DA-RefineNet: Dual-Inputs Attention RefineNet for Whole Slide Image Segmentation

Ziqiang Li, Rentuo Tao, Qianrun Wu, Bin Li

Responsive image

Auto-TLDR; DA-RefineNet: A dual-inputs attention network for whole slide image segmentation

Slides Poster

Automatic medical image segmentation techniques have wide applications for disease diagnosing, however, its much more challenging than natural optical image segmentation tasks due to the high-resolution of medical images and the corresponding huge computation cost. Sliding window was a commonly used technique for whole slide image (WSI) segmentation, however, for these methods that based on sliding window, the main drawback was lacking of global contextual information for supervision. In this paper, we proposed a dual-inputs attention network (denoted as DA-RefineNet) for WSI segmentation, where both local fine-grained information and global coarse information can be efficiently utilized. Sufficient comparative experiments were conducted to evaluate the effectiveness of the proposed method, the results proved that the proposed method can achieve better performance on WSI segmentation tasks compared to methods rely on single-input.

Similar papers

DARN: Deep Attentive Refinement Network for Liver Tumor Segmentation from 3D CT Volume

Yao Zhang, Jiang Tian, Cheng Zhong, Yang Zhang, Zhongchao Shi, Zhiqiang He

Responsive image

Auto-TLDR; Deep Attentive Refinement Network for Liver Tumor Segmentation from 3D Computed Tomography Using Multi-Level Features

Slides Poster Similar

Automatic liver tumor segmentation from 3D Computed Tomography (CT) is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on Fully Convolutional Network (FCN) in liver tumor segmentation draw on success of learning discriminative multi-level features. In this paper, we propose a Deep Attentive Refinement Network (DARN) for improved liver tumor segmentation from CT volumes by fully exploiting both low and high level features embedded in different layers of FCN. Different from existing works, we exploit attention mechanism to leverage the relation of different levels of features encoded in different layers of FCN. Specifically, we introduce a Semantic Attention Refinement (SemRef) module to selectively emphasize global semantic information in low level features with the guidance of high level ones, and a Spatial Attention Refinement (SpaRef) module to adaptively enhance spatial details in high level features with the guidance of low level ones. We evaluate our network on the public MICCAI 2017 Liver Tumor Segmentation Challenge dataset (LiTS dataset) and it achieves state-of-the-art performance. The proposed refinement modules are an effective strategy to exploit multi-level features and has great potential to generalize to other medical image segmentation tasks.

CAggNet: Crossing Aggregation Network for Medical Image Segmentation

Xu Cao, Yanghao Lin

Responsive image

Auto-TLDR; Crossing Aggregation Network for Medical Image Segmentation

Slides Poster Similar

In this paper, we present Crossing Aggregation Network (CAggNet), a novel densely connected semantic segmentation method for medical image analysis. The crossing aggregation network absorbs the idea of deep layer aggregation and makes significant innovations in layer connection and semantic information fusion. In this architecture, the traditional skip-connection structure of general U-Net is replaced by aggregations of multi-level down-sampling and up-sampling layers. This enables the network to fuse information interactively flows at different levels of layers in semantic segmentation. It also introduces weighted aggregation module to aggregate multi-scale output information. We have evaluated and compared our CAggNet with several advanced U-Net based methods in two public medical image datasets, including the 2018 Data Science Bowl nuclei detection dataset and the 2015 MICCAI gland segmentation competition dataset. Experimental results indicate that CAggNet improves medical object recognition and achieves a more accurate and efficient segmentation compared to existing improved U-Net and UNet++ structure.

CT-UNet: An Improved Neural Network Based on U-Net for Building Segmentation in Remote Sensing Images

Huanran Ye, Sheng Liu, Kun Jin, Haohao Cheng

Responsive image

Auto-TLDR; Context-Transfer-UNet: A UNet-based Network for Building Segmentation in Remote Sensing Images

Slides Poster Similar

With the proliferation of remote sensing images, how to segment buildings more accurately in remote sensing images is a critical challenge. First, the high resolution leads to blurred boundaries in the extracted building maps. Second, the similarity between buildings and background results in intra-class inconsistency. To address these two problems, we propose an UNet-based network named Context-Transfer-UNet (CT-UNet). Specifically, we design Dense Boundary Block (DBB). Dense Block utilizes reuse mechanism to refine features and increase recognition capabilities. Boundary Block introduces the low-level spatial information to solve the fuzzy boundary problem. Then, to handle intra-class inconsistency, we construct Spatial Channel Attention Block (SCAB). It combines context space information and selects more distinguishable features from space and channel. Finally, we propose a novel loss function to enhance the purpose of loss by adding evaluation indicator. Based on our proposed CT-UNet, we achieve 85.33% mean IoU on the Inria dataset and 91.00% mean IoU on the WHU dataset, which outperforms our baseline (U-Net ResNet-34) by 3.76% and Web-Net by 2.24%.

A Benchmark Dataset for Segmenting Liver, Vasculature and Lesions from Large-Scale Computed Tomography Data

Bo Wang, Zhengqing Xu, Wei Xu, Qingsen Yan, Liang Zhang, Zheng You

Responsive image

Auto-TLDR; The Biggest Treatment-Oriented Liver Cancer Dataset for Segmentation

Slides Poster Similar

How to build a high-performance liver-related computer assisted diagnosis system is an open question of great interest. However, the performance of the state-of-art algorithm is always limited by the amount of data and quality of the label. To address this problem, we propose the biggest treatment-oriented liver cancer dataset for liver surgery and treatment planning. This dataset provides 216 cases (totally about 268K frames) scanned images in contrast-enhanced computed tomography (CT). We labeled all the CT images with the liver, liver vasculature and liver tumor segmentation ground truth for train and tune segmentation algorithms in advance. Based on that, we evaluate several recent and state-of-the-art segmentation algorithms, including 7 deep learning methods, on CT sequences. All results are compared to reference segmentations five error metrics that highlight different aspects of segmentation accuracy. In general, compared with previous datasets, our dataset is really a challenging dataset. To our knowledge, the proposed dataset and benchmark allow for the first time systematic exploration of such issues, and will be made available to allow for further research in this field.

Attention Based Multi-Instance Thyroid Cytopathological Diagnosis with Multi-Scale Feature Fusion

Shuhao Qiu, Yao Guo, Chuang Zhu, Wenli Zhou, Huang Chen

Responsive image

Auto-TLDR; A weakly supervised multi-instance learning framework based on attention mechanism with multi-scale feature fusion for thyroid cytopathological diagnosis

Slides Poster Similar

In recent years, deep learning has been popular in combining with cytopathology diagnosis. Using the whole slide images (WSI) scanned by electronic scanners at clinics, researchers have developed many algorithms to classify the slide (benign or malignant). However, the key area that support the diagnosis result can be relatively small in a thyroid WSI, and only the global label can be acquired, which make the direct use of the strongly supervised learning framework infeasible. What’s more, because the clinical diagnosis of the thyroid cells requires the use of visual features in different scales, a generic feature extraction way may not achieve good performance. In this paper, we propose a weakly supervised multi-instance learning framework based on attention mechanism with multi-scale feature fusion (MSF) using convolutional neural network (CNN) for thyroid cytopathological diagnosis. We take each WSI as a bag, each bag contains multiple instances which are the different regions of the WSI, our framework is trained to learn the key area automatically and make the classification. We also propose a feature fusion structure, merge the low-level features into the final feature map and add an instance-level attention module in it, which improves the classification accuracy. Our model is trained and tested on the collected clinical data, reaches the accuracy of 93.2%, which outperforms the other existing methods. We also tested our model on a public histopathology dataset and achieves better result than the state-of-the-art deep multi-instance method.

PSDNet: A Balanced Architecture of Accuracy and Parameters for Semantic Segmentation

Yue Liu, Zhichao Lian

Responsive image

Auto-TLDR; Pyramid Pooling Module with SE1Cblock and D2SUpsample Network (PSDNet)

Slides Poster Similar

Abstract—In this paper, we present our Pyramid Pooling Module (PPM) with SE1Cblock and D2SUpsample Network (PSDNet), a novel architecture for accurate semantic segmentation. Started from the known work called Pyramid Scene Parsing Network (PSPNet), PSDNet takes advantage of pyramid pooling structure with channel attention module and feature transform module in Pyramid Pooling Module (PPM). The enhanced PPM with these two components can strengthen context information flowing in the network instead of damaging it. The channel attention module we mentioned is an improved “Squeeze and Excitation with 1D Convolution” (SE1C) block which can explicitly model interrelationship between channels with fewer number of parameters. We propose a feature transform module named “Depth to Space Upsampling” (D2SUpsample) in the PPM which keeps integrity of features by transforming features while interpolating features, at the same time reducing parameters. In addition, we introduce a joint strategy in SE1Cblock which combines two variants of global pooling without increasing parameters. Compared with PSPNet, our work achieves higher accuracy on public datasets with 73.97% mIoU and 82.89% mAcc accuracy on Cityscapes Dataset based on ResNet50 backbone.

Real-Time Semantic Segmentation Via Region and Pixel Context Network

Yajun Li, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; A Dual Context Network for Real-Time Semantic Segmentation

Slides Poster Similar

Real-time semantic segmentation is a challenging task as both segmentation accuracy and inference speed need to be considered at the same time. In this paper, we present a Dual Context Network (DCNet) to address this challenge. It contains two independent sub-networks: Region Context Network and Pixel Context Network. Region Context Network is main network with low-resolution input and feature re-weighting module to achieve sufficient receptive field. Meanwhile, Pixel Context Network with location attention module to capture the location dependencies of each pixel for assisting the main network to recover spatial detail. A contextual feature fusion is introduced to combine output features of these two sub-networks. The experiments show that DCNet can achieve high-quality segmentation while keeping a high speed. Specifically, for Cityscapes test dataset, we achieve 76.1% Mean IOU with the speed of 82 FPS on a single GTX 2080Ti GPU when using ResNet50 as backbone, and 71.2% Mean IOU with the speed of 142 FPS when using ResNet18 as backbone.

Segmentation of Intracranial Aneurysm Remnant in MRA Using Dual-Attention Atrous Net

Subhashis Banerjee, Ashis Kumar Dhara, Johan Wikström, Robin Strand

Responsive image

Auto-TLDR; Dual-Attention Atrous Net for Segmentation of Intracranial Aneurysm Remnant from MRA Images

Slides Poster Similar

Due to the advancement of non-invasive medical imaging modalities like Magnetic Resonance Angiography (MRA), an increasing number of Intracranial Aneurysm (IA) cases are being reported in recent years. The IAs are typically treated by so-called endovascular coiling, where blood flow in the IA is prevented by embolization with a platinum coil. Accurate quantification of the IA Remnant (IAR), i.e. the volume with blood flow present post treatment is the utmost important factor in choosing the right treatment planning. This is typically done by manually segmenting the aneurysm remnant from the MRA volume. Since manual segmentation of volumetric images is a labour-intensive and error-prone process, development of an automatic volumetric segmentation method is required. Segmentation of small structures such as IA, that may largely vary in size, shape, and location is considered extremely difficult. Similar intensity distribution of IAs and surrounding blood vessels makes it more challenging and susceptible to false positive. In this paper we propose a novel 3D CNN architecture called Dual-Attention Atrous Net (DAtt-ANet), which can efficiently segment IAR volumes from MRA images by reconciling features at different scales using the proposed Parallel Atrous Unit (PAU) along with the use of self-attention mechanism for extracting fine-grained features and intra-class correlation. The proposed DAtt-ANet model is trained and evaluated on a clinical MRA image dataset (prospective research project, approved by the local ethical committee) of IAR consisting of 46 subjects, annotated by an expert radiologist from our group. We compared the proposed DAtt-ANet with five state-of-the-art CNN models based on their segmentation performance. The proposed DAtt-ANet outperformed all other methods and was able to achieve a five-fold cross-validation DICE score of $0.73\pm0.06$.

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

Automatic Semantic Segmentation of Structural Elements related to the Spinal Cord in the Lumbar Region by Using Convolutional Neural Networks

Jhon Jairo Sáenz Gamboa, Maria De La Iglesia-Vaya, Jon Ander Gómez

Responsive image

Auto-TLDR; Semantic Segmentation of Lumbar Spine Using Convolutional Neural Networks

Slides Poster Similar

This work addresses the problem of automatically segmenting the MR images corresponding to the lumbar spine. The purpose is to detect and delimit the different structural elements like vertebrae, intervertebral discs, nerves, blood vessels, etc. This task is known as semantic segmentation. The approach proposed in this work is based on convolutional neural networks whose output is a mask where each pixel from the input image is classified into one of the possible classes. Classes were defined by radiologists and correspond to structural elements and tissues. The proposed network architectures are variants of the U-Net. Several complementary blocks were used to define the variants: spatial attention models, deep supervision and multi-kernels at input, this last block type is based on the idea of inception. Those architectures which got the best results are described in this paper, and their results are discussed. Two of the proposed architectures outperform the standard U-Net used as baseline.

UHRSNet: A Semantic Segmentation Network Specifically for Ultra-High-Resolution Images

Lianlei Shan, Weiqiang Wang

Responsive image

Auto-TLDR; Ultra-High-Resolution Segmentation with Local and Global Feature Fusion

Poster Similar

Abstract—Semantic segmentation is a basic task in computer vision, but only limited attention has been devoted to the ultra-high-resolution (UHR) image segmentation. Since UHR images occupy too much memory, they cannot be directly put into GPU for training. Previous methods are cropping images to small patches or downsampling the whole images. Cropping and downsampling cause the loss of contexts and details, which is essential for segmentation accuracy. To solve this problem, we improve and simplify the local and global feature fusion method in previous works. Local features are extracted from patches and global features are from downsampled images. Meanwhile, we propose one new fusion called local feature fusion for the first time, which can make patches get information from surrounding patches. We call the network with these two fusions ultra-high-resolution segmentation network (UHRSNet). These two fusions can effectively and efficiently solve the problem caused by cropping and downsampling. Experiments show a remarkable improvement on Deepglobe dataset.

End-To-End Multi-Task Learning for Lung Nodule Segmentation and Diagnosis

Wei Chen, Qiuli Wang, Dan Yang, Xiaohong Zhang, Chen Liu, Yucong Li

Responsive image

Auto-TLDR; A novel multi-task framework for lung nodule diagnosis based on deep learning and medical features

Slides Similar

Computer-Aided Diagnosis (CAD) systems for lung nodule diagnosis based on deep learning have attracted much attention in recent years. However, most existing methods ignore the relationships between the segmentation and classification tasks, which leads to unstable performances. To address this problem, we propose a novel multi-task framework, which can provide lung nodule segmentation mask, malignancy prediction, and medical features for interpretable diagnosis at the same time. Our framework mainly contains two sub-network: (1) Multi-Channel Segmentation Sub-network (MSN) for lung nodule segmentation, and (2) Joint Classification Sub-network (JCN) for interpretable lung nodule diagnosis. In the proposed framework, we use U-Net down-sampling processes for extracting low-level deep learning features, which are shared by two sub-networks. The JCN forces the down-sampling processes to learn better lowlevel deep features, which lead to a better construct of segmentation masks. Meanwhile, two additional channels constructed by OTSU and super-pixel (SLIC) methods, are utilized as the guideline of the feature extraction. The proposed framework takes advantages of deep learning methods and classical methods, which can significantly improve the performances of all tasks. We evaluate the proposed framework on public dataset LIDCIDRI. Our framework achieves a promising Dice score of 86.43% in segmentation, 87.07% in malignancy level prediction, and convincing results in interpretable medical feature predictions.

DE-Net: Dilated Encoder Network for Automated Tongue Segmentation

Hui Tang, Bin Wang, Jun Zhou, Yongsheng Gao

Responsive image

Auto-TLDR; Automated Tongue Image Segmentation using De-Net

Slides Poster Similar

Automated tongue recognition is a growing research field due to global demand for personal health care. Using mobile devices to take tongue pictures is convenient and of low cost for tongue recognition. It is particularly suitable for self-health evaluation of the public. However, images taken by mobile devices are easily affected by various imaging environment, which makes fine segmentation a more challenging task compared with those taken by specialized acquisition devices. Deep learning approaches are promising for tongue image segmentation because they have powerful feature learning and representation capability. However, the successive pooling operations in these methods lead to loss of information on image details, making them fail when segmenting low-quality images captured by mobile devices. To address this issue, we propose a dilated encoder network (DE-Net) to capture more high-level features and get high-resolution output for automated tongue image segmentation. In addition, we construct two tongue image datasets which contain images taken by specialized devices and mobile devices, respectively, to verify the effectiveness of the proposed method. Experimental results on both datasets demonstrate that the proposed method outperforms the state-of-the-art methods in tongue image segmentation.

Enhanced Feature Pyramid Network for Semantic Segmentation

Mucong Ye, Ouyang Jinpeng, Ge Chen, Jing Zhang, Xiaogang Yu

Responsive image

Auto-TLDR; EFPN: Enhanced Feature Pyramid Network for Semantic Segmentation

Slides Poster Similar

Multi-scale feature fusion has been an effective way for improving the performance of semantic segmentation. However, current methods generally fail to consider the semantic gaps between the shallow (low-level) and deep (high-level) features and thus the fusion methods may not be optimal. In this paper, to address the issues of the semantic gap between the feature from different layers, we propose a unified framework based on the U-shape encoder-decoder architecture, named Enhanced Feature Pyramid Network (EFPN). Specifically, the semantic enhancement module (SEM), boundary extraction module (BEM), and context aggregation model (CAM) are incorporated into the decoder network to improve the robustness of the multi-level features aggregation. In addition, a global fusion model (GFM) in encoder branch is proposed to capture more semantic information in the deep layers and effectively transmit the high-level semantic features to each layer. Extensive experiments are conducted and the results show that the proposed framework achieves the state-of-the-art results on three public datasets, namely PASCAL VOC 2012, Cityscapes, and PASCAL Context. Furthermore, we also demonstrate that the proposed method is effective for other visual tasks that require frequent fusing features and upsampling.

Do Not Treat Boundaries and Regions Differently: An Example on Heart Left Atrial Segmentation

Zhou Zhao, Elodie Puybareau, Nicolas Boutry, Thierry Geraud

Responsive image

Auto-TLDR; Attention Full Convolutional Network for Atrial Segmentation using ResNet-101 Architecture

Slides Similar

Atrial fibrillation is the most common heart rhythm disease. Due to a lack of understanding in matter of underlying atrial structures, current treatments are still not satisfying. Recently, with the popularity of deep learning, many segmentation methods based on fully convolutional networks have been proposed to analyze atrial structures, especially from late gadolinium-enhanced magnetic resonance imaging. However, two problems still occur: 1) segmentation results include the atrial-like background; 2) boundaries are very hard to segment. Most segmentation approaches design a specific network that mainly focuses on the regions, to the detriment of the boundaries. Therefore, this paper proposes an attention full convolutional network framework based on the ResNet-101 architecture, which focuses on boundaries as much as on regions. The additional attention module is added to have the network pay more attention on regions and then to reduce the impact of the misleading similarity of neighboring tissues. We also use a hybrid loss composed of a region loss and a boundary loss to treat boundaries and regions at the same time. We demonstrate the efficiency of the proposed approach on the MICCAI 2018 Atrial Segmentation Challenge public dataset.

Accurate Cell Segmentation in Digital Pathology Images Via Attention Enforced Networks

Zeyi Yao, Kaiqi Li, Guanhong Zhang, Yiwen Luo, Xiaoguang Zhou, Muyi Sun

Responsive image

Auto-TLDR; AENet: Attention Enforced Network for Automatic Cell Segmentation

Slides Poster Similar

Automatic cell segmentation is an essential step in the pipeline of computer-aided diagnosis (CAD), such as the detection and grading of breast cancer. Accurate segmentation of cells can not only assist the pathologists to make a more precise diagnosis, but also save much time and labor. However, this task suffers from stain variation, cell inhomogeneous intensities, background clutters and cells from different tissues. To address these issues, we propose an Attention Enforced Network (AENet), which is built on spatial attention module and channel attention module, to integrate local features with global dependencies and weight effective channels adaptively. Besides, we introduce a feature fusion branch to bridge high-level and low-level features. Finally, the marker controlled watershed algorithm is applied to post-process the predicted segmentation maps for reducing the fragmented regions. In the test stage, we present an individual color normalization method to deal with the stain variation problem. We evaluate this model on the MoNuSeg dataset. The quantitative comparisons against several prior methods demonstrate the priority of our approach.

3D Medical Multi-Modal Segmentation Network Guided by Multi-Source Correlation Constraint

Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan

Responsive image

Auto-TLDR; Multi-modality Segmentation with Correlation Constrained Network

Slides Poster Similar

In the field of multimodal segmentation, the correlation between different modalities can be considered for improving the segmentation results. In this paper, we propose a multi-modality segmentation network with a correlation constraint. Our network includes N model-independent encoding paths with N image sources, a correlation constrain block, a feature fusion block, and a decoding path. The model-independent encoding path can capture modality-specific features from the N modalities. Since there exists a strong correlation between different modalities, we first propose a linear correlation block to learn the correlation between modalities, then a loss function is used to guide the network to learn the correlated features based on the correlation representation block. This block forces the network to learn the latent correlated features which are more relevant for segmentation. Considering that not all the features extracted from the encoders are useful for segmentation, we propose to use dual attention based fusion block to recalibrate the features along the modality and spatial paths, which can suppress less informative features and emphasize the useful ones. The fused feature representation is finally projected by the decoder to obtain the segmentation result. Our experiment results tested on BraTS-2018 dataset for brain tumor segmentation demonstrate the effectiveness of our proposed method.

MTGAN: Mask and Texture-Driven Generative Adversarial Network for Lung Nodule Segmentation

Wei Chen, Qiuli Wang, Kun Wang, Dan Yang, Xiaohong Zhang, Chen Liu, Yucong Li

Responsive image

Auto-TLDR; Mask and Texture-driven Generative Adversarial Network for Lung Nodule Segmentation

Slides Poster Similar

Accurate segmentation for lung nodules in lung computed tomography (CT) scans plays a key role in the early diagnosis of lung cancer. Many existing methods, especially UNet, have made significant progress in lung nodule segmentation. However, due to the complex shapes of lung nodules and the similarity of visual characteristics between nodules and lung tissues, an accurate segmentation with few false positives of lung nodules is still a challenging problem. Considering the fact that both boundary and texture information of lung nodules are important for obtaining an accurate segmentation result, we propose a novel Mask and Texture-driven Generative Adversarial Network (MTGAN) with a joint multi-scale L1 loss for lung nodule segmentation, which takes full advantages of U-Net and adversarial training. The proposed MTGAN leverages adversarial learning strategy guided by the boundary and texture information of lung nodules to generate more accurate segmentation results with lesser false positives. We validate our model with the LIDC–IDRI dataset, and experimental results show that our method achieves excellent segmentation results for a variety of lung nodules, especially for juxtapleural nodules and low-dense nodules. Without any bells and whistles, the proposed MTGAN achieves significant segmentation performance with the Dice similarity coefficient (DSC) of 85.24% on the LIDC–IDRI dataset.

Global-Local Attention Network for Semantic Segmentation in Aerial Images

Minglong Li, Lianlei Shan, Weiqiang Wang

Responsive image

Auto-TLDR; GLANet: Global-Local Attention Network for Semantic Segmentation

Slides Poster Similar

Errors in semantic segmentation task could be classified into two types: large area misclassification and local inaccurate boundaries. Previously attention based methods capture rich global contextual information, this is beneficial to diminish the first type of error, but local imprecision still exists. In this paper we propose Global-Local Attention Network (GLANet) with a simultaneous consideration of global context and local details. Specifically, our GLANet is composed of two branches namely global attention branch and local attention branch, and three different modules are embedded in the two branches for the purpose of modeling semantic interdependencies in spatial, channel and boundary dimensions respectively. We sum the outputs of the two branches to further improve feature representation, leading to more precise segmentation results. The proposed method achieves very competitive segmentation accuracy on two public aerial image datasets, bringing significant improvements over baseline.

Boundary-Aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Boundary-Aware Graph Convolution for Semantic Segmentation

Slides Poster Similar

Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. However, few works have focused on harvesting boundary information to improve the segmentation performance. In order to enhance the feature similarity within the object and keep discrimination from other objects, we propose a boundary-aware graph convolution (BGC) module to propagate features within the object. The graph reasoning is performed among pixels of the same object apart from the boundary pixels. Based on the proposed BGC module, we further introduce the Boundary-aware Graph Convolution Network(BGCNet), which consists of two main components including a basic segmentation network and the BGC module, forming a coarse-to-fine paradigm. Specifically, the BGC module takes the coarse segmentation feature map as node features and boundary prediction to guide graph construction. After graph convolution, the reasoned feature and the input feature are fused together to get the refined feature, producing the refined segmentation result. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.

Semantic Segmentation of Breast Ultrasound Image with Pyramid Fuzzy Uncertainty Reduction and Direction Connectedness Feature

Kuan Huang, Yingtao Zhang, Heng-Da Cheng, Ping Xing, Boyu Zhang

Responsive image

Auto-TLDR; Uncertainty-Based Deep Learning for Breast Ultrasound Image Segmentation

Slides Poster Similar

Deep learning approaches have achieved impressive results in breast ultrasound (BUS) image segmentation. However, these methods did not solve uncertainty and noise in BUS images well. To address this issue, we present a novel deep learning structure for BUS image semantic segmentation by analyzing the uncertainty using a pyramid fuzzy block and generating a novel feature based on connectedness. Firstly, feature maps in the proposed network are down-sampled to different resolutions. Fuzzy transformation and uncertainty representation are applied to each resolution to obtain the uncertainty degree on different scales. Meanwhile, the BUS images contain layer structures. From top to bottom, there are skin layer, fat layer, mammary layer, muscle layer, and background area. A spatial recurrent neural network (RNN) is utilized to calculate the connectedness between each pixel and the pixels on the four boundaries in horizontal and vertical lines. The spatial-wise context feature can introduce the characteristic of layer structure to deep neural network. Finally, the original convolutional features are combined with connectedness feature according to the uncertainty degrees. The proposed methods are applied to two datasets: a BUS image benchmark with two categories (background and tumor) and a five-category BUS image dataset with fat layer, mammary layer, muscle layer, background, and tumor. The proposed method achieves the best results on both datasets compared with eight state-of-the-art deep learning-based approaches.

Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search

Zitang Sun, Sei-Ichiro Kamata, Ruojing Wang, Weili Chen

Responsive image

Auto-TLDR; Directed Region Search and Refinement for Semantic Segmentation

Slides Poster Similar

Semantic segmentation requires both large receptive field and accurate spatial information. Despite existing methods based on fully convolutional network have greatly improved the accuracy, the prediction results still do not show satisfactory on small objects and boundary regions. We propose a refinement algorithm to improve the result generated by front network. Our method takes a modified U-shape network to generate both of segmentation mask and semantic boundary, which are used as inputs of refinement algorithm. We creatively introduce information entropy to represent the confidence of the neural network's prediction corresponding to each pixel. The information entropy combined with the semantic boundary can capture those unpredictable pixels with low-confidence through Monte Carlo sampling. Each selected pixel will be used as initial seeds for directed region search and refinement. Our purpose is to search the neighbor high-confidence regions according to the initial seeds. The re-labeling approach is based on high-confidence results. Particularly, different from general region growing methods, our method adopts a directed region search strategy based on gradient descent to find the high-confidence region effectively. Our method improves the performance both on Cityscapes and PASCAL VOC datasets. In the evaluation of segmentation accuracy of some small objects, our method surpasses most of state of the art methods.

Transitional Asymmetric Non-Local Neural Networks for Real-World Dirt Road Segmentation

Yooseung Wang, Jihun Park

Responsive image

Auto-TLDR; Transitional Asymmetric Non-Local Neural Networks for Semantic Segmentation on Dirt Roads

Slides Poster Similar

Understanding images by predicting pixel-level semantic classes is a fundamental task in computer vision and is one of the most important techniques for autonomous driving. Recent approaches based on deep convolutional neural networks have dramatically improved the speed and accuracy of semantic segmentation on paved road datasets, however, dirt roads have yet to be systematically studied. Dirt roads do not contain clear boundaries between drivable and non-drivable regions; and thus, this difficulty must be overcome for the realization of fully autonomous vehicles. The key idea of our approach is to apply lightweight non-local blocks to reinforce stage-wise long-range dependencies in encoder-decoder style backbone networks. Experiments on 4,687 images of a dirt road dataset show that our transitional asymmetric non-local neural networks present a higher accuracy with lower computational costs compared to state-of-the-art models.

FOANet: A Focus of Attention Network with Application to Myocardium Segmentation

Zhou Zhao, Elodie Puybareau, Nicolas Boutry, Thierry Geraud

Responsive image

Auto-TLDR; FOANet: A Hybrid Loss Function for Myocardium Segmentation of Cardiac Magnetic Resonance Images

Slides Poster Similar

In myocardium segmentation of cardiac magnetic resonance images, ambiguities often appear near the boundaries of the target domains due to tissue similarities. To address this issue, we propose a new architecture, called FOANet, which can be decomposed in three main steps: a localization step, a Gaussian-based contrast enhancement step, and a segmentation step. This architecture is supplied with a hybrid loss function that guides the FOANet to study the transformation relationship between the input image and the corresponding label in a threelevel hierarchy (pixel-, patch- and map-level), which is helpful to improve segmentation and recovery of the boundaries. We demonstrate the efficiency of our approach on two public datasets in terms of regional and boundary segmentations.

Multi-Direction Convolution for Semantic Segmentation

Dehui Li, Zhiguo Cao, Ke Xian, Xinyuan Qi, Chao Zhang, Hao Lu

Responsive image

Auto-TLDR; Multi-Direction Convolution for Contextual Segmentation

Slides Similar

Context is known to be one of crucial factors effecting the performance improvement of semantic segmentation. However, state-of-the-art segmentation models built upon fully convolutional networks are inherently weak in encoding contextual information because of stacked local operations such as convolution and pooling. Failing to capture context leads to inferior segmentation performance. Despite many context modules have been proposed to relieve this problem, they still operate in a local manner or use the same contextual information in different positions (due to upsampling). In this paper, we introduce the idea of Multi-Direction Convolution (MDC)—a novel operator capable of encoding rich contextual information. This operator is inspired by an observation that the standard convolution only slides along the spatial dimension (x, y direction) where the channel dimension (z direction) is fixed, which renders slow growth of the receptive field (RF). If considering the channel-fixed convolution to be one-direction, MDC is multi-direction in the sense that MDC slides along both spatial and channel dimensions, i.e., it slides along x, y when z is fixed, along x, z when y is fixed, and along y, z when x is fixed. In this way, MDC is able to encode rich contextual information with the fast increase of the RF. Compared to existing context modules, the encoded context is position-sensitive because no upsampling is required. MDC is also efficient and easy to implement. It can be implemented with few standard convolution layers with permutation. We show through extensive experiments that MDC effectively and selectively enlarges the RF and outperforms existing contextual modules on two standard benchmarks, including Cityscapes and PASCAL VOC2012.

BCAU-Net: A Novel Architecture with Binary Channel Attention Module for MRI Brain Segmentation

Yongpei Zhu, Zicong Zhou, Guojun Liao, Kehong Yuan

Responsive image

Auto-TLDR; BCAU-Net: Binary Channel Attention U-Net for MRI brain segmentation

Slides Poster Similar

Recently deep learning-based networks have achieved advanced performance in medical image segmentation. However, the development of deep learning is slow in magnetic resonance image (MRI) segmentation of normal brain tissues. In this paper, inspired by channel attention module, we propose a new architecture, Binary Channel Attention U-Net (BCAU-Net), by introducing a novel Binary Channel Attention Module (BCAM) into skip connection of U-Net, which can take full advantages of the channel information extracted from the encoding path and corresponding decoding path. To better aggregate multi-scale spatial information of the feature map, spatial pyramid pooling (SPP) modules with different pooling operations are used in BCAM instead of original average-pooling and max-pooling operations. We verify this model on two datasets including IBSR and MRBrainS18, and obtain better performance on MRI brain segmentation compared with other methods. We believe the proposed method can advance the performance in brain segmentation and clinical diagnosis.

BiLuNet: A Multi-Path Network for Semantic Segmentation on X-Ray Images

Van Luan Tran, Huei-Yung Lin, Rachel Liu, Chun-Han Tseng, Chun-Han Tseng

Responsive image

Auto-TLDR; BiLuNet: Multi-path Convolutional Neural Network for Semantic Segmentation of Lumbar vertebrae, sacrum,

Similar

Semantic segmentation and shape detection of lumbar vertebrae, sacrum, and femoral heads from clinical X-ray images are important and challenging tasks. In this paper, we propose a new multi-path convolutional neural network, BiLuNet, for semantic segmentation on X-ray images. The network is capable of medical image segmentation with very limited training data. With the shape fitting of the bones, we can identify the location of the target regions very accurately for lumbar vertebra inspection. We collected our dataset and annotated by doctors for model training and performance evaluation. Compared to the state-of-the-art methods, the proposed technique provides better mIoUs and higher success rates with the same training data. The experimental results have demonstrated the feasibility of our network to perform semantic segmentation for lumbar vertebrae, sacrum, and femoral heads.

Progressive Scene Segmentation Based on Self-Attention Mechanism

Yunyi Pan, Yuan Gan, Kun Liu, Yan Zhang

Responsive image

Auto-TLDR; Two-Stage Semantic Scene Segmentation with Self-Attention

Slides Poster Similar

Semantic scene segmentation is vital for a large variety of applications as it enables understanding of 3D data. Nowadays, various approaches based upon point clouds ignore the mathematical distribution of points and treat the points equally. The methods following this direction neglect the imbalance problem of samples that naturally exists in scenes. To avoid these issues, we propose a two-stage semantic scene segmentation framework based on self-attention mechanism and achieved state-of-the-art performance on 3D scene understanding tasks. We split the whole task into two small ones which efficiently relief the sample imbalance issue. In addition, we have designed a new self-attention block which could be inserted into submanifold convolution networks to model the long-range dependencies that exists among points. The proposed network consists of an encoder and a decoder, with the spatial-wise and channel-wise attention modules inserted. The two-stage network shares a U-Net architecture and is an end-to-end trainable framework which could predict the semantic label for the scene point clouds fed into it. Experiments on standard benchmarks of 3D scenes implies that our network could perform at par or better than the existing state-of-the-art methods.

Dual Encoder Fusion U-Net (DEFU-Net) for Cross-manufacturer Chest X-Ray Segmentation

Zhang Lipei, Aozhi Liu, Jing Xiao

Responsive image

Auto-TLDR; Inception Convolutional Neural Network with Dilation for Chest X-Ray Segmentation

Slides Similar

A number of methods based on the deep learning have been applied to medical image segmentation and have achieved state-of-the-art performance. The most famous technique is U-Net which has been used to many medical datasets including the Chest X-ray. Due to the importance of chest x- ray data in studying COVID-19, there is a demand for state-of- art models capable of precisely segmenting chest x-rays. In this paper, we propose a dual encoder fusion U-Net framework for Chest X-rays based on Inception Convolutional Neural Network with dilation, Densely Connected Recurrent Convolutional Neural Network, which is named DEFU-Net. The densely connected recurrent path extends the network deeper for facilitating context feature extraction. In order to increase the width of network and enrich representation of features, the inception blocks with dilation have been used. The inception blocks can capture globally and locally spatial information with various receptive fields to avoid information loss caused by max-pooling. Meanwhile, the features fusion of two path by summation preserve the context and the spatial information for decoding part. We applied this model in Chest X-ray dataset from two different manufacturers (Montgomery and Shenzhen hospital). The DEFU-Net achieves the better performance than basic U-Net, residual U-Net, BCDU- Net, R2U-Net and attention R2U-Net. This model approaches state-of-the-art in this mixed dataset. The open source code for this proposed framework is public available.

Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting

Pongpisit Thanasutives, Ken-Ichi Fukui, Masayuki Numao, Boonserm Kijsirikul

Responsive image

Auto-TLDR; M-SFANet and M-SegNet for Crowd Counting Using Multi-Scale Fusion Networks

Slides Poster Similar

In this paper, we proposed two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANet's decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods.

Deep Recurrent-Convolutional Model for AutomatedSegmentation of Craniomaxillofacial CT Scans

Francesca Murabito, Simone Palazzo, Federica Salanitri Proietto, Francesco Rundo, Ulas Bagci, Daniela Giordano, Rosalia Leonardi, Concetto Spampinato

Responsive image

Auto-TLDR; Automated Segmentation of Anatomical Structures in Craniomaxillofacial CT Scans using Fully Convolutional Deep Networks

Slides Poster Similar

In this paper we define a deep learning architecture for automated segmentation of anatomical structures in Craniomaxillofacial (CMF) CT scans that leverages the recent success of encoder-decoder models for semantic segmentation of natural images. In particular, we propose a fully convolutional deep network that combines the advantages of recent fully convolutional models, such as Tiramisu, with squeeze-and-excitation blocks for feature recalibration, integrated with convolutional LSTMs to model spatio-temporal correlations between consecutive slices. The proposed segmentation network shows superior performance and generalization capabilities (to different structures and imaging modalities) than state of the art methods on automated segmentation of CMF structures (e.g., mandibles and airways) in several standard benchmarks (e.g., MICCAI datasets) and on new datasets proposed herein, effectively facing shape variability.

Breast Anatomy Enriched Tumor Saliency Estimation

Fei Xu, Yingtao Zhang, Heng-Da Cheng, Jianrui Ding, Boyu Zhang, Chunping Ning, Ying Wang

Responsive image

Auto-TLDR; Tumor Saliency Estimation for Breast Ultrasound using enriched breast anatomy knowledge

Slides Poster Similar

Breast cancer investigation is of great significance and developing tumor detection methodologies is a critical need. However, it is a challenging task for breast cancer detection using breast ultrasound (BUS) images due to the complicated breast structure and poor quality of the images. In this paper, we propose a novel tumor saliency estimation (TSE) model guided by enriched breast anatomy knowledge to localize the tumor. First, the breast anatomy layers are generated by a deep neural network. Then we refine the layers by integrating a non-semantic breast anatomy model to solve the problems of incomplete mammary layers. Meanwhile, a new background map generation method weighted by the semantic probability and spatial distance is proposed to improve the performance. The experiment demonstrates that the proposed method with the new background map outperforms four state-of-the-art TSE models with increasing 10% of F_meansure on the public BUS dataset.

BG-Net: Boundary-Guided Network for Lung Segmentation on Clinical CT Images

Rui Xu, Yi Wang, Tiantian Liu, Xinchen Ye, Lin Lin, Yen-Wei Chen, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; Boundary-Guided Network for Lung Segmentation on CT Images

Slides Poster Similar

Lung segmentation on CT images is a crucial step for a computer-aided diagnosis system of lung diseases. The existing deep learning based lung segmentation methods are less efficient to segment lungs on clinical CT images, especially that the segmentation on lung boundaries is not accurate enough due to complex pulmonary opacities in practical clinics. In this paper, we propose a boundary-guided network (BG-Net) to address this problem. It contains two auxiliary branches that separately segment lungs and extract the lung boundaries, and an aggregation branch that efficiently exploits lung boundary cues to guide the network for more accurate lung segmentation on clinical CT images. We evaluate the proposed method on a private dataset collected from the Osaka university hospital and four public datasets including StructSeg, HUG, VESSEL12, and a Novel Coronavirus 2019 (COVID-19) dataset. Experimental results show that the proposed method can segment lungs more accurately and outperform several other deep learning based methods.

Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation

Martin Kolarik, Radim Burget, Carlos M. Travieso-Gonzalez, Jan Kocica

Responsive image

Auto-TLDR; Planar 3D Res-U-Net Network for Unbalanced 3D Image Segmentation using Fluid Attenuation Inversion Recover

Slides Similar

We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels. The method is validated by proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16 which is applied for a single-stage unbalanced 3D image data segmentation. In particular, we evaluate the method on the MICCAI 2016 MS lesion segmentation challenge dataset utilizing solely Fluid Attenuation Inversion Recover (FLAIR) sequence without brain extraction for training and inference to simulate real medical praxis. The planar 3D res-u-net network performed the best both in sensitivity and Dice score amongst end to end methods processing raw MRI scans and achieved comparable Dice score to a state-of-the-art unimodal not end to end approach. Complete source code was released under the open-source license and this paper is in compliance with the Machine learning Reproducibility Checklist. By implementing practical transfer learning for 3D data representation we were able to successfully segment heavily unbalanced data without selective sampling and achieved more reliable results using less training data in single modality. From medical perspective, the unimodal approach gives an advantage in real praxis as it does not require co-registration nor additional scanning time during examination. Although modern medical imaging methods capture high resolution 3D anatomy scans suitable for computer aided detection system processing, deployment of automatic systems for interpretation of radiology imaging is still rather theoretical in many medical areas. Our work aims to bridge the gap offering solution for partial research questions.

Learn to Segment Retinal Lesions and Beyond

Qijie Wei, Xirong Li, Weihong Yu, Xiao Zhang, Yongpeng Zhang, Bojie Hu, Bin Mo, Di Gong, Ning Chen, Dayong Ding, Youxin Chen

Responsive image

Auto-TLDR; Multi-task Lesion Segmentation and Disease Classification for Diabetic Retinopathy Grading

Poster Similar

Towards automated retinal screening, this paper makes an endeavor to simultaneously achieve pixel-level retinal lesion segmentation and image-level disease classification. Such a multi-task approach is crucial for accurate and clinically interpretable disease diagnosis. Prior art is insufficient due to three challenges, i.e., lesions lacking objective boundaries, clinical importance of lesions irrelevant to their size, and the lack of one-to-one correspondence between lesion and disease classes. This paper attacks the three challenges in the context of diabetic retinopathy (DR) grading. We propose Lesion-Net, a new variant of fully convolutional networks, with its expansive path re- designed to tackle the first challenge. A dual Dice loss that leverages both semantic segmentation and image classification losses is introduced to resolve the second challenge. Lastly, we build a multi-task network that employs Lesion-Net as a side- attention branch for both DR grading and result interpretation. A set of 12K fundus images is manually segmented by 45 ophthalmologists for 8 DR-related lesions, resulting in 290K manual segments in total. Extensive experiments on this large- scale dataset show that our proposed approach surpasses the prior art for multiple tasks including lesion segmentation, lesion classification and DR grading.

Multi-Scale Residual Pyramid Attention Network for Monocular Depth Estimation

Jing Liu, Xiaona Zhang, Zhaoxin Li, Tianlu Mao

Responsive image

Auto-TLDR; Multi-scale Residual Pyramid Attention Network for Monocular Depth Estimation

Slides Poster Similar

Monocular depth estimation is a challenging problem in computer vision and is crucial for understanding 3D scene geometry. Recently, deep convolutional neural networks (DCNNs) based methods have improved the estimation accuracy significantly. However, existing methods fail to consider complex textures and geometries in scenes, thereby resulting in loss of local details, distorted object boundaries, and blurry reconstruction. In this paper, we proposed an end-to-end Multi-scale Residual Pyramid Attention Network (MRPAN) to mitigate these problems.First,we propose a Multi-scale Attention Context Aggregation (MACA) module, which consists of Spatial Attention Module (SAM) and Global Attention Module (GAM). By considering the position and scale correlation of pixels from spatial and global perspectives, the proposed module can adaptively learn the similarity between pixels so as to obtain more global context information of the image and recover the complex structure in the scene. Then we proposed an improved Residual Refinement Module (RRM) to further refine the scene structure, giving rise to deeper semantic information and retain more local details. Experimental results show that our method achieves more promisin performance in object boundaries and local details compared with other state-of-the-art methods.

A Multi-Task Contextual Atrous Residual Network for Brain Tumor Detection & Segmentation

Ngan Le, Kashu Yamazaki, Quach Kha Gia, Thanh-Dat Truong, Marios Savvides

Responsive image

Auto-TLDR; Contextual Brain Tumor Segmentation Using 3D atrous Residual Networks and Cascaded Structures

Poster Similar

In recent years, deep neural networks have achieved state-of-the-art performance in a variety of recognition and segmentation tasks in medical imaging including brain tumor segmentation. We investigate that segmenting brain tumor is facing to the imbalanced data problem where the number of pixels belonging to background class (non tumor pixel) is much larger than the number of pixels belonging to foreground class (tumor pixel). To address this problem, we propose a multi-task network which is formed as a cascaded structure and designed to share the feature maps. Our model consists of two targets, i.e., (i) effectively differentiating brain tumor regions and (ii) estimating brain tumor masks. The first task is performed by our proposed contextual brain tumor detection network, which plays the role of an attention gate and focuses on the region around brain tumor only while ignore the background (non tumor area). Instead of processing every pixel, our contextual brain tumor detection network only processes contextual regions around ground-truth instances and this strategy helps to produce meaningful regions proposals. The second task is built upon a 3D atrous residual network and under an encode-decode network in order to effectively segment both large and small objects (brain tumor). Our 3D atrous residual network is designed with a skip connection to enables the gradient from the deep layers to be directly propagated to shallow layers, thus, features of different depths are preserved and used for refining each other. In order to incorporate larger contextual information in volume MRI data, our network is designed by 3D atrous convolution with various kernel sizes, which enlarges the receptive field of filters. Our proposed network has been evaluated on various datasets including BRATS2015, BRATS2017 and BRATS2018 datasets with both validation set and testing set. Our performance has been benchmarked by both region-based metrics and surface-based metrics. We also have conducted comparisons against state-of-the-art approaches.

A Deep Learning Approach for the Segmentation of Myocardial Diseases

Khawala Brahim, Abdull Qayyum, Alain Lalande, Arnaud Boucher, Anis Sakly, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Segmentation of Myocardium Infarction Using Late GADEMRI and SegU-Net

Slides Poster Similar

Cardiac left ventricular (LV) segmentation is of paramount essential step for both diagnosis and treatment of cardiac pathologies such as ischemia, myocardial infarction, arrhythmia and myocarditis. However, this segmentation is challenging due to high variability across patients and the potential lack of contrast between structures. In this work, we propose and evaluate a (2.5D) SegU-Net model based on the fusion of two deep learning techniques (U-Net and Seg-Net) for automated LGEMRI (Late gadolinium enhanced magnetic resonance imaging) myocardial disease (infarct core and no reflow region) quantification in a new multifield expert annotated dataset. Given that the scar tissue represents a small part of the whole MRI slices, we focused on myocardium area. Segmentation results show that this preprocessing step facilitate the learning procedure. In order to solve the class imbalance problem, we propose to apply the Jaccard loss and the Focal Loss as optimization loss function and to integrate a class weights strategy into the objective function. Late combination has been used to merge the output of the best trained models on a different set of hyperparameters. The final network segmentation performances will be useful for future comparison of new method to the current related work for this task. A total number of 2237 of slices (320 cases) were used for training/validation and 210 slices (35 cases) were used for testing. Experiments over our proposed dataset, using several evaluation metrics such Jaccard distance (IOU), Accuracy and Dice similarity coefficient (DSC), demonstrate efficiency performance in quantifying different zones of myocardium infarction across various patients. As compared to the second intra-observer study, our testing results showed that the SegUNet prediction model leads to these average dice coefficients over all segmented tissue classes, respectively : 'Background': 0.99999, 'Myocardium': 0.99434, 'Infarctus': 0.95587, 'Noreflow': 0.78187.

PCANet: Pyramid Context-Aware Network for Retinal Vessel Segmentation

Yi Zhang, Yixuan Chen, Kai Zhang

Responsive image

Auto-TLDR; PCANet: Adaptive Context-Aware Network for Automated Retinal Vessel Segmentation

Slides Poster Similar

Automated retinal vessel segmentation plays an important role in the diagnosis of some diseases such as diabetes, arteriosclerosis and hypertension. Recent works attempt to improve segmentation performance by exploring either global or local contexts. However, the context demands are varying from regions in each image and different levels of network. To address these problems, we propose Pyramid Context-aware Network (PCANet), which can adaptively capture multi-scale context representations. Specifically, PCANet is composed of multiple Adaptive Context-aware (ACA) blocks arranged in parallel, each of which can adaptively obtain the context-aware features by estimating affinity coefficients at a specific scale under the guidance of global contextual dependencies. Meanwhile, we import ACA blocks with specific scales in different levels of the network to obtain a coarse-to-fine result. Furthermore, an integrated test-time augmentation method is developed to further boost the performance of PCANet. Finally, extensive experiments demonstrate the effectiveness of the proposed PCANet, and state-of-the-art performances are achieved with AUCs of 0.9866, 0.9886 and F1 Scores of 0.8274, 0.8371 on two public datasets, DRIVE and STARE, respectively.

Dynamic Guided Network for Monocular Depth Estimation

Xiaoxia Xing, Yinghao Cai, Yiping Yang, Dayong Wen

Responsive image

Auto-TLDR; DGNet: Dynamic Guidance Upsampling for Self-attention-Decoding for Monocular Depth Estimation

Slides Poster Similar

Self-attention or encoder-decoder structure has been widely used in deep neural networks for monocular depth estimation tasks. The former mechanism are capable to capture long-range information by computing the representation of each position by a weighted sum of the features at all positions, while the latter networks can capture structural details information by gradually recovering the spatial information. In this work, we combine the advantages of both methods. Specifically, our proposed model, DGNet, extends EMANet Network by adding an effective decoder module to refine the depth results. In the decoder stage, we further design dynamic guidance upsampling which uses local neighboring information of low-level features guide coarser depth to upsample. In this way, dynamic guidance upsampling generates content-dependent and spatially-variant kernels for depth upsampling which makes full use of spatial details information from low-level features. Experimental results demonstrate that our method obtains higher accuracy and generates the desired depth map.

SFPN: Semantic Feature Pyramid Network for Object Detection

Yi Gan, Wei Xu, Jianbo Su

Responsive image

Auto-TLDR; SFPN: Semantic Feature Pyramid Network to Address Information Dilution Issue in FPN

Slides Poster Similar

Feature Pyramid Network(FPN) employs a top-down path to enhance low level feature by utilizing high level feature.However, further improvement of detector is greatly hindered by the inner defect of FPN. The dilution issue in FPN is analyzed in this paper, and a new architecture named Semantic Feature Pyramid Network(SFPN) is introduced to address the information imbalance problem caused by information dilution. The proposed method consists of two simple and effective components: Semantic Pyramid Module(SPM) and Semantic Feature Fusion Module(SFFM). To compensate for the weaknesses of FPN, the semantic segmentation result is utilized as an extra information source in our architecture.By constructing a semantic pyramid based on the segmentation result and fusing it with FPN, feature maps at each level can obtain the necessary information without suffering from the dilution issue. The proposed architecture could be applied on many detectors, and non-negligible improvement could be achieved. Although this method is designed for object detection, other tasks such as instance segmentation can also largely benefit from it. The proposed method brings Faster R-CNN and Mask R-CNN with ResNet-50 as backbone both 1.8 AP improvements respectively. Furthermore, SFPN improves Cascade R-CNN with backbone ResNet-101 from 42.4 AP to 43.5 AP.

CSpA-DN: Channel and Spatial Attention Dense Network for Fusing PET and MRI Images

Bicao Li, Zhoufeng Liu, Shan Gao, Jenq-Neng Hwang, Jun Sun, Zongmin Wang

Responsive image

Auto-TLDR; CSpA-DN: Unsupervised Fusion of PET and MR Images with Channel and Spatial Attention

Slides Poster Similar

In this paper, we propose a novel unsupervised fusion framework based on a dense network with channel and spatial attention (CSpA-DN) for PET and MR images. In our approach, an encoder composed of the densely connected neural network is constructed to extract features from source images, and a decoder network is leveraged to yield the fused image from these features. Simultaneously, a self-attention mechanism is introduced in the encoder and decoder to further integrate local features along with their global dependencies adaptively. The extracted feature of each spatial position is synthesized by a weighted summation of those features at the same row and column with this position via a spatial attention module. Meanwhile, the interdependent relationship of all feature maps is integrated by a channel attention module. The summation of the outputs of these two attention modules is fed into the decoder and the fused image is generated. Experimental results illustrate the superiorities of our proposed CSpA-DN model compared with state-of-the-art methods in PET and MR images fusion according to both visual perception and objective assessment.

Cross-View Relation Networks for Mammogram Mass Detection

Ma Jiechao, Xiang Li, Hongwei Li, Ruixuan Wang, Bjoern Menze, Wei-Shi Zheng

Responsive image

Auto-TLDR; Multi-view Modeling for Mass Detection in Mammogram

Slides Poster Similar

In medical image analysis, multi-view modeling is crucial for pathology detection when the target lesion is presented in different views, e.g. mass lesions in breast. Currently mammogram is the most effective imaging modality for mass lesion detection of breast cancer at the early stage. The pathological information from the two paired views (i.e., medio-lateral oblique and cranio-caudal) are highly relational and complementary, which is crucial for diagnosis in clinical practice. Existing mass detection methods do not consider learning synergistic features from the two relational views. For the first time, we propose a novel mass detection framework to capture the latent relation information from the two paired views of a same mass in mammogram. We evaluate our model on a public mammogram dataset and a large-scale private dataset, demonstrating that the proposed method outperforms existing feature fusion approaches and state-of-the-art mass detection methods. We further analyze the performance gains from the relation modeling. Our quantitative and qualitative results suggest that jointly learning cross-view features boosts the detection performance of existing models, which is a promising avenue for mass detection task in mammogram.

EM-Net: Deep Learning for Electron Microscopy Image Segmentation

Afshin Khadangi, Thomas Boudier, Vijay Rajagopal

Responsive image

Auto-TLDR; EM-net: Deep Convolutional Neural Network for Electron Microscopy Image Segmentation

Similar

Recent high-throughput electron microscopy techniques such as focused ion-beam scanning electron microscopy (FIB-SEM) provide thousands of serial sections which assist the biologists in studying sub-cellular structures at high resolution and large volume. Low contrast of such images hinder image segmentation and 3D visualisation of these datasets. With recent advances in computer vision and deep learning, such datasets can be segmented and reconstructed in 3D with greater ease and speed than with previous approaches. However, these methods still rely on thousands of ground-truth samples for training and electron microscopy datasets require significant amounts of time for carefully curated manual annotations. We address these bottlenecks with EM-net, a scalable deep convolutional neural network for EM image segmentation. We have evaluated EM-net using two datasets, one of which belongs to an ongoing competition on EM stack segmentation since 2012. We show that EM-net variants achieve better performances than current deep learning methods using small- and medium-sized ground-truth datasets. We also show that the ensemble of top EM-net base classifiers outperforms other methods across a wide variety of evaluation metrics.

Hierarchically Aggregated Residual Transformation for Single Image Super Resolution

Zejiang Hou, Sy Kung

Responsive image

Auto-TLDR; HARTnet: Hierarchically Aggregated Residual Transformation for Multi-Scale Super-resolution

Slides Poster Similar

Visual patterns usually appear at different scales/sizes in natural images. Multi-scale feature representation is of great importance for the single-image super-resolution(SISR) task to reconstruct image objects at different scales.However, such characteristic has been rarely considered by CNN-based SISR methods. In this work, we propose a novel build-ing block, i.e. hierarchically aggregated residual transformation(HART), to achieve multi-scale feature representation in each layer of the network. Within each HART block, we connect multiple convolutions in a hierarchical residual-like manner, which greatly expands the range of effective receptive fields and helps to detect image features at different scales. To theoretically understand the proposed HART block, we recast SISR as an optimal control problem and show that HART effectively approximates the classical4th-order Runge-Kutta method, which has the merit of small local truncation error for solving numerical ordinary differential equation. By cascading the proposed HART blocks, we establish our high-performing HARTnet. Comparedwith existing SR state-of-the-arts (including those in NTIRE2019 SR Challenge leaderboard), the proposed HARTnet demonstrates consistent PSNR/SSIM performance improvements on various benchmark datasets under different degradation models.Moreover, HARTnet can efficiently restore more faithful high-resolution images than comparative SR methods (cf. Figure 1).

Residual Fractal Network for Single Image Super Resolution by Widening and Deepening

Jiahang Gu, Zhaowei Qu, Xiaoru Wang, Jiawang Dan, Junwei Sun

Responsive image

Auto-TLDR; Residual fractal convolutional network for single image super-resolution

Slides Poster Similar

The architecture of the convolutional neural network (CNN) plays an important role in single image super-resolution (SISR). However, most models proposed in recent years usually transplant methods or architectures that perform well in other vision fields. Thence they do not combine the characteristics of super-resolution (SR) and ignore the key information brought by the recurring texture feature in the image. To utilize patch-recurrence in SR and the high correlation of texture, we propose a residual fractal convolutional block (RFCB) and expand its depth and width to obtain residual fractal network (RFN), which contains deep residual fractal network (DRFN) and wide residual fractal network (WRFN). RFCB is recursive with multiple branches of magnified receptive field. Through the phased feature fusion module, the network focuses on extracting high-frequency texture feature that repeatedly appear in the image. We also introduce residual in residual (RIR) structure to RFCB that enables abundant low-frequency feature feed into deeper layers and reduce the difficulties of network training. RFN is the first supervised learning method to combine the patch-recurrence characteristic in SISR into network design. Extensive experiments demonstrate that RFN outperforms state-of-the-art SISR methods in terms of both quantitative metrics and visual quality, while the amount of parameters has been greatly optimized.

Ordinal Depth Classification Using Region-Based Self-Attention

Minh Hieu Phan, Son Lam Phung, Abdesselam Bouzerdoum

Responsive image

Auto-TLDR; Region-based Self-Attention for Multi-scale Depth Estimation from a Single 2D Image

Slides Poster Similar

Depth estimation from a single 2D image has been widely applied in 3D understanding, 3D modelling and robotics. It is challenging as reliable cues (e.g. stereo correspondences and motions) are not available. Most of the modern approaches exploited multi-scale feature extraction to provide more powerful representations for deep networks. However, these studies have not focused on how to effectively fuse the learned multi-scale features. This paper proposes a novel region-based self-attention (rSA) module. The rSA recalibrates the multi-scale responses by explicitly modelling the interdependency between channels in separate image regions. We discretize continuous depths to solve an ordinal depth classification in which the relative order between categories is significant. We contribute a dataset of 4410 RGB-D images, captured in outdoor environments at the University of Wollongong's campus. In our experimental results, the proposed module improves the lightweight models on small-sized datasets by 22% - 40%

Skin Lesion Classification Using Weakly-Supervised Fine-Grained Method

Xi Xue, Sei-Ichiro Kamata, Daming Luo

Responsive image

Auto-TLDR; Different Region proposal module for skin lesion classification

Slides Poster Similar

In recent years, skin cancer has become one of the most common cancers. Among all types of skin cancers, melanoma is the most fatal one and many people die of this disease every year. Early detection can greatly reduce the death rate and save more lives. Skin lesions are one of the early symptoms of melanoma and other types of skin cancer. So accurately recognizing various skin lesions in early stage are of great significance. There have been lots of existing works based on convolutional neural networks (CNN) to solve skin lesion classification but seldom do them involve the similarity among different lesions. For example, we find that some lesions of melanoma and nevi look similar in appearance which is hard for neural network to distinguish categories of skin lesions. Inspired by fine-grained image classification, we propose a novel network to distinguish each category accurately. In our paper, we design an effective module, distinct region proposal module (DRPM), to extract the distinct regions from each image. Spatial attention and channel-wise attention are both utilized to enrich feature maps and guide the network to focus on the highlighted areas in a weakly-supervised way. In addition, two preprocessing steps are added to ensure the network to get better results. We demonstrate the potential of the proposed method on ISIC 2017 dataset. Experiments show that our approach is effective and efficient.