Qijie Wei

Papers from this author

Deep Multiple Instance Learning with Spatial Attention for ROP Case Classification, Instance Selection and Abnormality Localization

Xirong Li, Wencui Wan, Yang Zhou, Jianchun Zhao, Qijie Wei, Junbo Rong, Pengyi Zhou, Limin Xu, Lijuan Lang, Yuying Liu, Chengzhi Niu, Dayong Ding, Xuemin Jin

Responsive image

Auto-TLDR; MIL-SA: Deep Multiple Instance Learning for Automated Screening of Retinopathy of Prematurity

Similar

This paper tackles automated screening of Retinopathy of Prematurity (ROP), one of the most common causes of visual loss in childhood. Clinically, ROP screening per case requires multiple color fundus images capturing different zones of the premature retina. A desirable model shall not only make a decision at the case level, but also pinpoint which instances and what part of the instances are responsible for the decision. This paper makes the first attempt to accomplish three tasks, i.e, ROP case classification, instance selection and abnormality localization in a unified framework. To that end, we propose a new model that effectively combines instance-attention based deep multiple instance learning (MIL) and spatial attention (SA). The propose model, which we term MIL-SA, identifies positive instances in light of their contributions to case-level decision. Meanwhile, abnormal regions in the identified instances are automatically localized by the SA mechanism. Moreover, MIL-SA is learned from case-level binary labels exclusively, and in an end-to-end manner. Experiments on a large clinical dataset of 2,186 cases with 11,053 fundus images show the viability of the proposed model for all the three tasks.

Learn to Segment Retinal Lesions and Beyond

Qijie Wei, Xirong Li, Weihong Yu, Xiao Zhang, Yongpeng Zhang, Bojie Hu, Bin Mo, Di Gong, Ning Chen, Dayong Ding, Youxin Chen

Responsive image

Auto-TLDR; Multi-task Lesion Segmentation and Disease Classification for Diabetic Retinopathy Grading

Poster Similar

Towards automated retinal screening, this paper makes an endeavor to simultaneously achieve pixel-level retinal lesion segmentation and image-level disease classification. Such a multi-task approach is crucial for accurate and clinically interpretable disease diagnosis. Prior art is insufficient due to three challenges, i.e., lesions lacking objective boundaries, clinical importance of lesions irrelevant to their size, and the lack of one-to-one correspondence between lesion and disease classes. This paper attacks the three challenges in the context of diabetic retinopathy (DR) grading. We propose Lesion-Net, a new variant of fully convolutional networks, with its expansive path re- designed to tackle the first challenge. A dual Dice loss that leverages both semantic segmentation and image classification losses is introduced to resolve the second challenge. Lastly, we build a multi-task network that employs Lesion-Net as a side- attention branch for both DR grading and result interpretation. A set of 12K fundus images is manually segmented by 45 ophthalmologists for 8 DR-related lesions, resulting in 290K manual segments in total. Extensive experiments on this large- scale dataset show that our proposed approach surpasses the prior art for multiple tasks including lesion segmentation, lesion classification and DR grading.