulted in a rank-1 identification accuracy of upto 99.81\% and a verification accuracy of upto 100\% at a false match rate of 1\%.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

Level Three Synthetic Fingerprint Generation

Andre Wyzykowski, Mauricio Pamplona Segundo, Rubisley Lemes

Responsive image

Auto-TLDR; Synthesis of High-Resolution Fingerprints with Pore Detection Using CycleGAN

Slides Poster Similar

Today's legal restrictions that protect the privacy of biometric data are hampering fingerprint recognition researches. For instance, all high-resolution fingerprint databases ceased to be publicly available. To address this problem, we present a novel hybrid approach to synthesize realistic, high-resolution fingerprints. First, we improved Anguli, a handcrafted fingerprint generator, to obtain dynamic ridge maps with sweat pores and scratches. Then, we trained a CycleGAN to transform these maps into realistic fingerprints. Unlike other CNN-based works, we can generate several images for the same identity. We used our approach to create a synthetic database with 7400 images in an attempt to propel further studies in this field without raising legal issues. We included sweat pore annotations in 740 images to encourage research developments in pore detection. In our experiments, we employed two fingerprint matching approaches to confirm that real and synthetic databases have similar performance. We conducted a human perception analysis where sixty volunteers could hardly differ between real and synthesized fingerprints. Given that we also favorably compare our results with the most advanced works in the literature, our experimentation suggests that our approach is the new state-of-the-art.

SSDL: Self-Supervised Domain Learning for Improved Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Self-supervised Domain Learning for Face Recognition in unconstrained environments

Slides Poster Similar

Face recognition in unconstrained environments is challenging due to variations in illumination, quality of sensing, motion blur and etc. An individual’s face appearance can vary drastically under different conditions creating a gap between train (source) and varying test (target) data. The domain gap could cause decreased performance levels in direct knowledge transfer from source to target. Despite fine-tuning with domain specific data could be an effective solution, collecting and annotating data for all domains is extremely expensive. To this end, we propose a self-supervised domain learning (SSDL) scheme that trains on triplets mined from unlabelled data. A key factor in effective discriminative learning, is selecting informative triplets. Building on most confident predictions, we follow an “easy-to-hard” scheme of alternate triplet mining and self-learning. Comprehensive experiments on four different benchmarks show that SSDL generalizes well on different domains.

Domain Siamese CNNs for Sparse Multispectral Disparity Estimation

David-Alexandre Beaupre, Guillaume-Alexandre Bilodeau

Responsive image

Auto-TLDR; Multispectral Disparity Estimation between Thermal and Visible Images using Deep Neural Networks

Slides Poster Similar

Multispectral disparity estimation is a difficult task for many reasons: it as all the same challenges as traditional visible-visible disparity estimation (occlusions, repetitive patterns, textureless surfaces), in addition of having very few common visual information between images (e.g. color information vs. thermal information). In this paper, we propose a new CNN architecture able to do disparity estimation between images from different spectrum, namely thermal and visible in our case. Our proposed model takes two patches as input and proceeds to do domain feature extraction for each of them. Features from both domains are then merged with two fusion operations, namely correlation and concatenation. These merged vectors are then forwarded to their respective classification heads, which are responsible for classifying the inputs as being same or not. Using two merging operations gives more robustness to our feature extraction process, which leads to more precise disparity estimation. Our method was tested using the publicly available LITIV 2014 and LITIV 2018 datasets, and showed best results when compared to other state of the art methods.

ClusterFace: Joint Clustering and Classification for Set-Based Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Joint Clustering and Classification for Face Recognition in the Wild

Slides Poster Similar

Deep learning technology has enabled successful modeling of complex facial features when high quality images are available. Nonetheless, accurate modeling and recognition of human faces in real world scenarios 'on the wild' or under adverse conditions remains an open problem. When unconstrained faces are mapped into deep features, variations such as illumination, pose, occlusion, etc., can create inconsistencies in the resultant feature space. Hence, deriving conclusions based on direct associations could lead to degraded performance. This rises the requirement for a basic feature space analysis prior to face recognition. This paper devises a joint clustering and classification scheme which learns deep face associations in an easy-to-hard way. Our method is based on hierarchical clustering where the early iterations tend to preserve high reliability. The rationale of our method is that a reliable clustering result can provide insights on the distribution of the feature space, that can guide the classification that follows. Experimental evaluations on three tasks, face verification, face identification and rank-order search, demonstrates better or competitive performance compared to the state-of-the-art, on all three experiments.

Fingerprints, Forever Young?

Roman Kessler, Olaf Henniger, Christoph Busch

Responsive image

Auto-TLDR; Mated Similarity Scores for Fingerprint Recognition: A Hierarchical Linear Model

Slides Poster Similar

In the present study we analyzed longitudinal fingerprint data of 20 data subjects, acquired over a time span of up to 12 years. Using hierarchical linear modeling, we aimed to delineate mated similarity scores as a function of fingerprint quality and of the time interval between reference and probe images. Our results did not reveal effects on mated similarity scores caused by an increasing time interval across subjects, but rather individual effects on mated similarity scores. The results are in line with the general assumption that the fingerprint as a biometric characteristic and the features extracted from it do not change over the adult life span. However, it contradicts several related studies that reported noticeable template ageing effects. We discuss why different findings regarding ageing of references in fingerprint recognition systems were made.

Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

Kalun Ho, Janis Keuper, Franz-Josef Pfreundt, Margret Keuper

Responsive image

Auto-TLDR; Clustering Objectives for K-means and Correlation Clustering Using Triplet Loss

Slides Poster Similar

In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.

Supporting Skin Lesion Diagnosis with Content-Based Image Retrieval

Stefano Allegretti, Federico Bolelli, Federico Pollastri, Sabrina Longhitano, Giovanni Pellacani, Costantino Grana

Responsive image

Auto-TLDR; Skin Images Retrieval Using Convolutional Neural Networks for Skin Lesion Classification and Segmentation

Slides Poster Similar

Given the relevance of skin cancer, many attempts have been dedicated to the creation of automated devices that could assist both expert and beginner dermatologists towards fast and early diagnosis of skin lesions. In recent years, tasks such as skin lesion classification and segmentation have been extensively addressed with deep learning algorithms, which in some cases reach a diagnostic accuracy comparable to that of expert physicians. However, the general lack of interpretability and reliability severely hinders the ability of those approaches to actually support dermatologists in the diagnosis process. In this paper a novel skin images retrieval system is presented, which exploits features extracted by Convolutional Neural Networks to gather similar images from a publicly available dataset, in order to assist the diagnosis process of both expert and novice practitioners. In the proposed framework, Resnet-50 is initially trained for the classification of dermoscopic images; then, the feature extraction part is isolated, and an embedding network is build on top of it. The embedding learns an alternative representation, which allows to check image similarity by means of a distance measure. Experimental results reveal that the proposed method is able to select meaningful images, which can effectively boost the classification accuracy of human dermatologists.

MixNet for Generalized Face Presentation Attack Detection

Nilay Sanghvi, Sushant Singh, Akshay Agarwal, Mayank Vatsa, Richa Singh

Responsive image

Auto-TLDR; MixNet: A Deep Learning-based Network for Detection of Presentation Attacks in Cross-Database and Unseen Setting

Slides Poster Similar

The non-intrusive nature and high accuracy of face recognition algorithms have led to their successful deployment across multiple applications ranging from border access to mobile unlocking and digital payments. However, their vulnerability against sophisticated and cost-effective presentation attack mediums raises essential questions regarding its reliability. Several presentation attack detection algorithms are presented; however, they are still far behind from reality. The major problem with the existing work is the generalizability against multiple attacks both in the seen and unseen setting. The algorithms which are useful for one kind of attack (such as print) fail miserably for another type of attack (such as silicone masks). In this research, we have proposed a deep learning-based network called MixNet to detect presentation attacks in cross-database and unseen attack settings. The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category. Experiments are performed using multiple challenging face presentation attack databases such as Silicone Mask Attack Database (SMAD) and Spoof In the Wild with Multiple Attack (SiW-M). Extensive experiments and comparison with the existing state of the art algorithms show the effectiveness of the proposed algorithm.

How Unique Is a Face: An Investigative Study

Michal Balazia, S L Happy, Francois Bremond, Antitza Dantcheva

Responsive image

Auto-TLDR; Uniqueness of Face Recognition: Exploring the Impact of Factors such as image resolution, feature representation, database size, age and gender

Slides Poster Similar

Face recognition has been widely accepted as a means of identification in applications ranging from border control to security in the banking sector. Surprisingly, while widely accepted, we still lack the understanding of the uniqueness or distinctiveness of face as a biometric characteristic. In this work, we study the impact of factors such as image resolution, feature representation, database size, age and gender on uniqueness denoted by the Kullback-Leibler divergence between genuine and impostor distributions. Towards understanding the impact, we present experimental results on the datasets AT&T, LFW, IMDb-Face, as well as ND-TWINS, with the feature extraction algorithms VGGFace, VGG16, ResNet50, InceptionV3, MobileNet and DenseNet121, that reveal the quantitative impact of the named factors. While these are early results, our findings indicate the need for a better understanding of the concept of biometric uniqueness and its implication on face recognition.

Detection of Makeup Presentation Attacks Based on Deep Face Representations

Christian Rathgeb, Pawel Drozdowski, Christoph Busch

Responsive image

Auto-TLDR; An Attack Detection Scheme for Face Recognition Using Makeup Presentation Attacks

Slides Poster Similar

Facial cosmetics have the ability to substantially alter the facial appearance, which can negatively affect the decisions of a face recognition. In addition, it was recently shown that the application of makeup can be abused to launch so-called makeup presentation attacks. In such attacks, the attacker might apply heavy makeup in order to achieve the facial appearance of a target subject for the purpose of impersonation. In this work, we assess the vulnerability of a COTS face recognition system to makeup presentation attacks employing the publicly available Makeup Induced Face Spoofing (MIFS) database. It is shown that makeup presentation attacks might seriously impact the security of the face recognition system. Further, we propose an attack detection scheme which distinguishes makeup presentation attacks from genuine authentication attempts by analysing differences in deep face representations obtained from potential makeup presentation attacks and corresponding target face images. The proposed detection system employs a machine learning-based classifier, which is trained with synthetically generated makeup presentation attacks utilizing a generative adversarial network for facial makeup transfer in conjunction with image warping. Experimental evaluations conducted using the MIFS database reveal a detection equal error rate of 0.7% for the task of separating genuine authentication attempts from makeup presentation attacks.

Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

Hyunseung Chung, Woo-Jeoung Nam, Seong-Whan Lee

Responsive image

Auto-TLDR; Robust Remote Sensing Image Retrieval Using Group Convolution with Attention Mechanism and Metric Learning

Slides Poster Similar

Remote sensing image retrieval (RSIR) is the process of ranking database images depending on the degree of similarity compared to the query image. As the complexity of RSIR increases due to the diversity in shooting range, angle, and location of remote sensors, there is an increasing demand for methods to address these issues and improve retrieval performance. In this work, we introduce a novel method for retrieving aerial images by merging group convolution with attention mechanism and metric learning, resulting in robustness to rotational variations. For refinement and emphasis on important features, we applied channel attention in each group convolution stage. By utilizing the characteristics of group convolution and channel-wise attention, it is possible to acknowledge the equality among rotated but identically located images. The training procedure has two main steps: (i) training the network with Aerial Image Dataset (AID) for classification, (ii) fine-tuning the network with triplet-loss for retrieval with Google Earth South Korea and NWPU-RESISC45 datasets. Results show that the proposed method performance exceeds other state-of-the-art retrieval methods in both rotated and original environments. Furthermore, we utilize class activation maps (CAM) to visualize the distinct difference of main features between our method and baseline, resulting in better adaptability in rotated environments.

Exploring Seismocardiogram Biometrics with Wavelet Transform

Po-Ya Hsu, Po-Han Hsu, Hsin-Li Liu

Responsive image

Auto-TLDR; Seismocardiogram Biometric Matching Using Wavelet Transform and Deep Learning Models

Slides Poster Similar

Seismocardiogram (SCG) has become easily accessible in the past decade owing to the advance of sensor technology. However, SCG biometric has not been widely explored. In this paper, we propose combining wavelet transform together with deep learning models, machine learning classifiers, or structural similarity metric to perform SCG biometric matching tasks. We validate the proposed methods on the publicly available dataset from PhysioNet database. The dataset contains one hour long electrocardiogram, breathing, and SCG data of 20 subjects. We train the models on the first five minute SCG and conduct identification on the last five minute SCG. We evaluate the identification and authentication performance with recognition rate and equal error rate, respectively. Based on the results, we show that wavelet transformed SCG biometric can achieve state-of-the-art performance when combined with deep learning models, machine learning classifiers, or structural similarity.

Building Computationally Efficient and Well-Generalizing Person Re-Identification Models with Metric Learning

Vladislav Sovrasov, Dmitry Sidnev

Responsive image

Auto-TLDR; Cross-Domain Generalization in Person Re-identification using Omni-Scale Network

Slides Similar

This work considers the problem of domain shift in person re-identification.Being trained on one dataset, a re-identification model usually performs much worse on unseen data. Partially this gap is caused by the relatively small scale of person re-identification datasets (compared to face recognition ones, for instance), but it is also related to training objectives. We propose to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models. We use recently proposed Omni-Scale Network (OSNet) architecture combined with several training tricks and architecture adjustments to obtain state-of-the art results in cross-domain generalization problem on a large-scale MSMT17 dataset in three setups: MSMT17-all->DukeMTMC, MSMT17-train->Market1501 and MSMT17-all->Market1501.

DAIL: Dataset-Aware and Invariant Learning for Face Recognition

Gaoang Wang, Chen Lin, Tianqiang Liu, Mingwei He, Jiebo Luo

Responsive image

Auto-TLDR; DAIL: Dataset-Aware and Invariant Learning for Face Recognition

Slides Poster Similar

To achieve good performance in face recognition, a large scale training dataset is usually required. A simple yet effective way for improving the recognition performance is to use a dataset as large as possible by combining multiple datasets in the training. However, it is problematic and troublesome to naively combine different datasets due to two major issues. Firstly, the same person can possibly appear in different datasets, leading to the identity overlapping issue between different datasets. Natively treating the same person as different classes in different datasets during training will affect back-propagation and generate non-representative embeddings. On the other hand, manually cleaning labels will take a lot of human efforts, especially when there are millions of images and thousands of identities. Secondly, different datasets are collected in different situations and thus will lead to different domain distributions. Natively combining datasets will lead to domain distribution differences and make it difficult to learn domain invariant embeddings across different datasets. In this paper, we propose DAIL: Dataset-Aware and Invariant Learning to resolve the above-mentioned issues. To solve the first issue of identity overlapping, we propose a dataset-aware loss for multi-dataset training by reducing the penalty when the same person appears in multiple datasets. This can be readily achieved with a modified softmax loss with a dataset-aware term. To solve the second issue, the domain adaptation with gradient reversal layers is employed for dataset invariant learning. The proposed approach not only achieves state-of-the-art results on several commonly used face recognition validation sets, like LFW, CFP-FP, AgeDB-30, but also shows great benefit for practical usage.

Super-Resolution Guided Pore Detection for Fingerprint Recognition

Syeda Nyma Ferdous, Ali Dabouei, Jeremy Dawson, Nasser M. Nasarabadi

Responsive image

Auto-TLDR; Super-Resolution Generative Adversarial Network for Fingerprint Recognition Using Pore Features

Slides Poster Similar

Performance of fingerprint recognition algorithms substantially rely on fine features extracted from fingerprints. Apart from minutiae and ridge patterns, pore features have proven to be usable for fingerprint recognition. Although features from minutiae and ridge patterns are quite attainable from low-resolution images, using pore features is practical only if the fingerprint image is of high resolution which necessitates a model that enhances the image quality of the conventional 500 ppi legacy fingerprints preserving the fine details. To find a solution for recovering pore information from low-resolution fingerprints, we adopt a joint learning-based approach that combines both super-resolution and pore detection networks. Our modified single image Super-Resolution Generative Adversarial Network (SRGAN) framework helps to reliably reconstruct high-resolution fingerprint samples from low-resolution ones assisting the pore detection network to identify pores with a high accuracy. The network jointly learns a distinctive feature representation from a real low-resolution fingerprint sample and successfully synthesizes a high-resolution sample from it. To add discriminative information and uniqueness for all the subjects, we have integrated features extracted from a deep fingerprint verifier with the SRGAN quality discriminator. We also add ridge reconstruction loss, utilizing ridge patterns to make the best use of extracted features. Our proposed method solves the recognition problem by improving the quality of fingerprint images. High recognition accuracy of the synthesized samples that is close to the accuracy achieved using the original high-resolution images validate the effectiveness of our proposed model.

Loop-closure detection by LiDAR scan re-identification

Jukka Peltomäki, Xingyang Ni, Jussi Puura, Joni-Kristian Kamarainen, Heikki Juhani Huttunen

Responsive image

Auto-TLDR; Loop-Closing Detection from LiDAR Scans Using Convolutional Neural Networks

Slides Poster Similar

In this work, loop-closure detection from LiDAR scans is defined as an image re-identification problem. Re-identification is performed by computing Euclidean distances of a query scan to a gallery set of previous scans. The distances are computed in a feature embedding space where the scans are mapped by a convolutional neural network (CNN). The network is trained using the triplet loss training strategy. In our experiments we compare different backbone networks, variants of the triplet loss and generic and LiDAR specific data augmentation techniques. With a realistic indoor dataset the best architecture obtains the mean average precision (mAP) above 90%.

Learning Metric Features for Writer-Independent Signature Verification Using Dual Triplet Loss

Qian Wan, Qin Zou

Responsive image

Auto-TLDR; A dual triplet loss based method for offline writer-independent signature verification

Poster Similar

Handwritten signature has long been a widely accepted biometric and applied in many verification scenarios. However, automatic signature verification remains an open research problem, which is mainly due to three reasons. 1) Skilled forgeries generated by persons who imitate the original writting pattern are very difficult to be distinguished from genuine signatures. It is especially so in the case of offline signatures, where only the signature image is captured as a feature for verification. 2) Most state-of-the-art models are writer-dependent, requiring a specific model to be trained whenever a new user is registered in verification, which is quite inconvenient. 3) Writer-independent models often have unsatisfactory performance. To this end, we propose a novel metric learning based method for offline writer-independent signature verification. Specifically, a dual triplet loss is used to train the model, where two different triplets are constructed for random and skilled forgeries, respectively. Experiments on three alphabet datasets — GPDS Synthetic, MCYT and CEDAR — show that the proposed method achieves competitive or superior performance to the state-of-the-art methods. Experiments are also conducted on a new offline Chinese signature dataset — CSIG-WHU, and the results show that the proposed method has a high feasibility on character-based signatures.

SoftmaxOut Transformation-Permutation Network for Facial Template Protection

Hakyoung Lee, Cheng Yaw Low, Andrew Teoh

Responsive image

Auto-TLDR; SoftmaxOut Transformation-Permutation Network for C cancellable Biometrics

Slides Poster Similar

In this paper, we propose a data-driven cancellable biometrics scheme, referred to as SoftmaxOut Transformation-Permutation Network (SOTPN). The SOTPN is a neural version of Random Permutation Maxout (RPM) transform, which was introduced for facial template protection. We present a specialized SoftmaxOut layer integrated with the permutable MaxOut units and the parameterized softmax function to approximate the non-differentiable permutation and the winner-takes-all operations in the RPM transform. On top of that, a novel pairwise ArcFace loss and a code balancing loss are also formulated to ensure that the SOTPN-transformed facial template is cancellable, discriminative, high entropy and free from quantization errors when coupled with the SoftmaxOut layer. The proposed SOTPN is evaluated on three face datasets, namely LFW, YouTube Face and Facescrub, and our experimental results disclosed that the SOTPN outperforms the RPM transform significantly.

Multi-Level Deep Learning Vehicle Re-Identification Using Ranked-Based Loss Functions

Eleni Kamenou, Jesus Martinez-Del-Rincon, Paul Miller, Patricia Devlin - Hill

Responsive image

Auto-TLDR; Multi-Level Re-identification Network for Vehicle Re-Identification

Slides Poster Similar

Identifying vehicles across a network of cameras with non-overlapping fields of view remains a challenging research problem due to scene occlusions, significant inter-class similarity and intra-class variability. In this paper, we propose an end-to-end multi-level re-identification network that is capable of successfully projecting same identity vehicles closer to one another in the embedding space, compared to vehicles of different identities. Robust feature representations are obtained by combining features at multiple levels of the network. As for the learning process, we employ a recent state-of-the-art structured metric learning loss function previously applied to other retrieval problems and adjust it to the vehicle re-identification task. Furthermore, we explore the cases of image-to-image, image-to-video and video-to-video similarity metric. Finally, we evaluate our system and achieve great performance on two large-scale publicly available datasets, CityFlow-ReID and VeRi-776. Compared to most existing state-of-art approaches, our approach is simpler and more straightforward, utilizing only identity-level annotations, while avoiding post-processing the ranking results (re-ranking) at the testing phase.

Generalized Iris Presentation Attack Detection Algorithm under Cross-Database Settings

Mehak Gupta, Vishal Singh, Akshay Agarwal, Mayank Vatsa, Richa Singh

Responsive image

Auto-TLDR; MVNet: A Deep Learning-based PAD Network for Iris Recognition against Presentation Attacks

Slides Poster Similar

The deployment of biometrics features based person identification has increased significantly from border access to mobile unlock to electronic transactions. Iris recognition is considered as one of the most accurate biometric modality for person identification. However, the vulnerability of this recognition towards presentation attacks, especially towards the 3D contact lenses, can limit its potential deployments. The textured lenses are so effective in hiding the real texture of iris that it can fool not only the automatic recognition algorithms but also the human examiners. While in literature, several presentation attack detection (PAD) algorithms are presented; however, the significant limitation is the generalizability against an unseen database, unseen sensor, and different imaging environment. Inspired by the success of the hybrid algorithm or fusion of multiple detection networks, we have proposed a deep learning-based PAD network that utilizes multiple feature representation layers. The computational complexity is an essential factor in training the deep neural networks; therefore, to limit the computational complexity while learning multiple feature representation layers, a base model is kept the same. The network is trained end-to-end using a softmax classifier. We have evaluated the performance of the proposed network termed as MVNet using multiple databases such as IIITD-WVU MUIPA, IIITD-WVU UnMIPA database under cross-database training-testing settings. The experiments are performed extensively to assess the generalizability of the proposed algorithm.

Are Spoofs from Latent Fingerprints a Real Threat for the Best State-Of-Art Liveness Detectors?

Roberto Casula, Giulia Orrù, Daniele Angioni, Xiaoyi Feng, Gian Luca Marcialis, Fabio Roli

Responsive image

Auto-TLDR; ScreenSpoof: Attacks using latent fingerprints against state-of-art fingerprint liveness detectors and verification systems

Slides Similar

We investigated the threat level of realistic attacks using latent fingerprints against sensors equipped with state-of-art liveness detectors and fingerprint verification systems which integrate such liveness algorithms. To the best of our knowledge, only a previous investigation was done with spoofs from latent prints. In this paper, we focus on using snapshot pictures of latent fingerprints. These pictures provide molds, that allows, after some digital processing, to fabricate high-quality spoofs. Taking a snapshot picture is much simpler than developing fingerprints left on a surface by magnetic powders and lifting the trace by a tape. What we are interested here is to evaluate preliminary at which extent attacks of the kind can be considered a real threat for state-of-art fingerprint liveness detectors and verification systems. To this aim, we collected a novel data set of live and spoof images fabricated with snapshot pictures of latent fingerprints. This data set provide a set of attacks at the most favourable conditions. We refer to this method and the related data set as "ScreenSpoof". Then, we tested with it the performances of the best liveness detection algorithms, namely, the three winners of the LivDet competition. Reported results point out that the ScreenSpoof method is a threat of the same level, in terms of detection and verification errors, than that of attacks using spoofs fabricated with the full consensus of the victim. We think that this is a notable result, never reported in previous work.

Joint Learning Multiple Curvature Descriptor for 3D Palmprint Recognition

Lunke Fei, Bob Zhang, Jie Wen, Chunwei Tian, Peng Liu, Shuping Zhao

Responsive image

Auto-TLDR; Joint Feature Learning for 3D palmprint recognition using curvature data vectors

Slides Poster Similar

3D palmprint-based biometric recognition has drawn growing research attention due to its several merits over 2D counterpart such as robust structural measurement of a palm surface and high anti-counterfeiting capability. However, most existing 3D palmprint descriptors are hand-crafted that usually extract stationary features from 3D palmprint images. In this paper, we propose a feature learning method to jointly learn compact curvature feature descriptor for 3D palmprint recognition. We first form multiple curvature data vectors to completely sample the intrinsic curvature information of 3D palmprint images. Then, we jointly learn a feature projection function that project curvature data vectors into binary feature codes, which have the maximum inter-class variances and minimum intra-class distance so that they are discriminative. Moreover, we learn the collaborative binary representation of the multiple curvature feature codes by minimizing the information loss between the final representation and the multiple curvature features, so that the proposed method is more compact in feature representation and efficient in matching. Experimental results on the baseline 3D palmprint database demonstrate the superiority of the proposed method in terms of recognition performance in comparison with state-of-the-art 3D palmprint descriptors.

Lookalike Disambiguation: Improving Face Identification Performance at Top Ranks

Thomas Swearingen, Arun Ross

Responsive image

Auto-TLDR; Lookalike Face Identification Using a Disambiguator for Lookalike Images

Poster Similar

A face identification system compares an unknown input probe image to a gallery of face images labeled with identities in order to determine the identity of the probe image. The result of identification is a ranked match list with the most similar gallery face image at the top (rank 1) and the least similar gallery face image at the bottom. In many systems, the top ranked gallery images may look very similar to the probe image as well as to each other and can sometimes result in the misidentification of the probe image. Such similar looking faces pertaining to different identities are referred to as lookalike faces. We hypothesize that a matcher specifically trained to disambiguate lookalike face images and combined with a regular face matcher may improve overall identification performance. This work proposes reranking the initial ranked match list using a disambiguator especially for lookalike face pairs. This work also evaluates schemes to select gallery images in the initial ranked match list that should be re-ranked. Experiments on the challenging TinyFace dataset shows that the proposed approach improves the closed-set identification accuracy of a state-of-the-art face matcher.

Viability of Optical Coherence Tomography for Iris Presentation Attack Detection

Renu Sharma, Arun Ross

Responsive image

Auto-TLDR; Optical Coherence Tomography Imaging for Iris Presentation Attack Detection

Slides Poster Similar

In this paper, we first propose the use of Optical Coherence Tomography (OCT) imaging for the problem of iris presentation attack (PA) detection. Secondly, we assess its viability by comparing its performance with respect to traditional modalities, viz., near-infrared (NIR) and visible spectrum. OCT imaging provides a cross-sectional view of an eye, whereas NIR and visible spectrum imaging provide 2D iris textural information. Implementation is performed using three state-of-the-art deep architectures (VGG19, ResNet50 and DenseNet121) to differentiate between bonafide and PA samples for each of the three imaging modalities. Experiments are performed on a dataset of 2,169 bonafide, 177 Van Dyke eyes and 360 cosmetic contact images acquired using all three imaging modalities under intra-attack (known PAs) and cross-attack (unknown PAs) scenario. We observe promising results demonstrating OCT as a viable solution for iris PA detection.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Face Anti-Spoofing Based on Dynamic Color Texture Analysis Using Local Directional Number Pattern

Junwei Zhou, Ke Shu, Peng Liu, Jianwen Xiang, Shengwu Xiong

Responsive image

Auto-TLDR; LDN-TOP Representation followed by ProCRC Classification for Face Anti-Spoofing

Slides Poster Similar

Face anti-spoofing is becoming increasingly indispensable for face recognition systems, which are vulnerable to various spoofing attacks performed using fake photos and videos. In this paper, a novel "LDN-TOP representation followed by ProCRC classification" pipeline for face anti-spoofing is proposed. We use local directional number pattern (LDN) with the derivative-Gaussian mask to capture detailed appearance information resisting illumination variations and noises, which can influence the texture pattern distribution. To further capture motion information, we extend LDN to a spatial-temporal variant named local directional number pattern from three orthogonal planes (LDN-TOP). The multi-scale LDN-TOP capturing complete information is extracted from color images to generate the feature vector with powerful representation capacity. Finally, the feature vector is fed into the probabilistic collaborative representation based classifier (ProCRC) for face anti-spoofing. Our method is evaluated on three challenging public datasets, namely CASIA FASD, Replay-Attack database, and UVAD database using sequence-based evaluation protocol. The experimental results show that our method can achieve promising performance with 0.37% EER on CASIA and 5.73% HTER on UVAD. The performance on Replay-Attack database is also competitive.

Exploiting the Logits: Joint Sign Language Recognition and Spell-Correction

Christina Runkel, Stefan Dorenkamp, Hartmut Bauermeister, Michael Möller

Responsive image

Auto-TLDR; A Convolutional Neural Network for Spell-correction in Sign Language Videos

Slides Poster Similar

Machine learning techniques have excelled in the automatic semantic analysis of images, reaching human-level performances on challenging bechmarks. Yet, the semantic analysis of videos remains challenging due to the significantly higher dimensionality of the input data, respectively, the significantly higher need for annotated training examples. By studying the automatic recognition of German sign language videos, we demonstrate that on the relatively scarce training data of 2.800 videos, modern deep learning architectures for video analysis (such as ResNeXt) along with transfer learning on large gesture recognition tasks, can achieve about 75% character accuracy. Considering that this leaves us with a probability of under 25% that a five letter word is spelled correctly, spell-correction systems are crucial for producing readable outputs. The contribution of this paper is to propose a convolutional neural network for spell-correction that expects the softmax outputs of the character recognition network (instead of a misspelled word) as an input. We demonstrate that purely learning on softmax inputs in combination with scarce training data yields overfitting as the network learns the inputs by heart. In contrast, training the network on several variants of the logits of the classification output i.e. scaling by a constant factor, adding of random noise, mixing of softmax and hardmax inputs or purely training on hardmax inputs, leads to better generalization while benefitting from the significant information hidden in these outputs (that have 98% top-5 accuracy), yielding a readable text despite the comparably low character accuracy.

End-To-End Triplet Loss Based Emotion Embedding System for Speech Emotion Recognition

Puneet Kumar, Sidharth Jain, Balasubramanian Raman, Partha Pratim Roy, Masakazu Iwamura

Responsive image

Auto-TLDR; End-to-End Neural Embedding System for Speech Emotion Recognition

Slides Poster Similar

In this paper, an end-to-end neural embedding system based on triplet loss and residual learning has been proposed for speech emotion recognition. The proposed system learns the embeddings from the emotional information of the speech utterances. The learned embeddings are used to recognize the emotions portrayed by given speech samples of various lengths. The proposed system implements Residual Neural Network architecture. It is trained using softmax pre-training and triplet loss function. The weights between the fully connected and embedding layers of the trained network are used to calculate the embedding values. The embedding representations of various emotions are mapped onto a hyperplane, and the angles among them are computed using the cosine similarity. These angles are utilized to classify a new speech sample into its appropriate emotion class. The proposed system has demonstrated 91.67\% and 64.44\% accuracy while recognizing emotions for RAVDESS and IEMOCAP dataset, respectively.

Teacher-Student Training and Triplet Loss for Facial Expression Recognition under Occlusion

Mariana-Iuliana Georgescu, Radu Ionescu

Responsive image

Auto-TLDR; Knowledge Distillation for Facial Expression Recognition under Occlusion

Slides Similar

In this paper, we study the task of facial expression recognition under strong occlusion. We are particularly interested in cases where 50% of the face is occluded, e.g. when the subject wears a Virtual Reality (VR) headset. While previous studies show that pre-training convolutional neural networks (CNNs) on fully-visible (non-occluded) faces improves the accuracy, we propose to employ knowledge distillation to achieve further improvements. First of all, we employ the classic teacher-student training strategy, in which the teacher is a CNN trained on fully-visible faces and the student is a CNN trained on occluded faces. Second of all, we propose a new approach for knowledge distillation based on triplet loss. During training, the goal is to reduce the distance between an anchor embedding, produced by a student CNN that takes occluded faces as input, and a positive embedding (from the same class as the anchor), produced by a teacher CNN trained on fully-visible faces, so that it becomes smaller than the distance between the anchor and a negative embedding (from a different class than the anchor), produced by the student CNN. Third of all, we propose to combine the distilled embeddings obtained through the classic teacher-student strategy and our novel teacher-student strategy based on triplet loss into a single embedding vector. We conduct experiments on two benchmarks, FER+ and AffectNet, with two CNN architectures, VGG-f and VGG-face, showing that knowledge distillation can bring significant improvements over the state-of-the-art methods designed for occluded faces in the VR setting. Furthermore, we obtain accuracy rates that are quite close to the state-of-the-art models that take as input fully-visible faces. For example, on the FER+ data set, our VGG-face based on concatenated distilled embeddings attains an accuracy rate of 82.75% on lower-half-visible faces, which is only 2.24% below the accuracy rate of a state-of-the-art VGG-13 that is evaluated on fully-visible faces. Given that our model sees only the lower-half of the face, we consider this to be a remarkable achievement. In conclusion, we consider that our distilled CNN models can provide useful feedback for the task of recognizing the facial expressions of a person wearing a VR headset.

A Systematic Investigation on Deep Architectures for Automatic Skin Lesions Classification

Pierluigi Carcagni, Marco Leo, Andrea Cuna, Giuseppe Celeste, Cosimo Distante

Responsive image

Auto-TLDR; RegNet: Deep Investigation of Convolutional Neural Networks for Automatic Classification of Skin Lesions

Slides Poster Similar

Computer vision-based techniques are more and more employed in healthcare and medical fields nowadays in order, principally, to be as a support to the experienced medical staff to help them to make a quick and correct diagnosis. One of the hot topics in this arena concerns the automatic classification of skin lesions. Several promising works exist about it, mainly leveraging Convolutional Neural Networks (CNN), but proposed pipeline mainly rely on complex data preprocessing and there is no systematic investigation about how available deep models can actually reach the accuracy needed for real applications. In order to overcome these drawbacks, in this work, an end-to-end pipeline is introduced and some of the most recent Convolutional Neural Networks (CNNs) architectures are included in it and compared on the largest common benchmark dataset recently introduced. To this aim, for the first time in this application context, a new network design paradigm, namely RegNet, has been exploited to get the best models among a population of configurations. The paper introduces a threefold level of contribution and novelty with respect the previous literature: the deep investigation of several CNN architectures driving to a consistent improvement of the lesions recognition accuracy, the exploitation of a new network design paradigm able to study the behavior of populations of models and a deep discussion about pro and cons of each analyzed method paving the path towards new research lines.

SL-DML: Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition

Raphael Memmesheimer, Nick Theisen, Dietrich Paulus

Responsive image

Auto-TLDR; One-Shot Action Recognition using Metric Learning

Slides Similar

Recognizing an activity with a single reference sample using metric learning approaches is a promising research field. The majority of few-shot methods focus on object recognition or face-identification. We propose a metric learning approach to reduce the action recognition problem to a nearest neighbor search in embedding space. We encode signals into images and extract features using a deep residual CNN. Using triplet loss, we learn a feature embedding. The resulting encoder transforms features into an embedding space in which closer distances encode similar actions while higher distances encode different actions. Our approach is based on a signal level formulation and remains flexible across a variety of modalities. It further outperforms the baseline on the large scale NTU RGB+D 120 dataset for the One-Shot action recognition protocol by \ntuoneshotimpro%. With just 60% of the training data, our approach still outperforms the baseline approach by \ntuoneshotimproreduced%. With 40% of the training data, our approach performs comparably well as the second follow up. Further, we show that our approach generalizes well in experiments on the UTD-MHAD dataset for inertial, skeleton and fused data and the Simitate dataset for motion capturing data. Furthermore, our inter-joint and inter-sensor experiments suggest good capabilities on previously unseen setups.

Creating Classifier Ensembles through Meta-Heuristic Algorithms for Aerial Scene Classification

Álvaro Roberto Ferreira Jr., Gustavo Gustavo Henrique De Rosa, Joao Paulo Papa, Gustavo Carneiro, Fabio Augusto Faria

Responsive image

Auto-TLDR; Univariate Marginal Distribution Algorithm for Aerial Scene Classification Using Meta-Heuristic Optimization

Slides Poster Similar

Aerial scene classification is a challenging task to be solved in the remote sensing area, whereas deep learning approaches, such as Convolutional Neural Networks (CNN), are being widely employed to overcome such a problem. Nevertheless, it is not straightforward to find single CNN models that can solve all aerial scene classification tasks, allowing the nurturing of a better alternative, which is to fuse CNN-based classifiers into an ensemble. However, an appropriate choice of the classifiers that will belong to the ensemble is a critical factor, as it is unfeasible to employ all the possible classifiers in the literature. Therefore, this work proposes a novel framework based on meta-heuristic optimization for creating optimized-ensembles in the context of aerial scene classification. The experimental results were performed across nine meta-heuristic algorithms and three aerial scene literature datasets, being compared in terms of effectiveness (accuracy), efficiency (execution time), and behavioral performance in different scenarios. Finally, one can observe that the Univariate Marginal Distribution Algorithm (UMDA) overcame popular literature meta-heuristic algorithms, such as Genetic Programming and Particle Swarm Optimization considering the adopted criteria in the performed experiments.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

Local Attention and Global Representation Collaborating for Fine-Grained Classification

He Zhang, Yunming Bai, Hui Zhang, Jing Liu, Xingguang Li, Zhaofeng He

Responsive image

Auto-TLDR; Weighted Region Network for Cosmetic Contact Lenses Detection

Slides Poster Similar

The cosmetic contact lenses over an iris may change its original textural pattern that is the foundation for iris recognition, making the cosmetic lenses a possible and easy-to-use iris presentation attack means. Aiming at cosmetic contact lenses detection of practical application system, some approaches have been proposed but still facing unsolved problems, such as low quality iris images and inaccurate localized iris boundaries. In this paper, we propose a novel framework called Weighted Region Network (WRN) for the cosmetic contact lenses detection. The WRN includes both the local attention Weight Network and the global classification Region Network. With the inherent attention mechanism, the proposed network is able to find the most discriminative regions, which reduces the requirement for target detection and improves the ability of classification based on some specific areas and patterns. The Weight Network can be trained by using Rank loss and MSE loss without manual discriminative region annotations. Experiments are conducted on several databases and a new collected low-quality iris image database. The proposed method outperforms state-of-the-art fake iris detection algorithms, and is also effective for the fine-grained image classification task.

Writer Identification Using Deep Neural Networks: Impact of Patch Size and Number of Patches

Akshay Punjabi, José Ramón Prieto Fontcuberta, Enrique Vidal

Responsive image

Auto-TLDR; Writer Recognition Using Deep Neural Networks for Handwritten Text Images

Slides Poster Similar

Traditional approaches for the recognition or identification of the writer of a handwritten text image used to relay on heuristic knowledge about the shape and other features of the strokes of previously segmented characters. However, recent works have done significantly advances on the state of the art thanks to the use of various types of deep neural networks. In most of all of these works, text images are decomposed into patches, which are processed by the networks without any previous character or word segmentation. In this paper, we study how the way images are decomposed into patches impact recognition accuracy, using three publicly available datasets. The study also includes a simpler architecture where no patches are used at all - a single deep neural network inputs a whole text image and directly provides a writer recognition hypothesis. Results show that bigger patches generally lead to improved accuracy, achieving in one of the datasets a significant improvement over the best results reported so far.

Automatic Semantic Segmentation of Structural Elements related to the Spinal Cord in the Lumbar Region by Using Convolutional Neural Networks

Jhon Jairo Sáenz Gamboa, Maria De La Iglesia-Vaya, Jon Ander Gómez

Responsive image

Auto-TLDR; Semantic Segmentation of Lumbar Spine Using Convolutional Neural Networks

Slides Poster Similar

This work addresses the problem of automatically segmenting the MR images corresponding to the lumbar spine. The purpose is to detect and delimit the different structural elements like vertebrae, intervertebral discs, nerves, blood vessels, etc. This task is known as semantic segmentation. The approach proposed in this work is based on convolutional neural networks whose output is a mask where each pixel from the input image is classified into one of the possible classes. Classes were defined by radiologists and correspond to structural elements and tissues. The proposed network architectures are variants of the U-Net. Several complementary blocks were used to define the variants: spatial attention models, deep supervision and multi-kernels at input, this last block type is based on the idea of inception. Those architectures which got the best results are described in this paper, and their results are discussed. Two of the proposed architectures outperform the standard U-Net used as baseline.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

Automatic Tuberculosis Detection Using Chest X-Ray Analysis with Position Enhanced Structural Information

Hermann Jepdjio Nkouanga, Szilard Vajda

Responsive image

Auto-TLDR; Automatic Chest X-ray Screening for Tuberculosis in Rural Population using Localized Region on Interest

Slides Poster Similar

For Tuberculosis (TB) detection beside the more expensive diagnosis solutions such as culture or sputum smear analysis one could consider the automatic analysis of the chest X-ray (CXR). This could mimic the lung region reading by the radiologist and it could provide a cheap solution to analyze and diagnose pulmonary abnormalities such as TB which often co- occurs with HIV. This software based pulmonary screening can be a reliable and affordable solution for rural population in different parts of the world such as India, Africa, etc. Our fully automatic system is processing the incoming CXR image by applying image processing techniques to detect the region on interest (ROI) followed by a computationally cheap feature extraction involving edge detection using Laplacian of Gaussian which we enrich by counting the local distribution of the intensities. The choice to ”zoom in” the ROI and look for abnormalities locally is motivated by the fact that some pulmonary abnormalities are localized in specific regions of the lungs. Later on the classifiers can decide about the normal or abnormal nature of each lung X-ray. Our goal is to find a simple feature, instead of a combination of several ones, -proposed and promoted in recent years’ literature, which can properly describe the different pathological alterations in the lungs. Our experiments report results on two publicly available data collections1, namely the Shenzhen and the Montgomery collection. For performance evaluation, measures such as area under the curve (AUC), and accuracy (ACC) were considered, achieving AUC = 0.81 (ACC = 83.33%) and AUC = 0.96 (ACC = 96.35%) for the Montgomery and Schenzen collections, respectively. Several comparisons are also provided to other state- of-the-art systems reported recently in the field.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

Generalized Local Attention Pooling for Deep Metric Learning

Carlos Roig Mari, David Varas, Issey Masuda, Juan Carlos Riveiro, Elisenda Bou-Balust

Responsive image

Auto-TLDR; Generalized Local Attention Pooling for Deep Metric Learning

Slides Poster Similar

Deep metric learning has been key to recent advances in face verification and image retrieval amongst others. These systems consist on a feature extraction block (extracts feature maps from images) followed by a spatial dimensionality reduction block (generates compact image representations from the feature maps) and an embedding generation module (projects the image representation to the embedding space). While research on deep metric learning has focused on improving the losses for the embedding generation module, the dimensionality reduction block has been overlooked. In this work, we propose a novel method to generate compact image representations which uses local spatial information through an attention mechanism, named Generalized Local Attention Pooling (GLAP). This method, instead of being placed at the end layer of the backbone, is connected at an intermediate level, resulting in lower memory requirements. We assess the performance of the aforementioned method by comparing it with multiple dimensionality reduction techniques, demonstrating the importance of using attention weights to generate robust compact image representations. Moreover, we compare the performance of multiple state-of-the-art losses using the standard deep metric learning system against the same experiment with our GLAP. Experiments showcase that the proposed Generalized Local Attention Pooling mechanism outperforms other pooling methods when compared with current state-of-the-art losses for deep metric learning.

On Identification and Retrieval of Near-Duplicate Biological Images: A New Dataset and Protocol

Thomas E. Koker, Sai Spandana Chintapalli, San Wang, Blake A. Talbot, Daniel Wainstock, Marcelo Cicconet, Mary C. Walsh

Responsive image

Auto-TLDR; BINDER: Bio-Image Near-Duplicate Examples Repository for Image Identification and Retrieval

Poster Similar

Manipulation and re-use of images in scientific publications is a growing issue, not only for biomedical publishers, but also for the research community in general. In this work we introduce BINDER -- Bio-Image Near-Duplicate Examples Repository, a novel dataset to help researchers develop, train, and test models to detect same-source biomedical images. BINDER contains 7,490 unique image patches for model training, 1,821 same-size patch duplicates for validation and testing, and 868 different-size image/patch pairs for image retrieval validation and testing. Except for the training set, patches already contain manipulations including rotation, translation, scale, perspective transform, contrast adjustment and/or compression artifacts. We further use the dataset to demonstrate how novel adaptations of existing image retrieval and metric learning models can be applied to achieve high-accuracy inference results, creating a baseline for future work. In aggregate, we thus present a supervised protocol for near-duplicate image identification and retrieval without any "real-world" training example. Our dataset and source code are available at hms-idac.github.io/BINDER.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Age Gap Reducer-GAN for Recognizing Age-Separated Faces

Daksha Yadav, Naman Kohli, Mayank Vatsa, Richa Singh, Afzel Noore

Responsive image

Auto-TLDR; Generative Adversarial Network for Age-separated Face Recognition

Slides Poster Similar

In this paper, we propose a novel algorithm for matching faces with temporal variations caused due to age progression. The proposed generative adversarial network algorithm is a unified framework which combines facial age estimation and age-separated face verification. The key idea of this approach is to learn the age variations across time by conditioning the input image on the subject's gender and the target age group to which the face needs to be progressed. The loss function accounts for reducing the age gap between the original image and generated face image as well as preserving the identity. Both visual fidelity and quantitative evaluations demonstrate the efficacy of the proposed architecture on different facial age databases for age-separated face recognition.