Breast Anatomy Enriched Tumor Saliency Estimation

Fei Xu, Yingtao Zhang, Heng-Da Cheng, Jianrui Ding, Boyu Zhang, Chunping Ning, Ying Wang

Responsive image

Auto-TLDR; Tumor Saliency Estimation for Breast Ultrasound using enriched breast anatomy knowledge

Slides Poster

Breast cancer investigation is of great significance and developing tumor detection methodologies is a critical need. However, it is a challenging task for breast cancer detection using breast ultrasound (BUS) images due to the complicated breast structure and poor quality of the images. In this paper, we propose a novel tumor saliency estimation (TSE) model guided by enriched breast anatomy knowledge to localize the tumor. First, the breast anatomy layers are generated by a deep neural network. Then we refine the layers by integrating a non-semantic breast anatomy model to solve the problems of incomplete mammary layers. Meanwhile, a new background map generation method weighted by the semantic probability and spatial distance is proposed to improve the performance. The experiment demonstrates that the proposed method with the new background map outperforms four state-of-the-art TSE models with increasing 10% of F_meansure on the public BUS dataset.

Similar papers

Semantic Segmentation of Breast Ultrasound Image with Pyramid Fuzzy Uncertainty Reduction and Direction Connectedness Feature

Kuan Huang, Yingtao Zhang, Heng-Da Cheng, Ping Xing, Boyu Zhang

Responsive image

Auto-TLDR; Uncertainty-Based Deep Learning for Breast Ultrasound Image Segmentation

Slides Poster Similar

Deep learning approaches have achieved impressive results in breast ultrasound (BUS) image segmentation. However, these methods did not solve uncertainty and noise in BUS images well. To address this issue, we present a novel deep learning structure for BUS image semantic segmentation by analyzing the uncertainty using a pyramid fuzzy block and generating a novel feature based on connectedness. Firstly, feature maps in the proposed network are down-sampled to different resolutions. Fuzzy transformation and uncertainty representation are applied to each resolution to obtain the uncertainty degree on different scales. Meanwhile, the BUS images contain layer structures. From top to bottom, there are skin layer, fat layer, mammary layer, muscle layer, and background area. A spatial recurrent neural network (RNN) is utilized to calculate the connectedness between each pixel and the pixels on the four boundaries in horizontal and vertical lines. The spatial-wise context feature can introduce the characteristic of layer structure to deep neural network. Finally, the original convolutional features are combined with connectedness feature according to the uncertainty degrees. The proposed methods are applied to two datasets: a BUS image benchmark with two categories (background and tumor) and a five-category BUS image dataset with fat layer, mammary layer, muscle layer, background, and tumor. The proposed method achieves the best results on both datasets compared with eight state-of-the-art deep learning-based approaches.

DARN: Deep Attentive Refinement Network for Liver Tumor Segmentation from 3D CT Volume

Yao Zhang, Jiang Tian, Cheng Zhong, Yang Zhang, Zhongchao Shi, Zhiqiang He

Responsive image

Auto-TLDR; Deep Attentive Refinement Network for Liver Tumor Segmentation from 3D Computed Tomography Using Multi-Level Features

Slides Poster Similar

Automatic liver tumor segmentation from 3D Computed Tomography (CT) is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on Fully Convolutional Network (FCN) in liver tumor segmentation draw on success of learning discriminative multi-level features. In this paper, we propose a Deep Attentive Refinement Network (DARN) for improved liver tumor segmentation from CT volumes by fully exploiting both low and high level features embedded in different layers of FCN. Different from existing works, we exploit attention mechanism to leverage the relation of different levels of features encoded in different layers of FCN. Specifically, we introduce a Semantic Attention Refinement (SemRef) module to selectively emphasize global semantic information in low level features with the guidance of high level ones, and a Spatial Attention Refinement (SpaRef) module to adaptively enhance spatial details in high level features with the guidance of low level ones. We evaluate our network on the public MICCAI 2017 Liver Tumor Segmentation Challenge dataset (LiTS dataset) and it achieves state-of-the-art performance. The proposed refinement modules are an effective strategy to exploit multi-level features and has great potential to generalize to other medical image segmentation tasks.

DA-RefineNet: Dual-Inputs Attention RefineNet for Whole Slide Image Segmentation

Ziqiang Li, Rentuo Tao, Qianrun Wu, Bin Li

Responsive image

Auto-TLDR; DA-RefineNet: A dual-inputs attention network for whole slide image segmentation

Slides Poster Similar

Automatic medical image segmentation techniques have wide applications for disease diagnosing, however, its much more challenging than natural optical image segmentation tasks due to the high-resolution of medical images and the corresponding huge computation cost. Sliding window was a commonly used technique for whole slide image (WSI) segmentation, however, for these methods that based on sliding window, the main drawback was lacking of global contextual information for supervision. In this paper, we proposed a dual-inputs attention network (denoted as DA-RefineNet) for WSI segmentation, where both local fine-grained information and global coarse information can be efficiently utilized. Sufficient comparative experiments were conducted to evaluate the effectiveness of the proposed method, the results proved that the proposed method can achieve better performance on WSI segmentation tasks compared to methods rely on single-input.

A Benchmark Dataset for Segmenting Liver, Vasculature and Lesions from Large-Scale Computed Tomography Data

Bo Wang, Zhengqing Xu, Wei Xu, Qingsen Yan, Liang Zhang, Zheng You

Responsive image

Auto-TLDR; The Biggest Treatment-Oriented Liver Cancer Dataset for Segmentation

Slides Poster Similar

How to build a high-performance liver-related computer assisted diagnosis system is an open question of great interest. However, the performance of the state-of-art algorithm is always limited by the amount of data and quality of the label. To address this problem, we propose the biggest treatment-oriented liver cancer dataset for liver surgery and treatment planning. This dataset provides 216 cases (totally about 268K frames) scanned images in contrast-enhanced computed tomography (CT). We labeled all the CT images with the liver, liver vasculature and liver tumor segmentation ground truth for train and tune segmentation algorithms in advance. Based on that, we evaluate several recent and state-of-the-art segmentation algorithms, including 7 deep learning methods, on CT sequences. All results are compared to reference segmentations five error metrics that highlight different aspects of segmentation accuracy. In general, compared with previous datasets, our dataset is really a challenging dataset. To our knowledge, the proposed dataset and benchmark allow for the first time systematic exploration of such issues, and will be made available to allow for further research in this field.

A Multi-Task Contextual Atrous Residual Network for Brain Tumor Detection & Segmentation

Ngan Le, Kashu Yamazaki, Quach Kha Gia, Thanh-Dat Truong, Marios Savvides

Responsive image

Auto-TLDR; Contextual Brain Tumor Segmentation Using 3D atrous Residual Networks and Cascaded Structures

Poster Similar

In recent years, deep neural networks have achieved state-of-the-art performance in a variety of recognition and segmentation tasks in medical imaging including brain tumor segmentation. We investigate that segmenting brain tumor is facing to the imbalanced data problem where the number of pixels belonging to background class (non tumor pixel) is much larger than the number of pixels belonging to foreground class (tumor pixel). To address this problem, we propose a multi-task network which is formed as a cascaded structure and designed to share the feature maps. Our model consists of two targets, i.e., (i) effectively differentiating brain tumor regions and (ii) estimating brain tumor masks. The first task is performed by our proposed contextual brain tumor detection network, which plays the role of an attention gate and focuses on the region around brain tumor only while ignore the background (non tumor area). Instead of processing every pixel, our contextual brain tumor detection network only processes contextual regions around ground-truth instances and this strategy helps to produce meaningful regions proposals. The second task is built upon a 3D atrous residual network and under an encode-decode network in order to effectively segment both large and small objects (brain tumor). Our 3D atrous residual network is designed with a skip connection to enables the gradient from the deep layers to be directly propagated to shallow layers, thus, features of different depths are preserved and used for refining each other. In order to incorporate larger contextual information in volume MRI data, our network is designed by 3D atrous convolution with various kernel sizes, which enlarges the receptive field of filters. Our proposed network has been evaluated on various datasets including BRATS2015, BRATS2017 and BRATS2018 datasets with both validation set and testing set. Our performance has been benchmarked by both region-based metrics and surface-based metrics. We also have conducted comparisons against state-of-the-art approaches.

Segmentation of Axillary and Supraclavicular Tumoral Lymph Nodes in PET/CT: A Hybrid CNN/Component-Tree Approach

Diana Lucia Farfan Cabrera, Nicolas Gogin, David Morland, Benoît Naegel, Dimitri Papathanassiou, Nicolas Passat

Responsive image

Auto-TLDR; Coupling Convolutional Neural Networks and Component-Trees for Lymph node Segmentation from PET/CT Images

Slides Similar

The analysis of axillary and supraclavicular lymph nodes is a primary prognostic factor for the staging of breast cancer. However, due to the size of lymph nodes and the low resolution of PET data, their segmentation is challenging. We investigate the relevance of considering axillary and supraclavicular lymph node segmentation from PET/CT images by coupling Convolutional Neural Networks (CNNs) and Component-Trees (C-Trees). Building upon the U-Net architecture, we propose a framework that couples a multi-modal U-Net fed with PET and CT, coupled with a hierarchical model obtained from the PET that provides additional high-level region-based features as input channels. Our working hypotheses are twofold. First, we take advantage of both anatomical information from CT for detecting the nodes, and from functional information from PET for detecting the pathological ones. Second, we consider region-based attributes extracted from C-Tree analysis of 3D PET/CT images to improve the CNN segmentation. We carried out experiments on a dataset of 240 pathological lymph nodes from 52 patients scans, and compared our outputs with human expert-defined ground-truth, leading to promising results.

A Lumen Segmentation Method in Ureteroscopy Images Based on a Deep Residual U-Net Architecture

Jorge Lazo, Marzullo Aldo, Sara Moccia, Michele Catellani, Benoit Rosa, Elena De Momi, Michel De Mathelin, Francesco Calimeri

Responsive image

Auto-TLDR; A Deep Neural Network for Ureteroscopy with Residual Units

Slides Poster Similar

Ureteroscopy is becoming the first surgical treatment option for the majority of urinary affections. This procedure is carried out using an endoscope which provides the surgeon with the visual and spatial information necessary to navigate inside the urinary tract. Having in mind the development of surgical assistance systems, that could enhance the performance of surgeon, the task of lumen segmentation is a fundamental part since this is the visual reference which marks the path that the endoscope should follow. This is something that has not been analyzed in ureteroscopy data before. However, this task presents several challenges given the image quality and the conditions itself of ureteroscopy procedures. In this paper, we study the implementation of a Deep Neural Network which exploits the advantage of residual units in an architecture based on U-Net. For the training of these networks, we analyze the use of two different color spaces: gray-scale and RGB data images. We found that training on gray-scale images gives the best results obtaining mean values of Dice Score, Precision, and Recall of 0.73, 0.58, and 0.92 respectively. The results obtained show that the use of residual U-Net could be a suitable model for further development for a computer-aided system for navigation and guidance through the urinary system.

Coarse to Fine: Progressive and Multi-Task Learning for Salient Object Detection

Dong-Goo Kang, Sangwoo Park, Joonki Paik

Responsive image

Auto-TLDR; Progressive and mutl-task learning scheme for salient object detection

Slides Poster Similar

Most deep learning-based salient object detection (SOD) methods tried to manipulate the convolution block to effectively capture the context of object. In this paper, we propose a novel method, called progressive and mutl-task learning scheme, to extract the context of object by only manipulating the learning scheme without changing the network architecture. The progressive learning scheme is a method to grow the decoder progressively in the train phase. In other words, starting from easier low-resolution layers, it gradually adds high-resolution layers. Although the progressive learning successfullyl captures the context of object, its output boundary tends to be rough. To solve this problem, we also propose a multi-task learning (MTL) scheme that processes the object saliency map and contour in a single network jointly. The proposed MTL scheme trains the network in an edge-preserved direction through an auxiliary branch that learns contours. The proposed a learning scheme can be combined with other convolution block manipulation methods. Extensive experiments on five datasets show that the proposed method performs best compared with state-of-the-art methods in most cases.

3D Medical Multi-Modal Segmentation Network Guided by Multi-Source Correlation Constraint

Tongxue Zhou, Stéphane Canu, Pierre Vera, Su Ruan

Responsive image

Auto-TLDR; Multi-modality Segmentation with Correlation Constrained Network

Slides Poster Similar

In the field of multimodal segmentation, the correlation between different modalities can be considered for improving the segmentation results. In this paper, we propose a multi-modality segmentation network with a correlation constraint. Our network includes N model-independent encoding paths with N image sources, a correlation constrain block, a feature fusion block, and a decoding path. The model-independent encoding path can capture modality-specific features from the N modalities. Since there exists a strong correlation between different modalities, we first propose a linear correlation block to learn the correlation between modalities, then a loss function is used to guide the network to learn the correlated features based on the correlation representation block. This block forces the network to learn the latent correlated features which are more relevant for segmentation. Considering that not all the features extracted from the encoders are useful for segmentation, we propose to use dual attention based fusion block to recalibrate the features along the modality and spatial paths, which can suppress less informative features and emphasize the useful ones. The fused feature representation is finally projected by the decoder to obtain the segmentation result. Our experiment results tested on BraTS-2018 dataset for brain tumor segmentation demonstrate the effectiveness of our proposed method.

Learning to Segment Clustered Amoeboid Cells from Brightfield Microscopy Via Multi-Task Learning with Adaptive Weight Selection

Rituparna Sarkar, Suvadip Mukherjee, Elisabeth Labruyere, Jean-Christophe Olivo-Marin

Responsive image

Auto-TLDR; Supervised Cell Segmentation from Microscopy Images using Multi-task Learning in a Multi-Task Learning Paradigm

Poster Similar

Detecting and segmenting individual cells from microscopy images is critical to various life science applications. Traditional cell segmentation tools are often ill-suited for applications in brightfield microscopy due to poor contrast and intensity heterogeneity, and only a small subset are applicable to segment cells in a cluster. In this regard, we introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm. A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network. The learning problem is posed in a novel min-max framework which enables adaptive estimation of the hyper-parameters in an automatic fashion. The region and cell boundary predictions are combined via morphological operations and active contour model to segment individual cells. The proposed methodology is particularly suited to segment touching cells from brightfield microscopy images without manual interventions. Quantitatively, we observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least 5.8% on average.

Fused 3-Stage Image Segmentation for Pleural Effusion Cell Clusters

Sike Ma, Meng Zhao, Hao Wang, Fan Shi, Xuguo Sun, Shengyong Chen, Hong-Ning Dai

Responsive image

Auto-TLDR; Coarse Segmentation of Stained and Stained Unstained Cell Clusters in pleural effusion using 3-stage segmentation method

Slides Poster Similar

The appearance of tumor cell clusters in pleural effusion is usually a vital sign of cancer metastasis. Segmentation, as an indispensable basis, is of crucial importance for diagnosing, chemical treatment, and prognosis in patients. However, accurate segmentation of unstained cell clusters containing more detailed features than the fluorescent staining images remains to be a challenging problem due to the complex background and the unclear boundary. Therefore, in this paper, we propose a fused 3-stage image segmentation algorithm, namely Coarse segmentation-Mapping-Fine segmentation (CMF) to achieve unstained cell clusters from whole slide images. Firstly, we establish a tumor cell cluster dataset consisting of 107 sets of images, with each set containing one unstained image, one stained image, and one ground-truth image. Then, according to the features of the unstained and stained cell clusters, we propose a three-stage segmentation method: 1) Coarse segmentation on stained images to extract suspicious cell regions-Region of Interest (ROI); 2) Mapping this ROI to the corresponding unstained image to get the ROI of the unstained image (UI-ROI); 3) Fine Segmentation using improved automatic fuzzy clustering framework (AFCF) on the UI-ROI to get precise cell cluster boundaries. Experimental results on 107 sets of images demonstrate that the proposed algorithm can achieve better performance on unstained cell clusters with an F1 score of 90.40%.

MTGAN: Mask and Texture-Driven Generative Adversarial Network for Lung Nodule Segmentation

Wei Chen, Qiuli Wang, Kun Wang, Dan Yang, Xiaohong Zhang, Chen Liu, Yucong Li

Responsive image

Auto-TLDR; Mask and Texture-driven Generative Adversarial Network for Lung Nodule Segmentation

Slides Poster Similar

Accurate segmentation for lung nodules in lung computed tomography (CT) scans plays a key role in the early diagnosis of lung cancer. Many existing methods, especially UNet, have made significant progress in lung nodule segmentation. However, due to the complex shapes of lung nodules and the similarity of visual characteristics between nodules and lung tissues, an accurate segmentation with few false positives of lung nodules is still a challenging problem. Considering the fact that both boundary and texture information of lung nodules are important for obtaining an accurate segmentation result, we propose a novel Mask and Texture-driven Generative Adversarial Network (MTGAN) with a joint multi-scale L1 loss for lung nodule segmentation, which takes full advantages of U-Net and adversarial training. The proposed MTGAN leverages adversarial learning strategy guided by the boundary and texture information of lung nodules to generate more accurate segmentation results with lesser false positives. We validate our model with the LIDC–IDRI dataset, and experimental results show that our method achieves excellent segmentation results for a variety of lung nodules, especially for juxtapleural nodules and low-dense nodules. Without any bells and whistles, the proposed MTGAN achieves significant segmentation performance with the Dice similarity coefficient (DSC) of 85.24% on the LIDC–IDRI dataset.

Merged 1D-2D Deep Convolutional Neural Networks for Nerve Detection in Ultrasound Images

Mohammad Alkhatib, Adel Hafiane, Pierre Vieyres

Responsive image

Auto-TLDR; A Deep Neural Network for Deep Neural Networks to Detect Median Nerve in Ultrasound-Guided Regional Anesthesia

Slides Poster Similar

Ultrasound-Guided Regional Anesthesia (UGRA) becomes a standard procedure in surgical operations and contributes to pain management. It offers the advantages of the targeted nerve detection and provides the visualization of regions of interest such as anatomical structures. However, nerve detection is one of the most challenging tasks that anesthetists can encounter in the UGRA procedure. A computer-aided system that can detect automatically the nerve region would facilitate the anesthetist's daily routine and allow them to concentrate more on the anesthetic delivery. In this paper, we propose a new method based on merging deep learning models from different data to detect the median nerve. The merged architecture consists of two branches, one being one dimensional (1D) convolutional neural networks (CNN) branch and another 2D CNN branch. The merged architecture aims to learn the high-level features from 1D handcrafted noise-robust features and 2D ultrasound images. The obtained results show the validity and high accuracy of the proposed approach and its robustness.

DE-Net: Dilated Encoder Network for Automated Tongue Segmentation

Hui Tang, Bin Wang, Jun Zhou, Yongsheng Gao

Responsive image

Auto-TLDR; Automated Tongue Image Segmentation using De-Net

Slides Poster Similar

Automated tongue recognition is a growing research field due to global demand for personal health care. Using mobile devices to take tongue pictures is convenient and of low cost for tongue recognition. It is particularly suitable for self-health evaluation of the public. However, images taken by mobile devices are easily affected by various imaging environment, which makes fine segmentation a more challenging task compared with those taken by specialized acquisition devices. Deep learning approaches are promising for tongue image segmentation because they have powerful feature learning and representation capability. However, the successive pooling operations in these methods lead to loss of information on image details, making them fail when segmenting low-quality images captured by mobile devices. To address this issue, we propose a dilated encoder network (DE-Net) to capture more high-level features and get high-resolution output for automated tongue image segmentation. In addition, we construct two tongue image datasets which contain images taken by specialized devices and mobile devices, respectively, to verify the effectiveness of the proposed method. Experimental results on both datasets demonstrate that the proposed method outperforms the state-of-the-art methods in tongue image segmentation.

A Comparison of Neural Network Approaches for Melanoma Classification

Maria Frasca, Michele Nappi, Michele Risi, Genoveffa Tortora, Alessia Auriemma Citarella

Responsive image

Auto-TLDR; Classification of Melanoma Using Deep Neural Network Methodologies

Slides Poster Similar

Melanoma is the deadliest form of skin cancer and it is diagnosed mainly visually, starting from initial clinical screening and followed by dermoscopic analysis, biopsy and histopathological examination. A dermatologist’s recognition of melanoma may be subject to errors and may take some time to diagnose it. In this regard, deep learning can be useful in the study and classification of skin cancer. In particular, by classifying images with Deep Neural Network methodologies, it is possible to obtain comparable or even superior results compared to those of dermatologists. In this paper, we propose a methodology for the classification of melanoma by adopting different deep learning techniques applied to a common dataset, composed of images from the ISIC dataset and consisting of different types of skin diseases, including melanoma on which we applied a specific pre-processing phase. In particular, a comparison of the results is performed in order to select the best effective neural network to be applied to the problem of recognition and classification of melanoma. Moreover, we also evaluate the impact of the pre- processing phase on the final classification. Different metrics such as accuracy, sensitivity, and specificity have been selected to assess the goodness of the adopted neural networks and compare them also with the manual classification of dermatologists.

CT-UNet: An Improved Neural Network Based on U-Net for Building Segmentation in Remote Sensing Images

Huanran Ye, Sheng Liu, Kun Jin, Haohao Cheng

Responsive image

Auto-TLDR; Context-Transfer-UNet: A UNet-based Network for Building Segmentation in Remote Sensing Images

Slides Poster Similar

With the proliferation of remote sensing images, how to segment buildings more accurately in remote sensing images is a critical challenge. First, the high resolution leads to blurred boundaries in the extracted building maps. Second, the similarity between buildings and background results in intra-class inconsistency. To address these two problems, we propose an UNet-based network named Context-Transfer-UNet (CT-UNet). Specifically, we design Dense Boundary Block (DBB). Dense Block utilizes reuse mechanism to refine features and increase recognition capabilities. Boundary Block introduces the low-level spatial information to solve the fuzzy boundary problem. Then, to handle intra-class inconsistency, we construct Spatial Channel Attention Block (SCAB). It combines context space information and selects more distinguishable features from space and channel. Finally, we propose a novel loss function to enhance the purpose of loss by adding evaluation indicator. Based on our proposed CT-UNet, we achieve 85.33% mean IoU on the Inria dataset and 91.00% mean IoU on the WHU dataset, which outperforms our baseline (U-Net ResNet-34) by 3.76% and Web-Net by 2.24%.

Offset Curves Loss for Imbalanced Problem in Medical Segmentation

Ngan Le, Duc Toan Bui, Khoa Luu, Marios Savvides

Responsive image

Auto-TLDR; Offset Curves Loss for Medical Image Segmentation

Poster Similar

Medical image segmentation has played an important role in medical analysis and widely developed for many clinical applications. Deep learning-based approaches have achieved high performance in semantic segmentation but they are limited to pixel-wise setting and imbalanced classes data problem. In this paper, we tackle those limitations by developing a new deep learning-based model which takes into account both higher feature level i.e. region inside contour, intermediate feature level i.e. offset curves around the contour and lower feature level i.e. contour. Our proposed Offset Curves (OsC) loss consists of three main fitting terms. The first fitting term focuses on pixel-wise level segmentation whereas the second fitting term acts as attention model which pays attention to the area around the boundaries (offset curves). The third terms plays a role as regularization term which takes the length of boundaries into account. We evaluate our proposed OsC loss on both 2D network and 3D network. Two common medical datasets, i.e. retina DRIVE and brain tumor BRATS 2018 datasets are used to benchmark our proposed loss performance. The experiments have showed that our proposed OsC loss function outperforms other mainstream loss functions such as Cross-Entropy, Dice, Focal on the most common segmentation networks Unet, FCN.

Deep Recurrent-Convolutional Model for AutomatedSegmentation of Craniomaxillofacial CT Scans

Francesca Murabito, Simone Palazzo, Federica Salanitri Proietto, Francesco Rundo, Ulas Bagci, Daniela Giordano, Rosalia Leonardi, Concetto Spampinato

Responsive image

Auto-TLDR; Automated Segmentation of Anatomical Structures in Craniomaxillofacial CT Scans using Fully Convolutional Deep Networks

Slides Poster Similar

In this paper we define a deep learning architecture for automated segmentation of anatomical structures in Craniomaxillofacial (CMF) CT scans that leverages the recent success of encoder-decoder models for semantic segmentation of natural images. In particular, we propose a fully convolutional deep network that combines the advantages of recent fully convolutional models, such as Tiramisu, with squeeze-and-excitation blocks for feature recalibration, integrated with convolutional LSTMs to model spatio-temporal correlations between consecutive slices. The proposed segmentation network shows superior performance and generalization capabilities (to different structures and imaging modalities) than state of the art methods on automated segmentation of CMF structures (e.g., mandibles and airways) in several standard benchmarks (e.g., MICCAI datasets) and on new datasets proposed herein, effectively facing shape variability.

CAggNet: Crossing Aggregation Network for Medical Image Segmentation

Xu Cao, Yanghao Lin

Responsive image

Auto-TLDR; Crossing Aggregation Network for Medical Image Segmentation

Slides Poster Similar

In this paper, we present Crossing Aggregation Network (CAggNet), a novel densely connected semantic segmentation method for medical image analysis. The crossing aggregation network absorbs the idea of deep layer aggregation and makes significant innovations in layer connection and semantic information fusion. In this architecture, the traditional skip-connection structure of general U-Net is replaced by aggregations of multi-level down-sampling and up-sampling layers. This enables the network to fuse information interactively flows at different levels of layers in semantic segmentation. It also introduces weighted aggregation module to aggregate multi-scale output information. We have evaluated and compared our CAggNet with several advanced U-Net based methods in two public medical image datasets, including the 2018 Data Science Bowl nuclei detection dataset and the 2015 MICCAI gland segmentation competition dataset. Experimental results indicate that CAggNet improves medical object recognition and achieves a more accurate and efficient segmentation compared to existing improved U-Net and UNet++ structure.

Do Not Treat Boundaries and Regions Differently: An Example on Heart Left Atrial Segmentation

Zhou Zhao, Elodie Puybareau, Nicolas Boutry, Thierry Geraud

Responsive image

Auto-TLDR; Attention Full Convolutional Network for Atrial Segmentation using ResNet-101 Architecture

Slides Similar

Atrial fibrillation is the most common heart rhythm disease. Due to a lack of understanding in matter of underlying atrial structures, current treatments are still not satisfying. Recently, with the popularity of deep learning, many segmentation methods based on fully convolutional networks have been proposed to analyze atrial structures, especially from late gadolinium-enhanced magnetic resonance imaging. However, two problems still occur: 1) segmentation results include the atrial-like background; 2) boundaries are very hard to segment. Most segmentation approaches design a specific network that mainly focuses on the regions, to the detriment of the boundaries. Therefore, this paper proposes an attention full convolutional network framework based on the ResNet-101 architecture, which focuses on boundaries as much as on regions. The additional attention module is added to have the network pay more attention on regions and then to reduce the impact of the misleading similarity of neighboring tissues. We also use a hybrid loss composed of a region loss and a boundary loss to treat boundaries and regions at the same time. We demonstrate the efficiency of the proposed approach on the MICCAI 2018 Atrial Segmentation Challenge public dataset.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Point In: Counting Trees with Weakly Supervised Segmentation Network

Pinmo Tong, Shuhui Bu, Pengcheng Han

Responsive image

Auto-TLDR; Weakly Tree counting using Deep Segmentation Network with Localization and Mask Prediction

Slides Poster Similar

For tree counting tasks, since traditional image processing methods require expensive feature engineering and are not end-to-end frameworks, this will cause additional noise and cannot be optimized overall, so this method has not been widely used in recent trends of tree counting application. Recently, many deep learning based approaches are designed for this task because of the powerful feature extracting ability. The representative way is bounding box based supervised method, but time-consuming annotations are indispensable for them. Moreover, these methods are difficult to overcome the occlusion or overlap. To solve this problem, we propose a weakly tree counting network (WTCNet) based on deep segmentation network with only point supervision. It can simultaneously complete tree counting with localization and output mask of each tree at the same time. We first adopt a novel feature extractor network (FENet) to get features of input images, and then an effective strategy is introduced to deal with different mask predictions. In the end, we propose a basic localization guidance accompany with rectification guidance to train the network. We create two different datasets and select an existing challenging plant dataset to evaluate our method on three different tasks. Experimental results show the good performance improvement of our method compared with other existing methods. Further study shows that our method has great potential to reduce human labor and provide effective ground-truth masks and the results show the superiority of our method over the advanced methods.

Skin Lesion Classification Using Weakly-Supervised Fine-Grained Method

Xi Xue, Sei-Ichiro Kamata, Daming Luo

Responsive image

Auto-TLDR; Different Region proposal module for skin lesion classification

Slides Poster Similar

In recent years, skin cancer has become one of the most common cancers. Among all types of skin cancers, melanoma is the most fatal one and many people die of this disease every year. Early detection can greatly reduce the death rate and save more lives. Skin lesions are one of the early symptoms of melanoma and other types of skin cancer. So accurately recognizing various skin lesions in early stage are of great significance. There have been lots of existing works based on convolutional neural networks (CNN) to solve skin lesion classification but seldom do them involve the similarity among different lesions. For example, we find that some lesions of melanoma and nevi look similar in appearance which is hard for neural network to distinguish categories of skin lesions. Inspired by fine-grained image classification, we propose a novel network to distinguish each category accurately. In our paper, we design an effective module, distinct region proposal module (DRPM), to extract the distinct regions from each image. Spatial attention and channel-wise attention are both utilized to enrich feature maps and guide the network to focus on the highlighted areas in a weakly-supervised way. In addition, two preprocessing steps are added to ensure the network to get better results. We demonstrate the potential of the proposed method on ISIC 2017 dataset. Experiments show that our approach is effective and efficient.

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

End-To-End Multi-Task Learning for Lung Nodule Segmentation and Diagnosis

Wei Chen, Qiuli Wang, Dan Yang, Xiaohong Zhang, Chen Liu, Yucong Li

Responsive image

Auto-TLDR; A novel multi-task framework for lung nodule diagnosis based on deep learning and medical features

Slides Similar

Computer-Aided Diagnosis (CAD) systems for lung nodule diagnosis based on deep learning have attracted much attention in recent years. However, most existing methods ignore the relationships between the segmentation and classification tasks, which leads to unstable performances. To address this problem, we propose a novel multi-task framework, which can provide lung nodule segmentation mask, malignancy prediction, and medical features for interpretable diagnosis at the same time. Our framework mainly contains two sub-network: (1) Multi-Channel Segmentation Sub-network (MSN) for lung nodule segmentation, and (2) Joint Classification Sub-network (JCN) for interpretable lung nodule diagnosis. In the proposed framework, we use U-Net down-sampling processes for extracting low-level deep learning features, which are shared by two sub-networks. The JCN forces the down-sampling processes to learn better lowlevel deep features, which lead to a better construct of segmentation masks. Meanwhile, two additional channels constructed by OTSU and super-pixel (SLIC) methods, are utilized as the guideline of the feature extraction. The proposed framework takes advantages of deep learning methods and classical methods, which can significantly improve the performances of all tasks. We evaluate the proposed framework on public dataset LIDCIDRI. Our framework achieves a promising Dice score of 86.43% in segmentation, 87.07% in malignancy level prediction, and convincing results in interpretable medical feature predictions.

Edge-Guided CNN for Denoising Images from Portable Ultrasound Devices

Yingnan Ma, Fei Yang, Anup Basu

Responsive image

Auto-TLDR; Edge-Guided Convolutional Neural Network for Portable Ultrasound Images

Slides Poster Similar

Ultrasound is a non-invasive tool that is useful for medical diagnosis and treatment. To reduce long wait times and add convenience to patients, portable ultrasound scanning devices are becoming increasingly popular. These devices can be held in one palm, and are compatible with modern cell phones. However, the quality of ultrasound images captured from the portable scanners is relatively poor compared to standard ultrasound scanning systems in hospitals. To improve the quality of the ultrasound images obtained from portable ultrasound devices, we propose a new neural network architecture called Edge-Guided Convolutional Neural Network (EGCNN), which can preserve significant edge information in ultrasound images when removing noise. We also study and compare the effectiveness of classical filtering approaches in removing speckle noise in these images. Experimental results show that after applying the proposed EGCNN, various organs can be better recognized from ultrasound images. This approach is expected to lead to better accuracy in diagnostics in the future.

A Systematic Investigation on Deep Architectures for Automatic Skin Lesions Classification

Pierluigi Carcagni, Marco Leo, Andrea Cuna, Giuseppe Celeste, Cosimo Distante

Responsive image

Auto-TLDR; RegNet: Deep Investigation of Convolutional Neural Networks for Automatic Classification of Skin Lesions

Slides Poster Similar

Computer vision-based techniques are more and more employed in healthcare and medical fields nowadays in order, principally, to be as a support to the experienced medical staff to help them to make a quick and correct diagnosis. One of the hot topics in this arena concerns the automatic classification of skin lesions. Several promising works exist about it, mainly leveraging Convolutional Neural Networks (CNN), but proposed pipeline mainly rely on complex data preprocessing and there is no systematic investigation about how available deep models can actually reach the accuracy needed for real applications. In order to overcome these drawbacks, in this work, an end-to-end pipeline is introduced and some of the most recent Convolutional Neural Networks (CNNs) architectures are included in it and compared on the largest common benchmark dataset recently introduced. To this aim, for the first time in this application context, a new network design paradigm, namely RegNet, has been exploited to get the best models among a population of configurations. The paper introduces a threefold level of contribution and novelty with respect the previous literature: the deep investigation of several CNN architectures driving to a consistent improvement of the lesions recognition accuracy, the exploitation of a new network design paradigm able to study the behavior of populations of models and a deep discussion about pro and cons of each analyzed method paving the path towards new research lines.

Accurate Cell Segmentation in Digital Pathology Images Via Attention Enforced Networks

Zeyi Yao, Kaiqi Li, Guanhong Zhang, Yiwen Luo, Xiaoguang Zhou, Muyi Sun

Responsive image

Auto-TLDR; AENet: Attention Enforced Network for Automatic Cell Segmentation

Slides Poster Similar

Automatic cell segmentation is an essential step in the pipeline of computer-aided diagnosis (CAD), such as the detection and grading of breast cancer. Accurate segmentation of cells can not only assist the pathologists to make a more precise diagnosis, but also save much time and labor. However, this task suffers from stain variation, cell inhomogeneous intensities, background clutters and cells from different tissues. To address these issues, we propose an Attention Enforced Network (AENet), which is built on spatial attention module and channel attention module, to integrate local features with global dependencies and weight effective channels adaptively. Besides, we introduce a feature fusion branch to bridge high-level and low-level features. Finally, the marker controlled watershed algorithm is applied to post-process the predicted segmentation maps for reducing the fragmented regions. In the test stage, we present an individual color normalization method to deal with the stain variation problem. We evaluate this model on the MoNuSeg dataset. The quantitative comparisons against several prior methods demonstrate the priority of our approach.

A Deep Learning Approach for the Segmentation of Myocardial Diseases

Khawala Brahim, Abdull Qayyum, Alain Lalande, Arnaud Boucher, Anis Sakly, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Segmentation of Myocardium Infarction Using Late GADEMRI and SegU-Net

Slides Poster Similar

Cardiac left ventricular (LV) segmentation is of paramount essential step for both diagnosis and treatment of cardiac pathologies such as ischemia, myocardial infarction, arrhythmia and myocarditis. However, this segmentation is challenging due to high variability across patients and the potential lack of contrast between structures. In this work, we propose and evaluate a (2.5D) SegU-Net model based on the fusion of two deep learning techniques (U-Net and Seg-Net) for automated LGEMRI (Late gadolinium enhanced magnetic resonance imaging) myocardial disease (infarct core and no reflow region) quantification in a new multifield expert annotated dataset. Given that the scar tissue represents a small part of the whole MRI slices, we focused on myocardium area. Segmentation results show that this preprocessing step facilitate the learning procedure. In order to solve the class imbalance problem, we propose to apply the Jaccard loss and the Focal Loss as optimization loss function and to integrate a class weights strategy into the objective function. Late combination has been used to merge the output of the best trained models on a different set of hyperparameters. The final network segmentation performances will be useful for future comparison of new method to the current related work for this task. A total number of 2237 of slices (320 cases) were used for training/validation and 210 slices (35 cases) were used for testing. Experiments over our proposed dataset, using several evaluation metrics such Jaccard distance (IOU), Accuracy and Dice similarity coefficient (DSC), demonstrate efficiency performance in quantifying different zones of myocardium infarction across various patients. As compared to the second intra-observer study, our testing results showed that the SegUNet prediction model leads to these average dice coefficients over all segmented tissue classes, respectively : 'Background': 0.99999, 'Myocardium': 0.99434, 'Infarctus': 0.95587, 'Noreflow': 0.78187.

Classify Breast Histopathology Images with Ductal Instance-Oriented Pipeline

Beibin Li, Ezgi Mercan, Sachin Mehta, Stevan Knezevich, Corey Arnold, Donald Weaver, Joann Elmore, Linda Shapiro

Responsive image

Auto-TLDR; DIOP: Ductal Instance-Oriented Pipeline for Diagnostic Classification

Slides Poster Similar

In this study, we propose the Ductal Instance-Oriented Pipeline (DIOP) that contains a duct-level instance segmentation model, a tissue-level semantic segmentation model, and three-levels of features for diagnostic classification. Based on recent advancements in instance segmentation and the Mask R-CNN model, our duct-level segmenter tries to identify each ductal individual inside a microscopic image; then, it extracts tissue-level information from the identified ductal instances. Leveraging three levels of information obtained from these ductal instances and also the histopathology image, the proposed DIOP outperforms previous approaches (both feature-based and CNN-based) in all diagnostic tasks; for the four-way classification task, the DIOP achieves comparable performance to general pathologists in this unique dataset. The proposed DIOP only takes a few seconds to run in the inference time, which could be used interactively on most modern computers. More clinical explorations are needed to study the robustness and generalizability of this system in the future.

A Novel Computer-Aided Diagnostic System for Early Assessment of Hepatocellular Carcinoma

Ahmed Alksas, Mohamed Shehata, Gehad Saleh, Ahmed Shaffie, Ahmed Soliman, Mohammed Ghazal, Hadil Abukhalifeh, Abdel Razek Ahmed, Ayman El-Baz

Responsive image

Auto-TLDR; Classification of Liver Tumor Lesions from CE-MRI Using Structured Structural Features and Functional Features

Slides Poster Similar

Early assessment of liver cancer patients with hepatocellular carcinoma (HCC) is of immense importance to provide the proper treatment plan. In this paper, we have developed a two-stage classification computer-aided diagnostic (CAD) system that has the ability to detect and grade the liver observations from multiphase contrast enhanced magnetic resonance imaging (CE-MRI). The proposed approach consists of three main steps. First, a pre-processing is applied to the CE-MRI scans to delineate the tumor lesions that will be used as an ROI across the four different phases of the CE-MRI, (namely, the pre-contrast, late-arterial, portal-venous, and delayed-contrast). Second, a group of three features are modeled to provide a quantitative discrimination between the tumor lesions; namely: i) the tumor appearance that is modeled using a set of texture features, (namely; the first-order histogram, second-order gray-level co-occurrence matrix, and second-order gray-level run-length matrix), to capture any discrimination that may appear in the lesion texture, ii) the spherical harmonics (SH) based shape features that have the ability to describe the shape complexity of the liver tumors, and iii) the functional features that are based on the calculation of the wash-in/wash-out through that evaluate the intensity changes across the post-contrast phases. Finally, the aforementioned individual features were then integrated together to obtain the combined features to be fed to a machine learning classifier towards getting the final diagnostic decision. The proposed CAD system has been tested using hepatic observations that was obtained from 85 participating patients, 34 patients with benign tumors, 34 patients with intermediate tumors and 34 with malignant tumors. Using a random forests based classifier with a leave-one-subject-out (LOSO) cross-validation, the developed CAD system achieved an 87.1% accuracy in distinguishing the malignant, intermediate and benign tumors. The classification performance is then evaluated using k-fold (5/10-fold) cross-validation approach to examine the robustness of the system. The LR-1 lesions were classified from LR-2 benign lesions with 91.2% accuracy, while 85.3% accuracy was achieved differentiating between LR-4 and LR-5 malignant tumors. The obtained results hold a promise of the proposed framework to be reliably used as a noninvasive diagnostic tool for the early detection and grading of liver cancer tumors.

Dual Stream Network with Selective Optimization for Skin Disease Recognition in Consumer Grade Images

Krishnam Gupta, Jaiprasad Rampure, Monu Krishnan, Ajit Narayanan, Nikhil Narayan

Responsive image

Auto-TLDR; A Deep Network Architecture for Skin Disease Localisation and Classification on Consumer Grade Images

Slides Poster Similar

Skin disease localisation and classification on consumer-grade images is more challenging compared to that on dermoscopic imaging. Consumer grade images refer to the images taken using commonly available imaging devices such as a mobile camera or a hand held digital camera. Such images, in addition to having the skin condition of interest in a very small area of the image, has other noisy non-clinical details introduced due to the lighting conditions and the distance of the hand held device from the anatomy at the time of acquisition. We propose a novel deep network architecture \& a new optimization strategy for classification with implicit localisation of skin diseases from clinical/consumer grade images. A weakly supervised segmentation algorithm is first employed to extract Region of Interests (RoI) from the image, the RoI and the original image form the two input streams of the proposed architecture. Each stream of the architecture learns high level and low level features from the original image and the RoI, respectively. The two streams are independently optimised until the loss stops decreasing after which both the streams are optimised collectively with the help of a third combiner sub-network. Such a strategy resulted in a 5% increase of accuracy over the current state-of-the-art methods on SD-198 dataset, which is publicly available. The proposed algorithm is also validated on a new dataset containing over 12,000 images across 75 different skin conditions. We intend to release this dataset as SD-75 to aid in the advancement of research on skin condition classification on consumer grade images.

Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution

Gary Shing Wee Goh, Sebastian Lapuschkin, Leander Weber, Wojciech Samek, Alexander Binder

Responsive image

Auto-TLDR; SmoothGrad: bridging Integrated Gradients and SmoothGrad from the Taylor's theorem perspective

Slides Similar

Integrated Gradients as an attribution method for deep neural network models offers simple implementability. However, it suffers from noisiness of explanations which affects the ease of interpretability. The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method. In this paper, we present SmoothTaylor as a novel theoretical concept bridging Integrated Gradients and SmoothGrad, from the Taylor's theorem perspective. We apply the methods to the image classification problem, using the ILSVRC2012 ImageNet object recognition dataset, and a couple of pretrained image models to generate attribution maps. These attribution maps are empirically evaluated using quantitative measures for sensitivity and noise level. We further propose adaptive noising to optimize for the noise scale hyperparameter value. From our experiments, we find that the SmoothTaylor approach together with adaptive noising is able to generate better quality saliency maps with lesser noise and higher sensitivity to the relevant points in the input space as compared to Integrated Gradients.

BiLuNet: A Multi-Path Network for Semantic Segmentation on X-Ray Images

Van Luan Tran, Huei-Yung Lin, Rachel Liu, Chun-Han Tseng, Chun-Han Tseng

Responsive image

Auto-TLDR; BiLuNet: Multi-path Convolutional Neural Network for Semantic Segmentation of Lumbar vertebrae, sacrum,

Similar

Semantic segmentation and shape detection of lumbar vertebrae, sacrum, and femoral heads from clinical X-ray images are important and challenging tasks. In this paper, we propose a new multi-path convolutional neural network, BiLuNet, for semantic segmentation on X-ray images. The network is capable of medical image segmentation with very limited training data. With the shape fitting of the bones, we can identify the location of the target regions very accurately for lumbar vertebra inspection. We collected our dataset and annotated by doctors for model training and performance evaluation. Compared to the state-of-the-art methods, the proposed technique provides better mIoUs and higher success rates with the same training data. The experimental results have demonstrated the feasibility of our network to perform semantic segmentation for lumbar vertebrae, sacrum, and femoral heads.

Leveraging Unlabeled Data for Glioma Molecular Subtype and Survival Prediction

Nicholas Nuechterlein, Beibin Li, Mehmet Saygin Seyfioglu, Sachin Mehta, Patrick Cimino, Linda Shapiro

Responsive image

Auto-TLDR; Multimodal Brain Tumor Segmentation Using Unlabeled MR Data and Genomic Data for Cancer Prediction

Slides Poster Similar

In this paper, we address two long-standing challenges in neuro-oncology: (1) how to leverage large amounts of unlabeled magnetic resonance (MR) imaging data for radiogenomic tasks and (2) how to unite glioma MR imaging with genomic data. We examine multi-parametric MR data from 542 patients in the combined training, validation, and testing sets of the 2018 Multimodal Brain Tumor Segmentation Challenge and somatic copy number alteration (SCNA) data from 1090 patients in The Cancer Genome Archive's (TCGA) lower-grade glioma and glioblastoma projects. We propose a novel application of multi-task learning (MTL) that leverages unlabeled MR data by jointly learning tumor segmentation masks with glioma molecular subtype markers and allows for SCNA input when available. There are 235 patients in the intersection of these MR and SCNA datasets, which we divide into an unlabeled training set, a labeled training set, and a validation set. Our MTL model significantly outperforms comparable classification models trained only on labeled MR data for both IDH1/2 mutation and 1p/19q co-deletion glioma subtype marker prediction tasks. We also observe that models trained on genomic and imaging data improve survival prediction results achieved by models trained on either alone. We will release our source code for future research.

A Deep Learning-Based Method for Predicting Volumes of Nasopharyngeal Carcinoma for Adaptive Radiation Therapy Treatment

Bilel Daoud, Ken'Ichi Morooka, Shoko Miyauchi, Ryo Kurazume, Wafa Mnejja, Leila Farhat, Jamel Daoud

Responsive image

Auto-TLDR; TEP-Net: Tumor Evolution Prediction of Nasopharyngeal Carcinoma and Organ-at-risks Using CT Images

Slides Poster Similar

This paper presents a new system for predicting the spatial change of Nasopharyngeal carcinoma(NPC) and organ-at-risks (OARs) volumes over the course of the radiation therapy (RT) treatment for facilitating the workflow of adaptive radiotherapy. The proposed system, called " Tumor Evolution Prediction (TEP-Net)", predicts the spatial distributions of NPC and 5 OARs, separately, in response to RT in the coming week, week n. Here, TEP-Net has (n-1)-inputs that are week 1 to week n-1 of CT axial, coronal or sagittal images acquired once the patient complete the planned RT treatment of the corresponding week. As a result, three predicted results of each target region are obtained from the three-view CT images. To determine the final prediction of NPC and 5 OARs, two integration methods, weighted fully connected layers and weighted voting methods, are introduced. From the experiments using weekly CT images of 140 NPC patients, our proposed system achieves the best performance for predicting NPC and OARs compared with conventional methods.

BG-Net: Boundary-Guided Network for Lung Segmentation on Clinical CT Images

Rui Xu, Yi Wang, Tiantian Liu, Xinchen Ye, Lin Lin, Yen-Wei Chen, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; Boundary-Guided Network for Lung Segmentation on CT Images

Slides Poster Similar

Lung segmentation on CT images is a crucial step for a computer-aided diagnosis system of lung diseases. The existing deep learning based lung segmentation methods are less efficient to segment lungs on clinical CT images, especially that the segmentation on lung boundaries is not accurate enough due to complex pulmonary opacities in practical clinics. In this paper, we propose a boundary-guided network (BG-Net) to address this problem. It contains two auxiliary branches that separately segment lungs and extract the lung boundaries, and an aggregation branch that efficiently exploits lung boundary cues to guide the network for more accurate lung segmentation on clinical CT images. We evaluate the proposed method on a private dataset collected from the Osaka university hospital and four public datasets including StructSeg, HUG, VESSEL12, and a Novel Coronavirus 2019 (COVID-19) dataset. Experimental results show that the proposed method can segment lungs more accurately and outperform several other deep learning based methods.

Segmentation of Intracranial Aneurysm Remnant in MRA Using Dual-Attention Atrous Net

Subhashis Banerjee, Ashis Kumar Dhara, Johan Wikström, Robin Strand

Responsive image

Auto-TLDR; Dual-Attention Atrous Net for Segmentation of Intracranial Aneurysm Remnant from MRA Images

Slides Poster Similar

Due to the advancement of non-invasive medical imaging modalities like Magnetic Resonance Angiography (MRA), an increasing number of Intracranial Aneurysm (IA) cases are being reported in recent years. The IAs are typically treated by so-called endovascular coiling, where blood flow in the IA is prevented by embolization with a platinum coil. Accurate quantification of the IA Remnant (IAR), i.e. the volume with blood flow present post treatment is the utmost important factor in choosing the right treatment planning. This is typically done by manually segmenting the aneurysm remnant from the MRA volume. Since manual segmentation of volumetric images is a labour-intensive and error-prone process, development of an automatic volumetric segmentation method is required. Segmentation of small structures such as IA, that may largely vary in size, shape, and location is considered extremely difficult. Similar intensity distribution of IAs and surrounding blood vessels makes it more challenging and susceptible to false positive. In this paper we propose a novel 3D CNN architecture called Dual-Attention Atrous Net (DAtt-ANet), which can efficiently segment IAR volumes from MRA images by reconciling features at different scales using the proposed Parallel Atrous Unit (PAU) along with the use of self-attention mechanism for extracting fine-grained features and intra-class correlation. The proposed DAtt-ANet model is trained and evaluated on a clinical MRA image dataset (prospective research project, approved by the local ethical committee) of IAR consisting of 46 subjects, annotated by an expert radiologist from our group. We compared the proposed DAtt-ANet with five state-of-the-art CNN models based on their segmentation performance. The proposed DAtt-ANet outperformed all other methods and was able to achieve a five-fold cross-validation DICE score of $0.73\pm0.06$.

Classifying Eye-Tracking Data Using Saliency Maps

Shafin Rahman, Sejuti Rahman, Omar Shahid, Md. Tahmeed Abdullah, Jubair Ahmed Sourov

Responsive image

Auto-TLDR; Saliency-based Feature Extraction for Automatic Classification of Eye-tracking Data

Slides Poster Similar

A plethora of research in the literature shows how human eye fixation pattern varies depending on different factors, including genetics, age, social functioning, cognitive functioning, and so on. Analysis of these variations in visual attention has already elicited two potential research avenues: 1) determining the physiological or psychological state of the subject and 2) predicting the tasks associated with the act of viewing from the recorded eye-fixation data. To this end, this paper proposes a visual saliency based novel feature extraction method for automatic and quantitative classification of eye-tracking data, which is applicable to both of the research directions. Instead of directly extracting features from the fixation data, this method employs several well-known computational models of visual attention to predict eye fixation locations as saliency maps. Comparing the saliency amplitudes, similarity and dissimilarity of saliency maps with the corresponding eye fixations maps gives an extra dimension of information which is effectively utilized to generate discriminative features to classify the eye-tracking data. Extensive experimentation using Saliency4ASD [1], Age Prediction [2], and Visual Perceptual Task [3] dataset show that our saliency-based feature can achieve superior performance, outperforming the previous state-of-the-art methods [2],[4], [5] by a considerable margin. Moreover, unlike the existing application-specific solutions, our method demonstrates performance improvement across three distinct problems from the real-life domain: Autism Spectrum Disorder screening, toddler age prediction, and human visual perceptual task classification, providing a general paradigm that utilizes the extra-information inherent in saliency maps for a more accurate classification.

Transfer Learning through Weighted Loss Function and Group Normalization for Vessel Segmentation from Retinal Images

Abdullah Sarhan, Jon Rokne, Reda Alhajj, Andrew Crichton

Responsive image

Auto-TLDR; Deep Learning for Segmentation of Blood Vessels in Retinal Images

Slides Poster Similar

The vascular structure of blood vessels is important in diagnosing retinal conditions such as glaucoma and diabetic retinopathy. Accurate segmentation of these vessels can help in detecting retinal objects such as the optic disc and optic cup and hence determine if there are damages to these areas. Moreover, the structure of the vessels can help in diagnosing glaucoma. The rapid development of digital imaging and computer-vision techniques has increased the potential for developing approaches for segmenting retinal vessels. In this paper, we propose an approach for segmenting retinal vessels that uses deep learning along with transfer learning. We adapted the U-Net structure to use a customized InceptionV3 as the encoder and used multiple skip connections to form the decoder. Moreover, we used a weighted loss function to handle the issue of class imbalance in retinal images. Furthermore, we contributed a new dataset to this field. We tested our approach on six publicly available datasets and a newly created dataset. We achieved an average accuracy of 95.60\% and a Dice coefficient of 80.98\%. The results obtained from comprehensive experiments demonstrate the robustness of our approach to the segmentation of blood vessels in retinal images obtained from different sources. Our approach results in greater segmentation accuracy than other approaches.

FastSal: A Computationally Efficient Network for Visual Saliency Prediction

Feiyan Hu, Kevin Mcguinness

Responsive image

Auto-TLDR; MobileNetV2: A Convolutional Neural Network for Saliency Prediction

Slides Poster Similar

This paper focuses on the problem of visual saliency prediction, predicting regions of an image that tend to attract human visual attention, under a constrained computational budget. We modify and test various recent efficient convolutional neural network architectures like EfficientNet and MobileNetV2 and compare them with existing state-of-the-art saliency models such as SalGAN and DeepGaze II both in terms of standard accuracy metrics like AUC and NSS, and in terms of the computational complexity and model size. We find that MobileNetV2 makes an excellent backbone for a visual saliency model and can be effective even without a complex decoder. We also show that knowledge transfer from a more computationally expensive model like DeepGaze II can be achieved via pseudo-labelling an unlabelled dataset, and that this approach gives result on-par with many state-of-the-art algorithms with a fraction of the computational cost and model size.

Attention Based Multi-Instance Thyroid Cytopathological Diagnosis with Multi-Scale Feature Fusion

Shuhao Qiu, Yao Guo, Chuang Zhu, Wenli Zhou, Huang Chen

Responsive image

Auto-TLDR; A weakly supervised multi-instance learning framework based on attention mechanism with multi-scale feature fusion for thyroid cytopathological diagnosis

Slides Poster Similar

In recent years, deep learning has been popular in combining with cytopathology diagnosis. Using the whole slide images (WSI) scanned by electronic scanners at clinics, researchers have developed many algorithms to classify the slide (benign or malignant). However, the key area that support the diagnosis result can be relatively small in a thyroid WSI, and only the global label can be acquired, which make the direct use of the strongly supervised learning framework infeasible. What’s more, because the clinical diagnosis of the thyroid cells requires the use of visual features in different scales, a generic feature extraction way may not achieve good performance. In this paper, we propose a weakly supervised multi-instance learning framework based on attention mechanism with multi-scale feature fusion (MSF) using convolutional neural network (CNN) for thyroid cytopathological diagnosis. We take each WSI as a bag, each bag contains multiple instances which are the different regions of the WSI, our framework is trained to learn the key area automatically and make the classification. We also propose a feature fusion structure, merge the low-level features into the final feature map and add an instance-level attention module in it, which improves the classification accuracy. Our model is trained and tested on the collected clinical data, reaches the accuracy of 93.2%, which outperforms the other existing methods. We also tested our model on a public histopathology dataset and achieves better result than the state-of-the-art deep multi-instance method.

Investigating and Exploiting Image Resolution for Transfer Learning-Based Skin Lesion Classification

Amirreza Mahbod, Gerald Schaefer, Chunliang Wang, Rupert Ecker, Georg Dorffner, Isabella Ellinger

Responsive image

Auto-TLDR; Fine-tuned Neural Networks for Skin Lesion Classification Using Dermoscopic Images

Slides Poster Similar

Skin cancer is among the most common cancer types. Dermoscopic image analysis improves the diagnostic accuracy for detection of malignant melanoma and other pigmented skin lesions when compared to unaided visual inspection. Hence, computer-based methods to support medical experts in the diagnostic procedure are of great interest. Fine-tuning pre-trained convolutional neural networks (CNNs) has been shown to work well for skin lesion classification. Pre-trained CNNs are usually trained with natural images of a fixed image size which is typically significantly smaller than captured skin lesion images and consequently dermoscopic images are downsampled for fine-tuning. However, useful medical information may be lost during this transformation. In this paper, we explore the effect of input image size on skin lesion classification performance of fine-tuned CNNs. For this, we resize dermoscopic images to different resolutions, ranging from 64x64 to 768x768 pixels and investigate the resulting classification performance of three well-established CNNs, namely DenseNet-121, ResNet-18, and ResNet-50. Our results show that using very small images (of size 64x64 pixels) degrades the classification performance, while images of size 128x128 pixels and above support good performance with larger image sizes leading to slightly improved classification. We further propose a novel fusion approach based on a three-level ensemble strategy that exploits multiple fine-tuned networks trained with dermoscopic images at various sizes. When applied on the ISIC 2017 skin lesion classification challenge, our fusion approach yields an area under the receiver operating characteristic curve of 89.2% and 96.6% for melanoma classification and seborrheic keratosis classification, respectively, outperforming state-of-the-art algorithms.

Confidence Calibration for Deep Renal Biopsy Immunofluorescence Image Classification

Federico Pollastri, Juan Maroñas, Federico Bolelli, Giulia Ligabue, Roberto Paredes, Riccardo Magistroni, Costantino Grana

Responsive image

Auto-TLDR; A Probabilistic Convolutional Neural Network for Immunofluorescence Classification in Renal Biopsy

Slides Poster Similar

With this work we tackle immunofluorescence classification in renal biopsy, employing state-of-the-art Convolutional Neural Networks. In this setting, the aim of the probabilistic model is to assist an expert practitioner towards identifying the location pattern of antibody deposits within a glomerulus. Since modern neural networks often provide overconfident outputs, we stress the importance of having a reliable prediction, demonstrating that Temperature Scaling, a recently introduced re-calibration technique, can be successfully applied to immunofluorescence classification in renal biopsy. Experimental results demonstrate that the designed model yields good accuracy on the specific task, and that Temperature Scaling is able to provide reliable probabilities, which are highly valuable for such a task given the low inter-rater agreement.

Explainable Feature Embedding Using Convolutional Neural Networks for Pathological Image Analysis

Kazuki Uehara, Masahiro Murakawa, Hirokazu Nosato, Hidenori Sakanashi

Responsive image

Auto-TLDR; Explainable Diagnosis Using Convolutional Neural Networks for Pathological Image Analysis

Slides Poster Similar

The development of computer-assisted diagnosis (CAD) algorithms for pathological image analysis constitutes an important research topic. Recently, convolutional neural networks (CNNs) have been used in several studies for the development of CAD algorithms. Such systems are required to be not only accurate but also explainable for their decisions, to ensure reliability. However, a limitation of using CNNs is that the basis of the decisions made by them are incomprehensible to humans. Thus, in this paper, we present an explainable diagnosis method, which comprises of two CNNs for different rolls. This method allows us to interpret the basis of the decisions made by CNN from two perspectives, namely statistics and visualization. For the statistical explanation, the method constructs a dictionary of representative pathological features. It performs diagnoses based on the occurrence and importance of learned features referred from its dictionary. To construct the dictionary, we introduce a vector quantization scheme for CNN. For the visual interpretation, the method provides images of learned features embedded in a high-dimensional feature space as an index of the dictionary by generating them using a conditional autoregressive model. The experimental results showed that the proposed network learned pathological features, which contributed to the diagnosis and yielded an area under the receiver operating curve (AUC) of approximately 0.93 for detecting atypical tissues in pathological images of the uterine cervix. Moreover, the proposed method demonstrated that it could provide visually interpretable images to show the rationales behind its decisions. Thus, the proposed method can serve as a valuable tool for pathological image analysis in terms of both its accuracy and explainability.

Enhancing Depth Quality of Stereo Vision Using Deep Learning-Based Prior Information of the Driving Environment

Weifu Li, Vijay John, Seiichi Mita

Responsive image

Auto-TLDR; A Novel Post-processing Mathematical Framework for Stereo Vision

Slides Poster Similar

Generation of high density depth values of the driving environment is indispensable for autonomous driving. Stereo vision is one of the practical and effective methods to generate these depth values. However, the accuracy of the stereo vision is limited by texture-less regions, such as sky and road areas, and repeated patterns in the image. To overcome these problems, we propose to enhance the stereo generated depth by incorporating prior information of the driving environment. Prior information, generated by deep learning-based U-Net model, is utilized in a novel post-processing mathematical framework to refine the stereo generated depth. The proposed mathematical framework is formulated as an optimization problem, which refines the errors due to texture-less regions and repeated patterns. Owing to its mathematical formulation, the post-processing framework is not a black-box and is explainable, and can be readily utilized for depth maps generated by any stereo vision algorithm. The proposed framework is qualitatively validated on the acquired dataset and KITTI dataset. The results obtained show that the proposed framework improves the stereo depth generation accuracy

SAGE: Sequential Attribute Generator for Analyzing Glioblastomas Using Limited Dataset

Padmaja Jonnalagedda, Brent Weinberg, Jason Allen, Taejin Min, Shiv Bhanu, Bir Bhanu

Responsive image

Auto-TLDR; SAGE: Generative Adversarial Networks for Imaging Biomarker Detection and Prediction

Slides Poster Similar

While deep learning approaches have shown remarkable performance in many imaging tasks, most of these methods rely on availability of large quantities of data. Medical image data, however, is scarce and fragmented. Generative Adversarial Networks (GANs) have recently been very effective in handling such datasets by generating more data. If the datasets are very small, however, GANs cannot learn the data distribution properly, resulting in less diverse or low-quality results. One such limited dataset is that for the concurrent gain of 19/20 chromosomes (19/20 co-gain), a mutation with positive prognostic value in Glioblastomas (GBM). In this paper, we detect imaging biomarkers for the mutation to streamline the extensive and invasive prognosis pipeline. Since this mutation is relatively rare, i.e. small dataset, we propose a novel generative framework – the Sequential Attribute GEnerator (SAGE), that generates detailed tumor imaging features while learning from a limited dataset. Experiments show that not only does SAGE generate high quality tumors when compared to standard Deep Convolutional GAN (DC-GAN) and Wasserstein GAN with Gradient Penalty (WGAN-GP), it also captures the imaging biomarkers accurately.

Cross-View Relation Networks for Mammogram Mass Detection

Ma Jiechao, Xiang Li, Hongwei Li, Ruixuan Wang, Bjoern Menze, Wei-Shi Zheng

Responsive image

Auto-TLDR; Multi-view Modeling for Mass Detection in Mammogram

Slides Poster Similar

In medical image analysis, multi-view modeling is crucial for pathology detection when the target lesion is presented in different views, e.g. mass lesions in breast. Currently mammogram is the most effective imaging modality for mass lesion detection of breast cancer at the early stage. The pathological information from the two paired views (i.e., medio-lateral oblique and cranio-caudal) are highly relational and complementary, which is crucial for diagnosis in clinical practice. Existing mass detection methods do not consider learning synergistic features from the two relational views. For the first time, we propose a novel mass detection framework to capture the latent relation information from the two paired views of a same mass in mammogram. We evaluate our model on a public mammogram dataset and a large-scale private dataset, demonstrating that the proposed method outperforms existing feature fusion approaches and state-of-the-art mass detection methods. We further analyze the performance gains from the relation modeling. Our quantitative and qualitative results suggest that jointly learning cross-view features boosts the detection performance of existing models, which is a promising avenue for mass detection task in mammogram.