Ulas Bagci

Papers from this author

Deep Multi-Stage Model for Automated Landmarking of Craniomaxillofacial CT Scans

Simone Palazzo, Giovanni Bellitto, Luca Prezzavento, Francesco Rundo, Ulas Bagci, Daniela Giordano, Rosalia Leonardi, Concetto Spampinato

Responsive image

Auto-TLDR; Automated Landmarking of Craniomaxillofacial CT Images Using Deep Multi-Stage Architecture

Slides Similar

In this paper we define a deep multi-stage architecture for automated landmarking of craniomaxillofacial (CMF) CT images. Our model is composed of three subnetworks that first localize, on reduced-resolution images, areas where land-marks may be found and then refine the search, at full-resolution scale, through a hierarchical structure aiming at increasing the granularity of the investigated region. The multi-stage pipeline is designed to deal with full resolution data and does not require any additional pre-processing step to reduce search space, as opposed to existing methods that can be only adopted for searching landmarks located in well-defined anatomical structures (e.g.,mandibles). The automated landmarking system is tested on identifying landmarks located in several CMF regions, achieving an average error of 0.8 mm, significantly lower than expert readings. The proposed model also outperforms baselines and is on par with existing models that employ additional upstream segmentation, on state-of-the-art benchmarks.

Deep Recurrent-Convolutional Model for AutomatedSegmentation of Craniomaxillofacial CT Scans

Francesca Murabito, Simone Palazzo, Federica Salanitri Proietto, Francesco Rundo, Ulas Bagci, Daniela Giordano, Rosalia Leonardi, Concetto Spampinato

Responsive image

Auto-TLDR; Automated Segmentation of Anatomical Structures in Craniomaxillofacial CT Scans using Fully Convolutional Deep Networks

Slides Poster Similar

In this paper we define a deep learning architecture for automated segmentation of anatomical structures in Craniomaxillofacial (CMF) CT scans that leverages the recent success of encoder-decoder models for semantic segmentation of natural images. In particular, we propose a fully convolutional deep network that combines the advantages of recent fully convolutional models, such as Tiramisu, with squeeze-and-excitation blocks for feature recalibration, integrated with convolutional LSTMs to model spatio-temporal correlations between consecutive slices. The proposed segmentation network shows superior performance and generalization capabilities (to different structures and imaging modalities) than state of the art methods on automated segmentation of CMF structures (e.g., mandibles and airways) in several standard benchmarks (e.g., MICCAI datasets) and on new datasets proposed herein, effectively facing shape variability.

Variational Capsule Encoder

Harish Raviprakash, Syed Anwar, Ulas Bagci

Responsive image

Auto-TLDR; Bayesian Capsule Networks for Representation Learning in latent space

Slides Poster Similar

We propose a novel capsule network based variational encoder architecture, called Bayesian capsules (B-Caps), to modulate the mean and standard deviation of the sampling distribution in the latent space. We hypothesize that this approach can learn a better representation of features in the latent space than traditional approaches. Our hypothesis was tested by using the learned latent variables for image reconstruction task, where for MNIST and Fashion-MNIST datasets, different classes were separated successfully in the latent space using our proposed model. Our experimental results have shown improved reconstruction and classification performances for both datasets adding credence to our hypothesis. We also showed that by increasing the latent space dimension, the proposed B-Caps was able to learn a better representation when compared to the traditional variational auto-encoders (VAE). Hence our results indicate the strength of capsule networks in representation learning which has never been examined under the VAE settings before.