PA-FlowNet: Pose-Auxiliary Optical Flow Network for Spacecraft Relative Pose Estimation

Zhi Yu Chen, Po-Heng Chen, Kuan-Wen Chen, Chen-Yu Chan

Responsive image

Auto-TLDR; PA-FlowNet: An End-to-End Pose-auxiliary Optical Flow Network for Space Travel and Landing

Slides Poster

During the process of space travelling and space landing, the spacecraft attitude estimation is the indispensable work for navigation. Since there are not enough satellites for GPS-like localization in space, the computer vision technique is adopted to address the issue. The most crucial task for localization is the extraction of correspondences. In computer vision, optical flow estimation is often used for finding correspondences between images. As the deep neural network being more popular in recent years, FlowNet2 has played a vital role which achieves great success. In this paper, we present PA-FlowNet, an end-to-end pose-auxiliary optical flow network which can use the predicted relative camera pose to improve the performance of optical flow. PA-FlowNet is composed of two sub-networks, the foreground-attention flow network and the pose regression network. The foreground-attention flow network is constructed bybased on FlowNet2 model and modified with the proposed foreground-attention approach. We introduced this approach with the concept of curriculum learning for foreground-background segmentation to avoid backgrounds from resulting in flow prediction error. The pose regression network is used to regress the relative camera pose as an auxiliary for increasing the accuracy of the flow estimation. In addition, to simulate the test environment for spacecraft pose estimation, we construct a 64K moon model and to simulate aerial photography with various attitudes to generate Moon64K dataset in this paper. PA-FlowNet significantly outperforms all existing methods on our the proposed Moon64K dataset. Furthermore, we also predict the relative pose via proposed PA-FlowNet and accomplish the remarkable performance.

Similar papers

HMFlow: Hybrid Matching Optical Flow Network for Small and Fast-Moving Objects

Suihanjin Yu, Youmin Zhang, Chen Wang, Xiao Bai, Liang Zhang, Edwin Hancock

Responsive image

Auto-TLDR; Hybrid Matching Optical Flow Network with Global Matching Component

Slides Poster Similar

In optical flow estimation task, coarse-to-fine warping strategy is widely used to deal with the large displacement problem and provides efficiency and speed. However, limited by the small search range between the first images and warped second images, current coarse-to-fine optical flow networks fail to capture small and fast-moving objects which has disappeared at coarse resolution levels. To address this problem, we introduce a lightweight but effective Global Matching Component (GMC) to grab global matching features. We propose a new Hybrid Matching Optical Flow Network (HMFlow) by integrating GMC into existing coarse-to-fine networks seamlessly. Besides keeping in high accuracy and small model size, our proposed HMFlow can apply global matching features to guide the network to discover the small and fast-moving objects mismatched by local matching features. We also build a new dataset, named SFChairs, for evaluation. The experimental results show that our proposed network achieves considerable performance, especially at regions with small and fast-moving objects.

OmniFlowNet: A Perspective Neural Network Adaptation for Optical Flow Estimation in Omnidirectional Images

Charles-Olivier Artizzu, Haozhou Zhang, Guillaume Allibert, Cédric Demonceaux

Responsive image

Auto-TLDR; OmniFlowNet: A Convolutional Neural Network for Omnidirectional Optical Flow Estimation

Slides Poster Similar

Spherical cameras and the latest image processing techniques open up new horizons. In particular, methods based on Convolutional Neural Networks (CNNs) now give excellent results for optical flow estimation on perspective images. However, these approaches are highly dependent on their architectures and training datasets. This paper proposes to benefit from years of improvement in perspective images optical flow estimation and to apply it to omnidirectional ones without training on new datasets. Our network, OmniFlowNet, is built on a CNN specialized in perspective images. Its convolution operation is adapted to be consistent with the equirectangular projection. Tested on spherical datasets created with Blender and several equirectangular videos realized from real indoor and outdoor scenes, OmniFlowNet shows better performance than its original network.

Revisiting Optical Flow Estimation in 360 Videos

Keshav Bhandari, Ziliang Zong, Yan Yan

Responsive image

Auto-TLDR; LiteFlowNet360: A Domain Adaptation Framework for 360 Video Optical Flow Estimation

Slides Similar

Nowadays 360 video analysis has become a significant research topic in the field since the appearance of high-quality and low-cost 360 wearable devices. In this paper, we propose a novel LiteFlowNet360 architecture for 360 videos optical flow estimation. We design LiteFlowNet360 as a domain adaptation framework from perspective video domain to 360 video domain. We adapt it from simple kernel transformation techniques inspired by Kernel Transformer Network (KTN) to cope with inherent distortion in 360 videos caused by the sphere-to-plane projection. First, we apply an incremental transformation of convolution layers in feature pyramid network and show that further transformation in inference and regularization layers are not important, hence reducing the network growth in terms of size and computation cost. Second, we refine the network by training with augmented data in a supervised manner. We perform data augmentation by projecting the images in a sphere and re-projecting to a plane. Third, we train LiteFlowNet360 in a self-supervised manner using target domain 360 videos. Experimental results show the promising results of 360 video optical flow estimation using the proposed novel architecture.

Two-Stage Adaptive Object Scene Flow Using Hybrid CNN-CRF Model

Congcong Li, Haoyu Ma, Qingmin Liao

Responsive image

Auto-TLDR; Adaptive object scene flow estimation using a hybrid CNN-CRF model and adaptive iteration

Slides Poster Similar

Scene flow estimation based on stereo sequences is a comprehensive task relevant to disparity and optical flow. Some existing methods are time-consuming and often fail in the presence of reflective surfaces. In this paper, we propose a two-stage adaptive object scene flow estimation method using a hybrid CNN-CRF model (ACOSF), which benefits from high-quality features and the structured modelling capability. Meanwhile, in order to balance the computational efficiency and accuracy, we employ adaptive iteration for energy function optimization, which is flexible and efficient for various scenes. Besides, we utilize high-quality pixel selection to reduce the computation time with only a slight decrease in accuracy. Our method achieves competitive results with the state-of-the-art, which ranks second on the challenging KITTI 2015 scene flow benchmark.

ResFPN: Residual Skip Connections in Multi-Resolution Feature Pyramid Networks for Accurate Dense Pixel Matching

Rishav ., René Schuster, Ramy Battrawy, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; Resolution Feature Pyramid Networks for Dense Pixel Matching

Slides Similar

Dense pixel matching is required for many computer vision algorithms such as disparity, optical flow or scene flow estimation. Feature Pyramid Networks (FPN) have proven to be a suitable feature extractor for CNN-based dense matching tasks. FPN generates well localized and semantically strong features at multiple scales. However, the generic FPN is not utilizing its full potential, due to its reasonable but limited localization accuracy. Thus, we present ResFPN – a multiresolution feature pyramid network with multiple residual skip connections, where at any scale, we leverage the information from higher resolution maps for stronger and better localized features. In our ablation study we demonstrate the effectiveness of our novel architecture with clearly higher accuracy than FPN. In addition, we verify the superior accuracy of ResFPN in many different pixel matching applications on established datasets like KITTI, Sintel, and FlyingThings3D.

A Lightweight Network to Learn Optical Flow from Event Data

Zhuoyan Li, Jiawei Shen

Responsive image

Auto-TLDR; A lightweight pyramid network with attention mechanism to learn optical flow from events data

Similar

Existing deep neural networks have found success in estimation of event-based optical flow, but are at the expense of complicated architectures. Moreover, few prior works discuss how to tackle with the noise problem of event camera, which would severely contaminate the data quality and make estimation an ill-posed problem. In this work, we present a lightweight pyramid network with attention mechanism to learn optical flow from events data. Specially, the network is designed according to two-well established principles: Laplacian pyramidal decomposition and channel attention mechanism. By integrating Laplacian pyramidal processing into CNN, the learning problem is simplified into several subproblems at each pyramid level, which can be handled by a relatively shallow network with few parameters. The channel attention block, embedded in each pyramid level, treats channels of feature map unequally and provides extra flexibility in suppressing background noises. The size of the proposed network is about only 5% of previous methods while our method still achieves state-of-the-art performance on the benchmark dataset. The experimental video samples of continuous flow estimation is presented at :https://github.com/xfleezy/blob.

STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame Optical Flow Estimation

Pierre Godet, Alexandre Boulch, Aurélien Plyer, Guy Le Besnerais

Responsive image

Auto-TLDR; STaRFlow: A lightweight CNN-based algorithm for optical flow estimation

Slides Poster Similar

We present a new lightweight CNN-based algorithm for multi-frame optical flow estimation. Our solution introduces a double recurrence over spatial scale and time through repeated use of a generic "STaR" (SpatioTemporal Recurrent) cell. It includes (i) a temporal recurrence based on conveying learned features rather than optical flow estimates; (ii) an occlusion detection process which is coupled with optical flow estimation and therefore uses a very limited number of extra parameters. The resulting STaRFlow algorithm gives state-of-the-art performances on MPI Sintel and Kitti2015 and involves significantly less parameters than all other methods with comparable results.

Movement-Induced Priors for Deep Stereo

Yuxin Hou, Muhammad Kamran Janjua, Juho Kannala, Arno Solin

Responsive image

Auto-TLDR; Fusing Stereo Disparity Estimation with Movement-induced Prior Information

Slides Poster Similar

We propose a method for fusing stereo disparity estimation with movement-induced prior information. Instead of independent inference frame-by-frame, we formulate the problem as a non-parametric learning task in terms of a temporal Gaussian process prior with a movement-driven kernel for inter-frame reasoning. We present a hierarchy of three Gaussian process kernels depending on the availability of motion information, where our main focus is on a new gyroscope-driven kernel for handheld devices with low-quality MEMS sensors, thus also relaxing the requirement of having full 6D camera poses available. We show how our method can be combined with two state-of-the-art deep stereo methods. The method either work in a plug-and-play fashion with pre-trained deep stereo networks, or further improved by jointly training the kernels together with encoder--decoder architectures, leading to consistent improvement.

Orthographic Projection Linear Regression for Single Image 3D Human Pose Estimation

Yahui Zhang, Shaodi You, Theo Gevers

Responsive image

Auto-TLDR; A Deep Neural Network for 3D Human Pose Estimation from a Single 2D Image in the Wild

Slides Poster Similar

3D human pose estimation from a single 2D image in the wild is an important computer vision task but yet extremely challenging. Unlike images taken from indoor and well constrained environments, 2D outdoor images in the wild are extremely complex because of varying imaging conditions. Furthermore, 2D images usually do not have corresponding 3D pose ground truth making a supervised approach ill constrained. Therefore, in this paper, we propose to associate the 3D human pose, the 2D human pose projection and the 2D image appearance through a new orthographic projection based linear regression module. Unlike existing reprojection based approaches, our orthographic projection and regression do not suffer from small angle problems, which usually lead to overfitting in the depth dimension. Hence, we propose a deep neural network which adopts the 2D pose, 3D pose regression and orthographic projection linear regression module. The proposed method shows state-of-the art performance on the Human3.6M dataset and generalizes well to in-the-wild images.

Extending Single Beam Lidar to Full Resolution by Fusing with Single Image Depth Estimation

Yawen Lu, Yuxing Wang, Devarth Parikh, Guoyu Lu

Responsive image

Auto-TLDR; Self-supervised LIDAR for Low-Cost Depth Estimation

Slides Similar

Depth estimation is playing an important role in indoor and outdoor scene understanding, autonomous driving, augmented reality and many other tasks. Vehicles and robotics are able to use active illumination sensors such as LIDAR to receive high precision depth estimation. However, high-resolution Lidars are usually too expensive, which limits its massive production on various applications. Though single beam LIDAR enjoys the benefits of low cost, one beam depth sensing is not usually sufficient to perceive the surrounding environment in many scenarios. In this paper, we propose a learning-based framework to explore to replicate similar or even higher performance as costly LIDARs with our designed self-supervised network and a low-cost single-beam LIDAR. After the accurate calibration with a visible camera, the single beam LIDAR can adjust the scale uncertainty of the depth map estimated by the visible camera. The adjusted depth map enjoys the benefits of high resolution and sensing accuracy as high beam LIDAR and maintains low-cost as single beam LIDAR. Thus we can achieve similar sensing effect of high beam LIDAR with more than a 50-100 times cheaper price (e.g., \$80000 Velodyne HDL-64E LIDAR v.s. \$1000 SICK TIM-781 2D LIDAR and normal camera). The proposed approach is verified on our collected dataset and public dataset with superior depth-sensing performance.

Learning Stereo Matchability in Disparity Regression Networks

Jingyang Zhang, Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, Long Quan

Responsive image

Auto-TLDR; Deep Stereo Matchability for Weakly Matchable Regions

Slides Similar

Learning-based stereo matching has recently achieved promising results, yet still suffers difficulties in establishing reliable matches in weakly matchable regions that are textureless, non-Lambertian, or occluded. In this paper, we address this challenge by proposing a stereo matching network that considers pixel-wise matchability. Specifically, the network jointly regresses disparity and matchability maps from 3D probability volume through expectation and entropy operations. Next, a learned attenuation is applied as the robust loss function to alleviate the influence of weakly matchable pixels in the training. Finally, a matchability-aware disparity refinement is introduced to improve the depth inference in weakly matchable regions. The proposed deep stereo matchability (DSM) framework can improve the matching result or accelerate the computation while still guaranteeing the quality. Moreover, the DSM framework is portable to many recent stereo networks. Extensive experiments are conducted on Scene Flow and KITTI stereo datasets to demonstrate the effectiveness of the proposed framework over the state-of-the-art learning-based stereo methods.

Deeply-Fused Attentive Network for Stereo Matching

Zuliu Yang, Xindong Ai, Weida Yang, Yong Zhao, Qifei Dai, Fuchi Li

Responsive image

Auto-TLDR; DF-Net: Deep Learning-based Network for Stereo Matching

Slides Poster Similar

In this paper, we propose a novel learning-based network for stereo matching called DF-Net, which makes three main contributions that are experimentally shown to have practical merit. Firstly, we further increase the accuracy by using the deeply fused spatial pyramid pooling (DF-SPP) module, which can acquire the continuous multi-scale context information in both parallel and cascade manners. Secondly, we introduce channel attention block to dynamically boost the informative features. Finally, we propose a stacked encoder-decoder structure with 3D attention gate for cost regularization. More precisely, the module fuses the coding features to their next encoder-decoder structure under the supervision of attention gate with long-range skip connection, and thus exploit deep and hierarchical context information for disparity prediction. The performance on SceneFlow and KITTI datasets shows that our model is able to generate better results against several state-of-the-art algorithms.

HPERL: 3D Human Pose Estimastion from RGB and LiDAR

Michael Fürst, Shriya T.P. Gupta, René Schuster, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; 3D Human Pose Estimation Using RGB and LiDAR Using Weakly-Supervised Approach

Slides Poster Similar

In-the-wild human pose estimation has a huge potential for various fields, ranging from animation and action recognition to intention recognition and prediction for autonomous driving. The current state-of-the-art is focused only on RGB and RGB-D approaches for predicting the 3D human pose. However, not using precise LiDAR depth information limits the performance and leads to very inaccurate absolute pose estimation. With LiDAR sensors becoming more affordable and common on robots and autonomous vehicle setups, we propose an end-to-end architecture using RGB and LiDAR to predict the absolute 3D human pose with unprecedented precision. Additionally, we introduce a weakly-supervised approach to generate 3D predictions using 2D pose annotations from PedX. This allows for many new opportunities in the field of 3D human pose estimation.

Partially Supervised Multi-Task Network for Single-View Dietary Assessment

Ya Lu, Thomai Stathopoulou, Stavroula Mougiakakou

Responsive image

Auto-TLDR; Food Volume Estimation from a Single Food Image via Geometric Understanding and Semantic Prediction

Slides Poster Similar

Food volume estimation is an essential step in the pipeline of dietary assessment and demands the precise depth estimation of the food surface and table plane. Existing methods based on computer vision require either multi-image input or additional depth maps, reducing convenience of implementation and practical significance. Despite the recent advances in unsupervised depth estimation from a single image, the achieved performance in the case of large texture-less areas needs to be improved. In this paper, we propose a network architecture that jointly performs geometric understanding (i.e., depth prediction and 3D plane estimation) and semantic prediction on a single food image, enabling a robust and accurate food volume estimation regardless of the texture characteristics of the target plane. For the training of the network, only monocular videos with semantic ground truth are required, while the depth map and 3D plane ground truth are no longer needed. Experimental results on two separate food image databases demonstrate that our method performs robustly on texture-less scenarios and is superior to unsupervised networks and structure from motion based approaches, while it achieves comparable performance to fully-supervised methods.

Do We Really Need Scene-Specific Pose Encoders?

Yoli Shavit, Ron Ferens

Responsive image

Auto-TLDR; Pose Regression Using Deep Convolutional Networks for Visual Similarity

Slides Similar

Visual pose regression models estimate the camera pose from a query image with a single forward pass. Current models learn pose encoding from an image using deep convolutional networks which are trained per scene. The resulting encoding is typically passed to a multi-layer perceptron in order to regress the pose. In this work, we propose that scene-specific pose encoders are not required for pose regression and that encodings trained for visual similarity can be used instead. In order to test our hypothesis, we take a shallow architecture of several fully connected layers and train it with pre-computed encodings from a generic image retrieval model. We find that these encodings are not only sufficient to regress the camera pose, but that, when provided to a branching fully connected architecture, a trained model can achieve competitive results and even surpass current state-of-the-art pose regressors in some cases. Moreover, we show that for outdoor localization, the proposed architecture is the only pose regressor, to date, consistently localizing in under 2 meters and 5 degrees.

Future Urban Scenes Generation through Vehicles Synthesis

Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Predicting the Future of an Urban Scene with a Novel View Synthesis Paradigm

Slides Poster Similar

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stages approach, where interpretable information is included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user itself. This allows us to generate a set of diverse realistic futures starting from the same input in a multi-modal fashion. We visually and quantitatively show the superiority of this approach over traditional end-to-end scene-generation methods on CityFlow, a challenging real world dataset.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Motion-Supervised Co-Part Segmentation

Aliaksandr Siarohin, Subhankar Roy, Stéphane Lathuiliere, Sergey Tulyakov, Elisa Ricci, Nicu Sebe

Responsive image

Auto-TLDR; Self-supervised Co-Part Segmentation Using Motion Information from Videos

Slides Similar

Recent co-part segmentation methods mostly operate in a supervised learning setting, which requires a large amount of annotated data for training. To overcome this limitation, we propose a self-supervised deep learning method for co-part segmentation. Differently from previous works, our approach develops the idea that motion information inferred from videos can be leveraged to discover meaningful object parts. To this end, our method relies on pairs of frames sampled from the same video. The network learns to predict part segments together with a representation of the motion between two frames, which permits reconstruction of the target image. Through extensive experimental evaluation on publicly available video sequences we demonstrate that our approach can produce improved segmentation maps with respect to previous self-supervised co-part segmentation approaches.

Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated Convolution

Renshu Gu, Gaoang Wang, Jenq-Neng Hwang

Responsive image

Auto-TLDR; 3D Human Pose Estimation for Multi-Human Videos with Occlusion

Slides Similar

3D human pose estimation (HPE) is crucial in human behavior analysis, augmented reality/virtual reality (AR/VR) applications, and self-driving industry. Videos that contain multiple potentially occluded people captured from freely moving monocular cameras are very common in real-world scenarios, while 3D HPE for such scenarios is quite challenging, partially because there is a lack of such data with accurate 3D ground truth labels in existing datasets. In this paper, we propose a temporal regression network with a gated convolution module to transform 2D joints to 3D and recover the missing occluded joints in the meantime. A simple yet effective localization approach is further conducted to transform the normalized pose to the global trajectory. To verify the effectiveness of our approach, we also collect a new moving camera multi-human (MMHuman) dataset that includes multiple people with heavy occlusion captured by moving cameras. The 3D ground truth joints are provided by accurate motion capture (MoCap) system. From the experiments on static-camera based Human3.6M data and our own collected moving-camera based data, we show that our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods, especially for the scenarios with heavy occlusions.

Better Prior Knowledge Improves Human-Pose-Based Extrinsic Camera Calibration

Olivier Moliner, Sangxia Huang, Kalle Åström

Responsive image

Auto-TLDR; Improving Human-pose-based Extrinsic Calibration for Multi-Camera Systems

Slides Poster Similar

Accurate extrinsic calibration of wide baseline multi-camera systems enables better understanding of 3D scenes for many applications and is of great practical importance. Classical Structure-from-Motion calibration methods require special calibration equipment so that accurate point correspondences can be detected between different views. In addition, an operator with some training is usually needed to ensure that data is collected in a way that leads to good calibration accuracy. This limits the ease of adoption of such technologies. Recently, methods have been proposed to use human pose estimation models to establish point correspondences, thus removing the need for any special equipment. The challenge with this approach is that human pose estimation algorithms typically produce much less accurate feature points compared to classical patch-based methods. Another problem is that ambient human motion might not be optimal for calibration. We build upon prior works and introduce several novel ideas to improve the accuracy of human-pose-based extrinsic calibration. Our first contribution is a robust reprojection loss based on a better understanding of the sources of pose estimation error. Our second contribution is a 3D human pose likelihood model learned from motion capture data. We demonstrate significant improvements in calibration accuracy by evaluating our method on four publicly available datasets.

Object Segmentation Tracking from Generic Video Cues

Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper

Responsive image

Auto-TLDR; A Light-Weight Variational Framework for Video Object Segmentation in Videos

Slides Poster Similar

We propose a light-weight variational framework for online tracking of object segmentations in videos based on optical flow and image boundaries. While high-end computer vision methods on this task rely on sequence specific training of dedicated CNN architectures, we show the potential of a variational model, based on generic video information from motion and color. Such cues are usually required for tasks such as robot navigation or grasp estimation. We leverage them directly for video object segmentation and thus provide accurate segmentations at potentially very low extra cost. Our simple method can provide competitive results compared to the costly CNN-based methods with parameter tuning. Furthermore, we show that our approach can be combined with state-of-the-art CNN-based segmentations in order to improve over their respective results. We evaluate our method on the datasets DAVIS 16,17 and SegTrack v2.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

MixedFusion: 6D Object Pose Estimation from Decoupled RGB-Depth Features

Hangtao Feng, Lu Zhang, Xu Yang, Zhiyong Liu

Responsive image

Auto-TLDR; MixedFusion: Combining Color and Point Clouds for 6D Pose Estimation

Slides Poster Similar

Estimating the 6D pose of objects is an important process for intelligent systems to achieve interaction with the real-world. As the RGB-D sensors become more accessible, the fusion-based methods have prevailed, since the point clouds provide complementary geometric information with RGB values. However, Due to the difference in feature space between color image and depth image, the network structures that directly perform point-to-point matching fusion do not effectively fuse the features of the two. In this paper, we propose a simple but effective approach, named MixedFusion. Different from the prior works, we argue that the spatial correspondence of color and point clouds could be decoupled and reconnected, thus enabling a more flexible fusion scheme. By performing the proposed method, more informative points can be mixed and fused with rich color features. Extensive experiments are conducted on the challenging LineMod and YCB-Video datasets, show that our method significantly boosts the performance without introducing extra overheads. Furthermore, when the minimum tolerance of metric narrows, the proposed approach performs better for the high-precision demands.

Suppressing Features That Contain Disparity Edge for Stereo Matching

Xindong Ai, Zuliu Yang, Weida Yang, Yong Zhao, Zhengzhong Yu, Fuchi Li

Responsive image

Auto-TLDR; SDE-Attention: A Novel Attention Mechanism for Stereo Matching

Slides Poster Similar

Existing networks for stereo matching usually use 2-D CNN as the feature extractor. However, objects are usually continuous in spatial, if an extracted feature contains disparity edge (the representation of this feature on original image contains disparity edge), then this feature usually not occur inside the region of an object. We propose a novel attention mechanism to suppress features containing disparity edge, named SDE-Attention (SDEA). We notice that features containing disparity edge are usually continuous in one image and discontinuous in another, which means that they usually have a greater difference in two feature maps of the same layer than features that don’t contain disparity edge. SDEA calculate the weight matrix of the intermediate feature map according to this trait, then the weight matrix is multiplied to the intermediate feature map. We test SDEA on PSMNet, experimental results show that our method has a significant improvement in accuracy and our network achieves state-of-the-art performance among the published networks.

Residual Learning of Video Frame Interpolation Using Convolutional LSTM

Keito Suzuki, Masaaki Ikehara

Responsive image

Auto-TLDR; Video Frame Interpolation Using Residual Learning and Convolutional LSTMs

Slides Poster Similar

Video frame interpolation aims to generate interme- diate frames between the original frames. This produces videos with a higher frame r ate and creates smoother motion. Many video frame interpolation methods first estimate the motion vector between the input frames and then synthesizes the intermediate frame based on the motion. However, these methods rely on the accuracy of the motion estimation step and fail to accurately generate the interpolated frame when the estimated motion vectors are inaccurate. Therefore, to avoid the uncertainties caused by motion estimation, this paper proposes a method that directly generates the intermediate frame. Since two consecutive frames are relatively similar, our method takes the average of these two frames and utilizes residual learning to learn the difference between the average of these frames and the ground truth middle frame. In addition, our method uses Convolutional LSTMs and four input frames to better incorporate spatiotemporal information. This neural network can be easily trained end to end without difficult to obtain data such as optical flow. Our experimental results show that the proposed method can perform favorably against other state-of-the-art frame interpolation methods.

Attention Stereo Matching Network

Doudou Zhang, Jing Cai, Yanbing Xue, Zan Gao, Hua Zhang

Responsive image

Auto-TLDR; ASM-Net: Attention Stereo Matching with Disparity Refinement

Slides Poster Similar

Despite great progress, previous stereo matching algorithms still lack the ability to match textureless regions and slender structure areas. To tackle this problem, we propose ASM-Net, an attention stereo matching network. Attention module and disparity refinement module are constructed in the ASMNet. The attention module can improve correlation information between two images by channels and spatial attention.The feature-guided disparity refinement module learns more geometry information in different feature levels to refine the coarse prediction resolution constantly. The proposed approach was evaluated on several benchmark datasets. Experiments show that the proposed method achieves competitive results on KITTI and Scene-Flow datasets while running in real-time at 14ms.

Siamese Fully Convolutional Tracker with Motion Correction

Mathew Francis, Prithwijit Guha

Responsive image

Auto-TLDR; A Siamese Ensemble for Visual Tracking with Appearance and Motion Components

Slides Poster Similar

Visual tracking algorithms use cues like appearance, structure, motion etc. for locating an object in a video. We propose an ensemble tracker with appearance and motion components. A siamese tracker that learns object appearance from a static image and motion vectors computed between consecutive frames with a flow network forms the ensemble. Motion predicted object localization is used to correct the appearance component in the ensemble. Complementary nature of the components bring performance improvement as observed in experiments performed on VOT2018 and VOT2019 datasets.

Video Semantic Segmentation Using Deep Multi-View Representation Learning

Akrem Sellami, Salvatore Tabbone

Responsive image

Auto-TLDR; Deep Multi-view Representation Learning for Video Object Segmentation

Slides Poster Similar

In this paper, we propose a deep learning model based on deep multi-view representation learning, to address the video object segmentation task. The proposed model emphasizes the importance of the inherent correlation between video frames and incorporates a multi-view representation learning based on deep canonically correlated autoencoders. The multi-view representation learning in our model provides an efficient mechanism for capturing inherent correlations by jointly extracting useful features and learning better representation into a joint feature space, i.e., shared representation. To increase the training data and the learning capacity, we train the proposed model with pairs of video frames, i.e., $F_{a}$ and $F_{b}$. During the segmentation phase, the deep canonically correlated autoencoders model encodes useful features by processing multiple reference frames together, which is used to detect the frequently reappearing. Our model enhances the state-of-the-art deep learning-based methods that mainly focus on learning discriminative foreground representations over appearance and motion. Experimental results over two large benchmarks demonstrate the ability of the proposed method to outperform competitive approaches and to reach good performances, in terms of semantic segmentation.

A Multi-Task Neural Network for Action Recognition with 3D Key-Points

Rongxiao Tang, Wang Luyang, Zhenhua Guo

Responsive image

Auto-TLDR; Multi-task Neural Network for Action Recognition and 3D Human Pose Estimation

Slides Poster Similar

Action recognition and 3D human pose estimation are the fundamental problems in computer vision and closely related. In this work, we propose a multi-task neural network for action recognition and 3D human pose estimation. The results of the previous methods are still error-prone especially when tested against the images taken in-the-wild, leading error results in action recognition. To solve this problem, we propose a principled approach to generate high quality 3D pose ground truth given any in-the-wild image with a person inside. We achieve this by first devising a novel stereo inspired neural network to directly map any 2D pose to high quality 3D counterpart. Based on the high-quality 3D labels, we carefully design the multi-task framework for action recognition and 3D human pose estimation. The proposed architecture can utilize the shallow, deep features of the images, and the in-the-wild 3D human key-points to guide a more precise result. High quality 3D key-points can fully reflect the morphological features of motions, thus boosting the performance on action recognition. Experiments demonstrate that 3D pose estimation leads to significantly higher performance on action recognition than separated learning. We also evaluate the generalization ability of our method both quantitatively and qualitatively. The proposed architecture performs favorably against the baseline 3D pose estimation methods. In addition, the reported results on Penn Action and NTU datasets demonstrate the effectiveness of our method on the action recognition task.

FC-DCNN: A Densely Connected Neural Network for Stereo Estimation

Dominik Hirner, Friedrich Fraundorfer

Responsive image

Auto-TLDR; FC-DCNN: A Lightweight Network for Stereo Estimation

Slides Poster Similar

We propose a novel lightweight network for stereo estimation. Our network consists of a fully-convolutional densely connected neural network (FC-DCNN) that computes matching costs between rectified image pairs. Our FC-DCNN method learns expressive features and performs some simple but effective post-processing steps. The densely connected layer structure connects the output of each layer to the input of each subsequent layer. This network structure in addition to getting rid of any fully-connected layers leads to a very lightweight network. The output of this network is used in order to calculate matching costs and create a cost-volume. Instead of using time and memory-inefficient cost-aggregation methods such as semi-global matching or conditional random fields in order to improve the result, we rely on filtering techniques, namely median filter and guided filter. By computing a left-right consistency check we get rid of inconsistent values. Afterwards we use a watershed foreground-background segmentation on the disparity image with removed inconsistencies. This mask is then used to refine the final prediction. We show that our method works well for both challenging indoor and outdoor scenes by evaluating it on the Middlebury, KITTI and ETH3D benchmarks respectively.

PEAN: 3D Hand Pose Estimation Adversarial Network

Linhui Sun, Yifan Zhang, Jing Lu, Jian Cheng, Hanqing Lu

Responsive image

Auto-TLDR; PEAN: 3D Hand Pose Estimation with Adversarial Learning Framework

Slides Poster Similar

Despite recent emerging research attention, 3D hand pose estimation still suffers from the problems of predicting inaccurate or invalid poses which conflict with physical and kinematic constraints. To address these problems, we propose a novel 3D hand pose estimation adversarial network (PEAN) which can implicitly utilize such constraints to regularize the prediction in an adversarial learning framework. PEAN contains two parts: a 3D hierarchical estimation network (3DHNet) to predict hand pose, which decouples the task into multiple subtasks with a hierarchical structure; a pose discrimination network (PDNet) to judge the reasonableness of the estimated 3D hand pose, which back-propagates the constraints to the estimation network. During the adversarial learning process, PDNet is expected to distinguish the estimated 3D hand pose and the ground truth, while 3DHNet is expected to estimate more valid pose to confuse PDNet. In this way, 3DHNet is capable of generating 3D poses with accurate positions and adaptively adjusting the invalid poses without additional prior knowledge. Experiments show that the proposed 3DHNet does a good job in predicting hand poses, and introducing PDNet to 3DHNet does further improve the accuracy and reasonableness of the predicted results. As a result, the proposed PEAN achieves the state-of-the-art performance on three public hand pose estimation datasets.

Real-Time Monocular Depth Estimation with Extremely Light-Weight Neural Network

Mian Jhong Chiu, Wei-Chen Chiu, Hua-Tsung Chen, Jen-Hui Chuang

Responsive image

Auto-TLDR; Real-Time Light-Weight Depth Prediction for Obstacle Avoidance and Environment Sensing with Deep Learning-based CNN

Slides Poster Similar

Obstacle avoidance and environment sensing are crucial applications in autonomous driving and robotics. Among all types of sensors, RGB camera is widely used in these applications as it can offer rich visual contents with relatively low-cost, and using a single image to perform depth estimation has become one of the main focuses in resent research works. However, prior works usually rely on highly complicated computation and power-consuming GPU to achieve such task; therefore, we focus on developing a real-time light-weight system for depth prediction in this paper. Based on the well-known encoder-decoder architecture, we propose a supervised learning-based CNN with detachable decoders that produce depth predictions with different scales. We also formulate a novel log-depth loss function that computes the difference of predicted depth map and ground truth depth map in log space, so as to increase the prediction accuracy for nearby locations. To train our model efficiently, we generate depth map and semantic segmentation with complex teacher models. Via a series of ablation studies and experiments, it is validated that our model can efficiently performs real-time depth prediction with only 0.32M parameters, with the best trained model outperforms previous works on KITTI dataset for various evaluation matrices.

Robust Visual Object Tracking with Two-Stream Residual Convolutional Networks

Ning Zhang, Jingen Liu, Ke Wang, Dan Zeng, Tao Mei

Responsive image

Auto-TLDR; Two-Stream Residual Convolutional Network for Visual Tracking

Slides Poster Similar

The current deep learning based visual tracking approaches have been very successful by learning the target classification and/or estimation model from a large amount of supervised training data in offline mode. However, most of them can still fail in tracking objects due to some more challenging issues such as dense distractor objects, confusing background, motion blurs, and so on. Inspired by the human ``visual tracking'' capability which leverages motion cues to distinguish the target from the background, we propose a Two-Stream Residual Convolutional Network (TS-RCN) for visual tracking, which successfully exploits both appearance and motion features for model update. Our TS-RCN can be integrated with existing deep learning based visual trackers. To further improve the tracking performance, we adopt a ``wider'' residual network ResNeXt as its feature extraction backbone. To the best of our knowledge, TS-RCN is the first end-to-end trainable two-stream visual tracking system, which makes full use of both appearance and motion features of the target. We have extensively evaluated the TS-RCN on most widely used benchmark datasets including VOT2018, VOT2019, and GOT-10K. The experiment results have successfully demonstrated that our two-stream model can greatly outperform the appearance based tracker, and it also achieves state-of-the-art performance. The tracking system can run at up to 38.1 FPS.

Holistic Grid Fusion Based Stop Line Estimation

Runsheng Xu, Faezeh Tafazzoli, Li Zhang, Timo Rehfeld, Gunther Krehl, Arunava Seal

Responsive image

Auto-TLDR; Fused Multi-Sensory Data for Stop Lines Detection in Intersection Scenarios

Slides Similar

Intersection scenarios provide the most complex traffic situations in Autonomous Driving and Driving Assistance Systems. Knowing where to stop in advance in an intersection is an essential parameter in controlling the longitudinal velocity of the vehicle. Most of the existing methods in literature solely use cameras to detect stop lines, which is typically not sufficient in terms of detection range. To address this issue, we propose a method that takes advantage of fused multi-sensory data including stereo camera and lidar as input and utilizes a carefully designed convolutional neural network architecture to detect stop lines. Our experiments show that the proposed approach can improve detection range compared to camera data alone, works under heavy occlusion without observing the ground markings explicitly, is able to predict stop lines for all lanes and allows detection at a distance up to 50 meters.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

Learning to Find Good Correspondences of Multiple Objects

Youye Xie, Yingheng Tang, Gongguo Tang, William Hoff

Responsive image

Auto-TLDR; Multi-Object Inliers and Outliers for Perspective-n-Point and Object Recognition

Slides Poster Similar

Given a set of 3D to 2D putative matches, labeling the correspondences as inliers or outliers plays a critical role in a wide range of computer vision applications including the Perspective-n-Point (PnP) and object recognition. In this paper, we study a more generalized problem which allows the matches to belong to multiple objects with distinct poses. We propose a deep architecture to simultaneously label the correspondences as inliers or outliers and classify the inliers into multiple objects. Specifically, we discretize the 3D rotation space into twenty convex cones based on the facets of a regular icosahedron. For each facet, a facet classifier is trained to predict the probability of a correspondence being an inlier for a pose whose rotation normal vector points towards this facet. An efficient RANSAC-based post-processing algorithm is also proposed to further process the prediction results and detect the objects. Experiments demonstrate that our method is very efficient compared to existing methods and is capable of simultaneously labeling and classifying the inliers of multiple objects with high precision.

Estimation of Clinical Tremor Using Spatio-Temporal Adversarial AutoEncoder

Li Zhang, Vidya Koesmahargyo, Isaac Galatzer-Levy

Responsive image

Auto-TLDR; ST-AAE: Spatio-temporal Adversarial Autoencoder for Clinical Assessment of Hand Tremor Frequency and Severity

Slides Poster Similar

Collecting sufficient well-labeled training data is a challenging task in many clinical applications. Besides the tremendous efforts required for data collection, clinical assessments are also impacted by raters’ variabilities, which may be significant even among experienced clinicians. The high demands of reproducible and scalable data-driven approaches in these areas necessitates relevant research on learning with limited data. In this work, we propose a spatio-temporal adversarial autoencoder (ST-AAE) for clinical assessment of hand tremor frequency and severity. The ST-AAE integrates spatial and temporal information simultaneously into the original AAE, taking optical flows as inputs. Using only optical flows, irrelevant background or static objects from RGB frames are largely eliminated, so that the AAE is directed to effectively learn key feature representations of the latent space from tremor movements. The ST-AAE was evaluated with both volunteer and clinical data. The volunteer results showed that the ST-AAE improved model performance significantly by 15% increase on accuracy. Leave-one-out (on subjects) cross validation was used to evaluate the accuracy for all the 3068 video segments from 28 volunteers. The weighted average of the AUCs of ROCs is 0.97. The results demonstrated that the ST-AAE model, trained with a small number of subjects, can be generalized well to different subjects. In addition, the model trained only by volunteer data was also evaluated with 32 clinical videos from 9 essential tremor patients, the model predictions correlate well with the clinical ratings: correlation coefficient r = 0.91 and 0.98 for in-person ratings and video watching ratings, respectively.

6D Pose Estimation with Correlation Fusion

Yi Cheng, Hongyuan Zhu, Ying Sun, Cihan Acar, Wei Jing, Yan Wu, Liyuan Li, Cheston Tan, Joo-Hwee Lim

Responsive image

Auto-TLDR; Intra- and Inter-modality Fusion for 6D Object Pose Estimation with Attention Mechanism

Slides Poster Similar

6D object pose estimation is widely applied in robotic tasks such as grasping and manipulation. Prior methods using RGB-only images are vulnerable to heavy occlusion and poor illumination, so it is important to complement them with depth information. However, existing methods using RGB-D data cannot adequately exploit consistent and complementary information between RGB and depth modalities. In this paper, we present a novel method to effectively consider the correlation within and across both modalities with attention mechanism to learn discriminative and compact multi-modal features. Then, effective fusion strategies for intra- and inter-correlation modules are explored to ensure efficient information flow between RGB and depth. To our best knowledge, this is the first work to explore effective intra- and inter-modality fusion in 6D pose estimation. The experimental results show that our method can achieve the state-of-the-art performance on LineMOD and YCBVideo dataset. We also demonstrate that the proposed method can benefit a real-world robot grasping task by providing accurate object pose estimation.

P2D: A Self-Supervised Method for Depth Estimation from Polarimetry

Marc Blanchon, Desire Sidibe, Olivier Morel, Ralph Seulin, Daniel Braun, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Polarimetric Regularization for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a recurring subject in the field of computer vision. Its ability to describe scenes via a depth map while reducing the constraints related to the formulation of perspective geometry tends to favor its use. However, despite the constant improvement of algorithms, most methods exploit only colorimetric information. Consequently, robustness to events to which the modality is not sensitive to, like specularity or transparency, is neglected. In response to this phenomenon, we propose using polarimetry as an input for a self-supervised monodepth network. Therefore, we propose exploiting polarization cues to encourage accurate reconstruction of scenes. Furthermore, we include a term of polarimetric regularization to state-of-the-art method to take specific advantage of the data. Our method is evaluated both qualitatively and quantitatively demonstrating that the contribution of this new information as well as an enhanced loss function improves depth estimation results, especially for specular areas.

Joint Face Alignment and 3D Face Reconstruction with Efficient Convolution Neural Networks

Keqiang Li, Huaiyu Wu, Xiuqin Shang, Zhen Shen, Gang Xiong, Xisong Dong, Bin Hu, Fei-Yue Wang

Responsive image

Auto-TLDR; Mobile-FRNet: Efficient 3D Morphable Model Alignment and 3D Face Reconstruction from a Single 2D Facial Image

Slides Poster Similar

3D face reconstruction from a single 2D facial image is a challenging and concerned problem. Recent methods based on CNN typically aim to learn parameters of 3D Morphable Model (3DMM) from 2D images to render face alignment and 3D face reconstruction. Most algorithms are designed for faces with small, medium yaw angles, which is extremely challenging to align faces in large poses. At the same time, they are not efficient usually. The main challenge is that it takes time to determine the parameters accurately. In order to address this challenge with the goal of improving performance, this paper proposes a novel and efficient end-to-end framework. We design an efficient and lightweight network model combined with Depthwise Separable Convolution and Muti-scale Representation, Lightweight Attention Mechanism, named Mobile-FRNet. Simultaneously, different loss functions are used to constrain and optimize 3DMM parameters and 3D vertices during training to improve the performance of the network. Meanwhile, extensive experiments on the challenging datasets show that our method significantly improves the accuracy of face alignment and 3D face reconstruction. The model parameters and complexity of our method are also improved greatly.

NetCalib: A Novel Approach for LiDAR-Camera Auto-Calibration Based on Deep Learning

Shan Wu, Amnir Hadachi, Damien Vivet, Yadu Prabhakar

Responsive image

Auto-TLDR; Automatic Calibration of LiDAR and Cameras using Deep Neural Network

Slides Poster Similar

A fusion of LiDAR and cameras have been widely used in many robotics applications such as classification, segmentation, object detection, and autonomous driving. It is essential that the LiDAR sensor can measure distances accurately, which is a good complement to the cameras. Hence, calibrating sensors before deployment is a mandatory step. The conventional methods include checkerboards, specific patterns, or human labeling, which is trivial and human-labor extensive if we do the same calibration process every time. The main propose of this research work is to build a deep neural network that is capable of automatically finding the geometric transformation between LiDAR and cameras. The results show that our model manages to find the transformations from randomly sampled artificial errors. Besides, our work is open-sourced for the community to fully utilize the advances of the methodology for developing more the approach, initiating collaboration, and innovation in the topic.

Revisiting Sequence-To-Sequence Video Object Segmentation with Multi-Task Loss and Skip-Memory

Fatemeh Azimi, Benjamin Bischke, Sebastian Palacio, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Sequence-to-Sequence Learning for Video Object Segmentation

Slides Poster Similar

Video Object Segmentation (VOS) is an active research area of the visual domain. One of its fundamental sub-tasks is semi-supervised / one-shot learning: given only the segmentation mask for the first frame, the task is to provide pixel-accurate masks for the object over the rest of the sequence. Despite much progress in the last years, we noticed that many of the existing approaches lose objects in longer sequences, especially when the object is small or briefly occluded. In this work, we build upon a sequence-to-sequence approach that employs an encoder-decoder architecture together with a memory module for exploiting the sequential data. We further improve this approach by proposing a model that manipulates multi-scale spatio-temporal information using memory-equipped skip connections. Furthermore, we incorporate an auxiliary task based on distance classification which greatly enhances the quality of edges in segmentation masks. We compare our approach to the state of the art and show considerable improvement in the contour accuracy metric and the overall segmentation accuracy.

Point In: Counting Trees with Weakly Supervised Segmentation Network

Pinmo Tong, Shuhui Bu, Pengcheng Han

Responsive image

Auto-TLDR; Weakly Tree counting using Deep Segmentation Network with Localization and Mask Prediction

Slides Poster Similar

For tree counting tasks, since traditional image processing methods require expensive feature engineering and are not end-to-end frameworks, this will cause additional noise and cannot be optimized overall, so this method has not been widely used in recent trends of tree counting application. Recently, many deep learning based approaches are designed for this task because of the powerful feature extracting ability. The representative way is bounding box based supervised method, but time-consuming annotations are indispensable for them. Moreover, these methods are difficult to overcome the occlusion or overlap. To solve this problem, we propose a weakly tree counting network (WTCNet) based on deep segmentation network with only point supervision. It can simultaneously complete tree counting with localization and output mask of each tree at the same time. We first adopt a novel feature extractor network (FENet) to get features of input images, and then an effective strategy is introduced to deal with different mask predictions. In the end, we propose a basic localization guidance accompany with rectification guidance to train the network. We create two different datasets and select an existing challenging plant dataset to evaluate our method on three different tasks. Experimental results show the good performance improvement of our method compared with other existing methods. Further study shows that our method has great potential to reduce human labor and provide effective ground-truth masks and the results show the superiority of our method over the advanced methods.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Motion Complementary Network for Efficient Action Recognition

Ke Cheng, Yifan Zhang, Chenghua Li, Jian Cheng, Hanqing Lu

Responsive image

Auto-TLDR; Efficient Motion Complementary Network for Action Recognition

Slides Poster Similar

Both two-stream ConvNet and 3D ConvNet are widely used in action recognition. However, both methods are not efficient for deployment: calculating optical flow is very slow, while 3D convolution is computationally expensive. Our key insight is that the motion information from optical flow maps is complementary to the motion information from 3D ConvNet. Instead of simply combining these two methods, we propose two novel techniques to enhance the performance with less computational cost: \textit{fixed-motion-accumulation} and \textit{balanced-motion-policy}. With these two techniques, we propose a novel framework called Efficient Motion Complementary Network(EMC-Net) that enjoys both high efficiency and high performance. We conduct extensive experiments on Kinetics, UCF101, and Jester datasets. We achieve notably higher performance while consuming 4.7$\times$ less computation than I3D, 11.6$\times$ less computation than ECO, 17.8$\times$ less computation than R(2+1)D. On Kinetics dataset, we achieve 2.6\% better performance than the recent proposed TSM with 1.4$\times$ fewer FLOPs and 10ms faster on K80 GPU.

Wavelet Attention Embedding Networks for Video Super-Resolution

Young-Ju Choi, Young-Woon Lee, Byung-Gyu Kim

Responsive image

Auto-TLDR; Wavelet Attention Embedding Network for Video Super-Resolution

Slides Poster Similar

Recently, Video super-resolution (VSR) has become more crucial as the resolution of display has been grown. The majority of deep learning-based VSR methods combine the convolutional neural networks (CNN) with motion compensation or alignment module to estimate high-resolution (HR) frame from low-resolution (LR) frames. However, most of previous methods deal with the spatial features equally and may result in the misaligned temporal features by pixel-based motion compensation and alignment module. It can lead to the damaging effect on the accuracy of the estimated HR feature. In this paper, we propose a wavelet attention embedding network (WAEN), including wavelet embedding network (WENet) and attention embedding network (AENet), to fully exploit the spatio-temporal informative features. The WENet is operated as a spatial feature extractor of individual low and high-frequency information based on 2-D Haar discrete wavelet transform. The meaningful temporal feature is extracted in the AENet through utilizing the weighted attention map between frames. Experimental results demonstrate that the proposed method achieves superior performance compared with state-of-the-art methods.

Can You Trust Your Pose? Confidence Estimation in Visual Localization

Luca Ferranti, Xiaotian Li, Jani Boutellier, Juho Kannala

Responsive image

Auto-TLDR; Pose Confidence Estimation in Large-Scale Environments: A Light-weight Approach to Improving Pose Estimation Pipeline

Slides Poster Similar

Camera pose estimation in large-scale environments is still an open question and, despite recent promising results, it may still fail in some situations. The research so far has focused on improving subcomponents of estimation pipelines, to achieve more accurate poses. However, there is no guarantee for the result to be correct, even though the correctness of pose estimation is critically important in several visual localization applications, such as in autonomous navigation. In this paper we bring to attention a novel research question, pose confidence estimation, where we aim at quantifying how reliable the visually estimated pose is. We develop a novel confidence measure to fulfill this task and show that it can be flexibly applied to different datasets, indoor or outdoor, and for various visual localization pipelines. We also show that the proposed techniques can be used to accomplish a secondary goal: improving the accuracy of existing pose estimation pipelines. Finally, the proposed approach is computationally light-weight and adds only a negligible increase to the computational effort of pose estimation.

Adaptive Feature Fusion Network for Gaze Tracking in Mobile Tablets

Yiwei Bao, Yihua Cheng, Yunfei Liu, Feng Lu

Responsive image

Auto-TLDR; Adaptive Feature Fusion Network for Multi-stream Gaze Estimation in Mobile Tablets

Slides Poster Similar

Recently, many multi-stream gaze estimation methods have been proposed. They estimate gaze from eye and face appearances and achieve reasonable accuracy. However, most of the methods simply concatenate the features extracted from eye and face appearance. The feature fusion process has been ignored. In this paper, we propose a novel Adaptive Feature Fusion Network (AFF-Net), which performs gaze tracking task in mobile tablets. We stack two-eye feature maps and utilize Squeeze-and-Excitation layers to adaptively fuse two-eye features based on different eye features. Meanwhile, we also propose Adaptive Group Normalization to recalibrate eye features with the guidance of face appearance characteristics. Extensive experiments on both GazeCapture and MPIIFaceGaze datasets demonstrate consistently superior performance of the proposed method.