Fast and Accurate Real-Time Semantic Segmentation with Dilated Asymmetric Convolutions

Leonel Rosas-Arias, Gibran Benitez-Garcia, Jose Portillo-Portillo, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; FASSD-Net: Dilated Asymmetric Pyramidal Fusion for Real-Time Semantic Segmentation

Slides Poster

Recent works have shown promising results applied to real-time semantic segmentation tasks. To maintain fast inference speed, most of the existing networks make use of light decoders, or they simply do not use them at all. This strategy helps to maintain a fast inference speed; however, their accuracy performance is significantly lower in comparison to non-real-time semantic segmentation networks. In this paper, we introduce two key modules aimed to design a high-performance decoder for real-time semantic segmentation for reducing the accuracy gap between real-time and non-real-time segmentation networks. Our first module, Dilated Asymmetric Pyramidal Fusion (DAPF), is designed to substantially increase the receptive field on the top of the last stage of the encoder, obtaining richer contextual features. Our second module, Multi-resolution Dilated Asymmetric (MDA) module, fuses and refines detail and contextual information from multi-scale feature maps coming from early and deeper stages of the network. Both modules exploit contextual information without excessively increasing the computational complexity by using asymmetric convolutions. Our proposed network entitled “FASSD-Net” reaches 78.8% of mIoU accuracy on the Cityscapes validation dataset at 41.1 FPS on full resolution images (1024x2048). Besides, with a light version of our network, we reach 74.1% of mIoU at 133.1 FPS (full resolution) on a single NVIDIA GTX 1080Ti card with no additional acceleration techniques. The source code and pre-trained models are available at https://github.com/GibranBenitez/FASSD-Net.

Similar papers

Multi-Direction Convolution for Semantic Segmentation

Dehui Li, Zhiguo Cao, Ke Xian, Xinyuan Qi, Chao Zhang, Hao Lu

Responsive image

Auto-TLDR; Multi-Direction Convolution for Contextual Segmentation

Slides Similar

Context is known to be one of crucial factors effecting the performance improvement of semantic segmentation. However, state-of-the-art segmentation models built upon fully convolutional networks are inherently weak in encoding contextual information because of stacked local operations such as convolution and pooling. Failing to capture context leads to inferior segmentation performance. Despite many context modules have been proposed to relieve this problem, they still operate in a local manner or use the same contextual information in different positions (due to upsampling). In this paper, we introduce the idea of Multi-Direction Convolution (MDC)—a novel operator capable of encoding rich contextual information. This operator is inspired by an observation that the standard convolution only slides along the spatial dimension (x, y direction) where the channel dimension (z direction) is fixed, which renders slow growth of the receptive field (RF). If considering the channel-fixed convolution to be one-direction, MDC is multi-direction in the sense that MDC slides along both spatial and channel dimensions, i.e., it slides along x, y when z is fixed, along x, z when y is fixed, and along y, z when x is fixed. In this way, MDC is able to encode rich contextual information with the fast increase of the RF. Compared to existing context modules, the encoded context is position-sensitive because no upsampling is required. MDC is also efficient and easy to implement. It can be implemented with few standard convolution layers with permutation. We show through extensive experiments that MDC effectively and selectively enlarges the RF and outperforms existing contextual modules on two standard benchmarks, including Cityscapes and PASCAL VOC2012.

Transitional Asymmetric Non-Local Neural Networks for Real-World Dirt Road Segmentation

Yooseung Wang, Jihun Park

Responsive image

Auto-TLDR; Transitional Asymmetric Non-Local Neural Networks for Semantic Segmentation on Dirt Roads

Slides Poster Similar

Understanding images by predicting pixel-level semantic classes is a fundamental task in computer vision and is one of the most important techniques for autonomous driving. Recent approaches based on deep convolutional neural networks have dramatically improved the speed and accuracy of semantic segmentation on paved road datasets, however, dirt roads have yet to be systematically studied. Dirt roads do not contain clear boundaries between drivable and non-drivable regions; and thus, this difficulty must be overcome for the realization of fully autonomous vehicles. The key idea of our approach is to apply lightweight non-local blocks to reinforce stage-wise long-range dependencies in encoder-decoder style backbone networks. Experiments on 4,687 images of a dirt road dataset show that our transitional asymmetric non-local neural networks present a higher accuracy with lower computational costs compared to state-of-the-art models.

Real-Time Semantic Segmentation Via Region and Pixel Context Network

Yajun Li, Yazhou Liu, Quansen Sun

Responsive image

Auto-TLDR; A Dual Context Network for Real-Time Semantic Segmentation

Slides Poster Similar

Real-time semantic segmentation is a challenging task as both segmentation accuracy and inference speed need to be considered at the same time. In this paper, we present a Dual Context Network (DCNet) to address this challenge. It contains two independent sub-networks: Region Context Network and Pixel Context Network. Region Context Network is main network with low-resolution input and feature re-weighting module to achieve sufficient receptive field. Meanwhile, Pixel Context Network with location attention module to capture the location dependencies of each pixel for assisting the main network to recover spatial detail. A contextual feature fusion is introduced to combine output features of these two sub-networks. The experiments show that DCNet can achieve high-quality segmentation while keeping a high speed. Specifically, for Cityscapes test dataset, we achieve 76.1% Mean IOU with the speed of 82 FPS on a single GTX 2080Ti GPU when using ResNet50 as backbone, and 71.2% Mean IOU with the speed of 142 FPS when using ResNet18 as backbone.

Global-Local Attention Network for Semantic Segmentation in Aerial Images

Minglong Li, Lianlei Shan, Weiqiang Wang

Responsive image

Auto-TLDR; GLANet: Global-Local Attention Network for Semantic Segmentation

Slides Poster Similar

Errors in semantic segmentation task could be classified into two types: large area misclassification and local inaccurate boundaries. Previously attention based methods capture rich global contextual information, this is beneficial to diminish the first type of error, but local imprecision still exists. In this paper we propose Global-Local Attention Network (GLANet) with a simultaneous consideration of global context and local details. Specifically, our GLANet is composed of two branches namely global attention branch and local attention branch, and three different modules are embedded in the two branches for the purpose of modeling semantic interdependencies in spatial, channel and boundary dimensions respectively. We sum the outputs of the two branches to further improve feature representation, leading to more precise segmentation results. The proposed method achieves very competitive segmentation accuracy on two public aerial image datasets, bringing significant improvements over baseline.

PSDNet: A Balanced Architecture of Accuracy and Parameters for Semantic Segmentation

Yue Liu, Zhichao Lian

Responsive image

Auto-TLDR; Pyramid Pooling Module with SE1Cblock and D2SUpsample Network (PSDNet)

Slides Poster Similar

Abstract—In this paper, we present our Pyramid Pooling Module (PPM) with SE1Cblock and D2SUpsample Network (PSDNet), a novel architecture for accurate semantic segmentation. Started from the known work called Pyramid Scene Parsing Network (PSPNet), PSDNet takes advantage of pyramid pooling structure with channel attention module and feature transform module in Pyramid Pooling Module (PPM). The enhanced PPM with these two components can strengthen context information flowing in the network instead of damaging it. The channel attention module we mentioned is an improved “Squeeze and Excitation with 1D Convolution” (SE1C) block which can explicitly model interrelationship between channels with fewer number of parameters. We propose a feature transform module named “Depth to Space Upsampling” (D2SUpsample) in the PPM which keeps integrity of features by transforming features while interpolating features, at the same time reducing parameters. In addition, we introduce a joint strategy in SE1Cblock which combines two variants of global pooling without increasing parameters. Compared with PSPNet, our work achieves higher accuracy on public datasets with 73.97% mIoU and 82.89% mAcc accuracy on Cityscapes Dataset based on ResNet50 backbone.

GSTO: Gated Scale-Transfer Operation for Multi-Scale Feature Learning in Semantic Segmentation

Zhuoying Wang, Yongtao Wang, Zhi Tang, Yangyan Li, Ying Chen, Haibin Ling, Weisi Lin

Responsive image

Auto-TLDR; Gated Scale-Transfer Operation for Semantic Segmentation

Slides Poster Similar

Existing CNN-based methods for semantic segmentation heavily depend on multi-scale features to meet the requirements of both semantic comprehension and detail preservation. State-of-the-art segmentation networks widely exploit conventional scale-transfer operations, i.e., up-sampling and down-sampling to learn multi-scale features. In this work, we find that these operations lead to scale-confused features and suboptimal performance because they are spatial-invariant and directly transit all feature information cross scales without spatial selection. To address this issue, we propose the Gated Scale-Transfer Operation (GSTO) to properly transit spatial-filtered features to another scale. Specifically, GSTO can work either with or without extra supervision. Unsupervised GSTO is learned from the feature itself while the supervised one is guided by the supervised probability matrix. Both forms of GSTO are lightweight and plug-and-play, which can be flexibly integrated into networks or modules for learning better multi-scale features. In particular, by plugging GSTO into HRNet, we get a more powerful backbone (namely GSTO-HRNet) for pixel labeling, and it achieves new state-of-the-art results on multiple benchmarks for semantic segmentation including Cityscapes, LIP and Pascal Context, with negligible extra computational cost. Moreover, experiment results demonstrate that GSTO can also significantly boost the performance of multi-scale feature aggregation modules like PPM and ASPP.

Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search

Zitang Sun, Sei-Ichiro Kamata, Ruojing Wang, Weili Chen

Responsive image

Auto-TLDR; Directed Region Search and Refinement for Semantic Segmentation

Slides Poster Similar

Semantic segmentation requires both large receptive field and accurate spatial information. Despite existing methods based on fully convolutional network have greatly improved the accuracy, the prediction results still do not show satisfactory on small objects and boundary regions. We propose a refinement algorithm to improve the result generated by front network. Our method takes a modified U-shape network to generate both of segmentation mask and semantic boundary, which are used as inputs of refinement algorithm. We creatively introduce information entropy to represent the confidence of the neural network's prediction corresponding to each pixel. The information entropy combined with the semantic boundary can capture those unpredictable pixels with low-confidence through Monte Carlo sampling. Each selected pixel will be used as initial seeds for directed region search and refinement. Our purpose is to search the neighbor high-confidence regions according to the initial seeds. The re-labeling approach is based on high-confidence results. Particularly, different from general region growing methods, our method adopts a directed region search strategy based on gradient descent to find the high-confidence region effectively. Our method improves the performance both on Cityscapes and PASCAL VOC datasets. In the evaluation of segmentation accuracy of some small objects, our method surpasses most of state of the art methods.

Enhanced Feature Pyramid Network for Semantic Segmentation

Mucong Ye, Ouyang Jinpeng, Ge Chen, Jing Zhang, Xiaogang Yu

Responsive image

Auto-TLDR; EFPN: Enhanced Feature Pyramid Network for Semantic Segmentation

Slides Poster Similar

Multi-scale feature fusion has been an effective way for improving the performance of semantic segmentation. However, current methods generally fail to consider the semantic gaps between the shallow (low-level) and deep (high-level) features and thus the fusion methods may not be optimal. In this paper, to address the issues of the semantic gap between the feature from different layers, we propose a unified framework based on the U-shape encoder-decoder architecture, named Enhanced Feature Pyramid Network (EFPN). Specifically, the semantic enhancement module (SEM), boundary extraction module (BEM), and context aggregation model (CAM) are incorporated into the decoder network to improve the robustness of the multi-level features aggregation. In addition, a global fusion model (GFM) in encoder branch is proposed to capture more semantic information in the deep layers and effectively transmit the high-level semantic features to each layer. Extensive experiments are conducted and the results show that the proposed framework achieves the state-of-the-art results on three public datasets, namely PASCAL VOC 2012, Cityscapes, and PASCAL Context. Furthermore, we also demonstrate that the proposed method is effective for other visual tasks that require frequent fusing features and upsampling.

Boundary-Aware Graph Convolution for Semantic Segmentation

Hanzhe Hu, Jinshi Cui, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Boundary-Aware Graph Convolution for Semantic Segmentation

Slides Poster Similar

Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. However, few works have focused on harvesting boundary information to improve the segmentation performance. In order to enhance the feature similarity within the object and keep discrimination from other objects, we propose a boundary-aware graph convolution (BGC) module to propagate features within the object. The graph reasoning is performed among pixels of the same object apart from the boundary pixels. Based on the proposed BGC module, we further introduce the Boundary-aware Graph Convolution Network(BGCNet), which consists of two main components including a basic segmentation network and the BGC module, forming a coarse-to-fine paradigm. Specifically, the BGC module takes the coarse segmentation feature map as node features and boundary prediction to guide graph construction. After graph convolution, the reasoned feature and the input feature are fused together to get the refined feature, producing the refined segmentation result. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

Javier García López, Antonio Agudo, Francesc Moreno-Noguer

Responsive image

Auto-TLDR; E-DNAS: Differentiable Architecture Search for Light-Weight Networks for Image Classification

Slides Poster Similar

Designing optimal and light weight networks to fit in resource-limited platforms like mobiles, DSPs or GPUs is a challenging problem with a wide range of interesting applications, {\em e.g.} in embedded systems for autonomous driving. While most approaches are based on manual hyperparameter tuning, there exist a new line of research, the so-called NAS (Neural Architecture Search) methods, that aim to optimize several metrics during the design process, including memory requirements of the network, number of FLOPs, number of MACs (Multiply-ACcumulate operations) or inference latency. However, while NAS methods have shown very promising results, they are still significantly time and cost consuming. In this work we introduce E-DNAS, a differentiable architecture search method, which improves the efficiency of NAS methods in designing light-weight networks for the task of image classification. Concretely, E-DNAS computes, in a differentiable manner, the optimal size of a number of meta-kernels that capture patterns of the input data at different resolutions. We also leverage on the additive property of convolution operations to merge several kernels with different compatible sizes into a single one, reducing thus the number of operations and the time required to estimate the optimal configuration. We evaluate our approach on several datasets to perform classification. We report results in terms of the SoC (System on Chips) metric, typically used in the Texas Instruments TDA2x families for autonomous driving applications. The results show that our approach allows designing low latency architectures significantly faster than state-of-the-art.

Enhancing Semantic Segmentation of Aerial Images with Inhibitory Neurons

Ihsan Ullah, Sean Reilly, Michael Madden

Responsive image

Auto-TLDR; Lateral Inhibition in Deep Neural Networks for Object Recognition and Semantic Segmentation

Slides Poster Similar

In a Convolutional Neural Network, each neuron in the output feature map takes input from the neurons in its receptive field. This receptive field concept plays a vital role in today's deep neural networks. However, inspired by neuro-biological research, it has been proposed to add inhibitory neurons outside the receptive field, which may enhance the performance of neural network models. In this paper, we begin with deep network architectures such as VGG and ResNet, and propose an approach to add lateral inhibition in each output neuron to reduce its impact on its neighbours, both in fine-tuning pre-trained models and training from scratch. Our experiments show that notable improvements upon prior baseline deep models can be achieved. A key feature of our approach is that it is easy to add to baseline models; it can be adopted in any model containing convolution layers, and we demonstrate its value in applications including object recognition and semantic segmentation of aerial images, where we show state-of-the-art result on the Aeroscape dataset. On semantic segmentation tasks, our enhancement shows 17.43% higher mIoU than a single baseline model on a single source (the Aeroscape dataset), 13.43% higher performance than an ensemble model on the same single source, and 7.03% higher than an ensemble model on multiple sources (segmentation datasets). Our experiments illustrate the potential impact of using inhibitory neurons in deep learning models, and they also show better results than the baseline models that have standard convolutional layer.

A Fine-Grained Dataset and Its Efficient Semantic Segmentation for Unstructured Driving Scenarios

Kai Andreas Metzger, Peter Mortimer, Hans J "Joe" Wuensche

Responsive image

Auto-TLDR; TAS500: A Semantic Segmentation Dataset for Autonomous Driving in Unstructured Environments

Slides Poster Similar

Research in autonomous driving for unstructured environments suffers from a lack of semantically labeled datasets compared to its urban counterpart. Urban and unstructured outdoor environments are challenging due to the varying lighting and weather conditions during a day and across seasons. In this paper, we introduce TAS500, a novel semantic segmentation dataset for autonomous driving in unstructured environments. TAS500 offers fine-grained vegetation and terrain classes to learn drivable surfaces and natural obstacles in outdoor scenes effectively. We evaluate the performance of modern semantic segmentation models with an additional focus on their efficiency. Our experiments demonstrate the advantages of fine-grained semantic classes to improve the overall prediction accuracy, especially along the class boundaries. The dataset, code, and pretrained model are available online.

FastCompletion: A Cascade Network with Multiscale Group-Fused Inputs for Real-Time Depth Completion

Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, Shenghao Zhang, Chong Zhang

Responsive image

Auto-TLDR; Efficient Depth Completion with Clustered Hourglass Networks

Slides Poster Similar

Completing sparse data captured with commercial depth sensors is a vital and fundamental procedure for many computer vision applications. For execution in real-world scenarios, a good trade-off between accuracy and speed is increasingly in demand for depth completion methods. Most previous methods achieve satisfactory accuracy on standard benchmarks. However, they extensively rely on heavy models to handle diverse structures and require additional run time on multimodal data. In this paper, we present an efficient method of depth completion. We propose a grouped fusion strategy for efficiently extracting depth and guidance features in parallel and fusing them naturally in the feature spaces to achieve high performance. Instead of a monolithic architecture, we employ cascaded hourglass networks, each of which is specialized for certain structures and has a lightweight architecture. Given the sparsity of the depth maps, we downsample the inputs to multiple scales to further accelerate the computation. Our model runs at over 39 FPS on an embedded GPU with high-resolution inputs. Evaluations on the KITTI benchmark demonstrate that the proposed model is an ideal approach for real-world applications.

Multiscale Attention-Based Prototypical Network for Few-Shot Semantic Segmentation

Yifei Zhang, Desire Sidibe, Olivier Morel, Fabrice Meriaudeau

Responsive image

Auto-TLDR; Few-shot Semantic Segmentation with Multiscale Feature Attention

Slides Similar

Deep learning-based image understanding techniques require a large number of labeled images for training. Few-shot semantic segmentation, on the contrary, aims at generalizing the segmentation ability of the model to new categories given only a few labeled samples. To tackle this problem, we propose a novel prototypical network (MAPnet) with multiscale feature attention. To fully exploit the representative features of target classes, we firstly extract rich contextual information of labeled support images via a multiscale feature enhancement module. The learned prototypes from support features provide further semantic guidance on the query image. Then we adaptively integrate multiple similarity-guided probability maps by attention mechanism, yielding an optimal pixel-wise prediction. Furthermore, the proposed method was validated on the PASCAL-5i dataset in terms of 1-way N-shot evaluation. We also test the model with weak annotations, including scribble and bounding box annotations. Both the qualitative and quantitative results demonstrate the advantages of our approach over other state-of-the-art methods.

Stage-Wise Neural Architecture Search

Artur Jordão, Fernando Akio Yamada, Maiko Lie, William Schwartz

Responsive image

Auto-TLDR; Efficient Neural Architecture Search for Deep Convolutional Networks

Slides Poster Similar

Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications. These architectures consist of stages, which are sets of layers that operate on representations in the same resolution. It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network. However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time. Thus, significant human effort is necessary to evaluate different trade-offs between depth and performance. To handle this problem, recent works have proposed to automatically design high-performance architectures, mainly by means of neural architecture search (NAS). Current NAS strategies analyze a large set of possible candidate architectures and, hence, require vast computational resources and take many GPUs days. Motivated by this, we propose a NAS approach to efficiently design accurate and low-cost convolutional architectures and demonstrate that an efficient strategy for designing these architectures is to learn the depth stage-by-stage. For this purpose, our approach increases depth incrementally in each stage taking into account its importance, such that stages with low importance are kept shallow while stages with high importance become deeper. We conduct experiments on the CIFAR and different versions of ImageNet datasets, where we show that architectures discovered by our approach achieve better accuracy and efficiency than human-designed architectures. Additionally, we show that architectures discovered on CIFAR-10 can be successfully transferred to large datasets. Compared to previous NAS approaches, our method is substantially more efficient, as it evaluates one order of magnitude fewer models and yields architectures on par with the state-of-the-art.

Context-Aware Residual Module for Image Classification

Jing Bai, Ran Chen

Responsive image

Auto-TLDR; Context-Aware Residual Module for Image Classification

Slides Poster Similar

Attention module has achieved great success in numerous vision tasks. However, existing visual attention modules generally consider the features of a single-scale, and cannot make full use of their multi-scale contextual information. Meanwhile, the multi-scale spatial feature representation has demonstrated its outstanding performance in a wide range of applications. However, the multi-scale features are always represented in a layer-wise manner, i.e. it is impossible to know their contextual information at a granular level. Focusing on the above issue, a context-aware residual module for image classification is proposed in this paper. It consists of a novel multi-scale channel attention module MSCAM to learn refined channel weights by considering the visual features of its own scale and its surrounding fields, and a multi-scale spatial aware module MSSAM to further capture more spatial information. Either or both of the two modules can be plugged into any CNN-based backbone image classification architecture with a short residual connection to obtain the context-aware enhanced features. The experiments on public image recognition datasets including CIFAR10, CIFAR100,Tiny-ImageNet and ImageNet consistently demonstrate that our proposed modules significantly outperforms a wide-used state-of-the-art methods, e.g., ResNet and the lightweight networks of MobileNet and SqueezeeNet.

UHRSNet: A Semantic Segmentation Network Specifically for Ultra-High-Resolution Images

Lianlei Shan, Weiqiang Wang

Responsive image

Auto-TLDR; Ultra-High-Resolution Segmentation with Local and Global Feature Fusion

Poster Similar

Abstract—Semantic segmentation is a basic task in computer vision, but only limited attention has been devoted to the ultra-high-resolution (UHR) image segmentation. Since UHR images occupy too much memory, they cannot be directly put into GPU for training. Previous methods are cropping images to small patches or downsampling the whole images. Cropping and downsampling cause the loss of contexts and details, which is essential for segmentation accuracy. To solve this problem, we improve and simplify the local and global feature fusion method in previous works. Local features are extracted from patches and global features are from downsampled images. Meanwhile, we propose one new fusion called local feature fusion for the first time, which can make patches get information from surrounding patches. We call the network with these two fusions ultra-high-resolution segmentation network (UHRSNet). These two fusions can effectively and efficiently solve the problem caused by cropping and downsampling. Experiments show a remarkable improvement on Deepglobe dataset.

Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting

Pongpisit Thanasutives, Ken-Ichi Fukui, Masayuki Numao, Boonserm Kijsirikul

Responsive image

Auto-TLDR; M-SFANet and M-SegNet for Crowd Counting Using Multi-Scale Fusion Networks

Slides Poster Similar

In this paper, we proposed two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANet's decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods.

NAS-EOD: An End-To-End Neural Architecture Search Method for Efficient Object Detection

Huigang Zhang, Liuan Wang, Jun Sun, Li Sun, Hiromichi Kobashi, Nobutaka Imamura

Responsive image

Auto-TLDR; NAS-EOD: Neural Architecture Search for Object Detection on Edge Devices

Slides Similar

Model efficiency for object detection has become more and more important recently, especially when intelligent mobile devices are more and more convenient and developed today. Current small models for this task is either extended from the models for classification task, or pruned directly on the basis of large models. These pipelines are not task-specific or data-oriented so that their performance are not good enough for users. In this work, we propose a neural architecture search (NAS) method to build a detection model automatically that can perform well on edge devices. Specifically, the proposed method supports the search of not only multi-scale feature network, but also backbone network. This enables us to search out a global optimal model. To the best of our knowledge, it is a first attempt for searching an overall detection model via NAS. Additionally, we add latency information into the main objective during performance estimation, so that the search process can find a final model suitable for edge devices. Experiments on the PASCAL VOC benchmark indicate that the searched model (named NAS-EOD) can get good accuracy even without ImageNet pre-training. When using ImageNet pre-training, our model is superior to state-of-the-art small object detection models.

EdgeNet: Semantic Scene Completion from a Single RGB-D Image

Aloisio Dourado, Teofilo De Campos, Adrian Hilton, Hansung Kim

Responsive image

Auto-TLDR; Semantic Scene Completion using 3D Depth and RGB Information

Slides Poster Similar

Semantic scene completion is the task of predicting a complete 3D representation of volumetric occupancy with corresponding semantic labels for a scene from a single point of view. In this paper, we present EdgeNet, a new end-to-end neural network architecture that fuses information from depth and RGB, explicitly representing RGB edges in 3D space. Previous works on this task used either depth-only or depth with colour by projecting 2D semantic labels generated by a 2D segmentation network into the 3D volume, requiring a two step training process. Our EdgeNet representation encodes colour information in 3D space using edge detection and flipped truncated signed distance, which improves semantic completion scores especially in hard to detect classes. We achieved state-of-the-art scores on both synthetic and real datasets with a simpler and a more computationally efficient training pipeline than competing approaches.

Real-Time Monocular Depth Estimation with Extremely Light-Weight Neural Network

Mian Jhong Chiu, Wei-Chen Chiu, Hua-Tsung Chen, Jen-Hui Chuang

Responsive image

Auto-TLDR; Real-Time Light-Weight Depth Prediction for Obstacle Avoidance and Environment Sensing with Deep Learning-based CNN

Slides Poster Similar

Obstacle avoidance and environment sensing are crucial applications in autonomous driving and robotics. Among all types of sensors, RGB camera is widely used in these applications as it can offer rich visual contents with relatively low-cost, and using a single image to perform depth estimation has become one of the main focuses in resent research works. However, prior works usually rely on highly complicated computation and power-consuming GPU to achieve such task; therefore, we focus on developing a real-time light-weight system for depth prediction in this paper. Based on the well-known encoder-decoder architecture, we propose a supervised learning-based CNN with detachable decoders that produce depth predictions with different scales. We also formulate a novel log-depth loss function that computes the difference of predicted depth map and ground truth depth map in log space, so as to increase the prediction accuracy for nearby locations. To train our model efficiently, we generate depth map and semantic segmentation with complex teacher models. Via a series of ablation studies and experiments, it is validated that our model can efficiently performs real-time depth prediction with only 0.32M parameters, with the best trained model outperforms previous works on KITTI dataset for various evaluation matrices.

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

Multiple Document Datasets Pre-Training Improves Text Line Detection with Deep Neural Networks

Mélodie Boillet, Christopher Kermorvant, Thierry Paquet

Responsive image

Auto-TLDR; A fully convolutional network for document layout analysis

Slides Similar

In this paper, we introduce a fully convolutional network for the document layout analysis task. While state-of-the-art methods are using models pre-trained on natural scene images, our method relies on a U-shaped model trained from scratch for detecting objects from historical documents. We consider the line segmentation task and more generally the layout analysis problem as a pixel-wise classification task then our model outputs a pixel-labeling of the input images. We show that our method outperforms state-of-the-art methods on various datasets and also demonstrate that the pre-trained parts on natural scene images are not required to reach good results. In addition, we show that pre-training on multiple document datasets can improve the performances. We evaluate the models using various metrics to have a fair and complete comparison between the methods.

OCT Image Segmentation Using NeuralArchitecture Search and SRGAN

Saba Heidari, Omid Dehzangi, Nasser M. Nasarabadi, Ali Rezai

Responsive image

Auto-TLDR; Automatic Segmentation of Retinal Layers in Optical Coherence Tomography using Neural Architecture Search

Poster Similar

Alzheimer’s disease (AD) diagnosis is one of the major research areas in computational medicine. Optical coherence tomography (OCT) is a non-invasive, inexpensive, and timely efficient method that scans the human’s retina with depth. It has been hypothesized that the thickness of the retinal layers extracted from OCTs could be an efficient and effective biomarker for early diagnosis of AD. In this work, we aim to design a self-training model architecture for the task of segmenting the retinal layers in OCT scans. Neural architecture search (NAS) is a subfield of AutoML domain, which has a significant impact on improving the accuracy of machine vision tasks. We integrate the NAS algorithm with a Unet auto-encoder architecture as its backbone. Then, we employ our proposed model to segment the retinal nerve fiber layer in our preprocessed OCT images with the aim of AD diagnosis. In this work, we trained a super-resolution generative adversarial network on the raw OCT scans to improve the quality of the images before the modeling stage. In our architecture search strategy, different primitive operations suggested to find down- \& up-sampling Unet cell blocks and the binary gate method has been applied to make the search strategy more practical. Our architecture search method is empirically evaluated by training on the Unet and NAS-Unet from scratch. Specifically, the proposed NAS-Unet training significantly outperforms the baseline human-designed architecture by achieving 95.1\% in the mean Intersection over Union metric and 79.1\% in the Dice similarity coefficient.

Attention Based Coupled Framework for Road and Pothole Segmentation

Shaik Masihullah, Ritu Garg, Prerana Mukherjee, Anupama Ray

Responsive image

Auto-TLDR; Few Shot Learning for Road and Pothole Segmentation on KITTI and IDD

Slides Poster Similar

In this paper, we propose a novel attention based coupled framework for road and pothole segmentation. In many developing countries as well as in rural areas, the drivable areas are neither well-defined, nor well-maintained. Under such circumstances, an Advance Driver Assistant System (ADAS) is needed to assess the drivable area and alert about the potholes ahead to ensure vehicle safety. Moreover, this information can also be used in structured environments for assessment and maintenance of road health. We demonstrate few shot learning approach for pothole detection to leverage accuracy even with fewer training samples. We report the exhaustive experimental results for road segmentation on KITTI and IDD datasets. We also present pothole segmentation on IDD.

Delivering Meaningful Representation for Monocular Depth Estimation

Doyeon Kim, Donggyu Joo, Junmo Kim

Responsive image

Auto-TLDR; Monocular Depth Estimation by Bridging the Context between Encoding and Decoding

Slides Poster Similar

Monocular depth estimation plays a key role in 3D scene understanding, and a number of recent papers have achieved significant improvements using deep learning based algorithms. Most papers among them proposed methods that use a pre-trained network as a deep feature extractor and then decode the obtained features to create a depth map. In this study, we focus on how to use this encoder-decoder structure to deliver meaningful representation throughout the entire network. We propose a new network architecture with our suggested modules to create a more accurate depth map by bridging the context between the encoding and decoding phase. First, we place the pyramid block at the bottleneck of the network to enlarge the view and convey rich information about the global context to the decoder. Second, we suggest a skip connection with the fuse module to aggregate the encoder and decoder feature. Finally, we validate our approach on the NYU Depth V2 and KITTI datasets. The experimental results prove the efficacy of the suggested model and show performance gains over the state-of-the-art model.

Attention As Activation

Yimian Dai, Stefan Oehmcke, Fabian Gieseke, Yiquan Wu, Kobus Barnard

Responsive image

Auto-TLDR; Attentional Activation Units for Convolutional Networks

Slides Similar

Activation functions and attention mechanisms are typically treated as having different purposes and have evolved differently. However, both concepts can be formulated as a non-linear gating function. Inspired by their similarity, we propose a novel type of activation units called attentional activation~(ATAC) units as a unification of activation functions and attention mechanisms. In particular, we propose a local channel attention module for the simultaneous non-linear activation and element-wise feature refinement, which locally aggregates point-wise cross-channel feature contexts. By replacing the well-known rectified linear units by such ATAC units in convolutional networks, we can construct fully attentional networks that perform significantly better with a modest number of additional parameters. We conducted detailed ablation studies on the ATAC units using several host networks with varying network depths to empirically verify the effectiveness and efficiency of the units. Furthermore, we compared the performance of the ATAC units against existing activation functions as well as other attention mechanisms on the CIFAR-10, CIFAR-100, and ImageNet datasets. Our experimental results show that networks constructed with the proposed ATAC units generally yield performance gains over their competitors given a comparable number of parameters.

Boosting High-Level Vision with Joint Compression Artifacts Reduction and Super-Resolution

Xiaoyu Xiang, Qian Lin, Jan Allebach

Responsive image

Auto-TLDR; A Context-Aware Joint CAR and SR Neural Network for High-Resolution Text Recognition and Face Detection

Slides Poster Similar

Due to the limits of bandwidth and storage space, digital images are usually down-scaled and compressed when transmitted over networks, resulting in loss of details and jarring artifacts that can lower the performance of high-level visual tasks. In this paper, we aim to generate an artifact-free high-resolution image from a low-resolution one compressed with an arbitrary quality factor by exploring joint compression artifacts reduction (CAR) and super-resolution (SR) tasks. First, we propose a context-aware joint CAR and SR neural network (CAJNN) that integrates both local and non-local features to solve CAR and SR in one-stage. Finally, a deep reconstruction network is adopted to predict high quality and high-resolution images. Evaluation on CAR and SR benchmark datasets shows that our CAJNN model outperforms previous methods and also takes 26.2% less runtime. Based on this model, we explore addressing two critical challenges in high-level computer vision: optical character recognition of low-resolution texts, and extremely tiny face detection. We demonstrate that CAJNN can serve as an effective image preprocessing method and improve the accuracy for real-scene text recognition (from 85.30% to 85.75%) and the average precision for tiny face detection (from 0.317 to 0.611).

VPU Specific CNNs through Neural Architecture Search

Ciarán Donegan, Hamza Yous, Saksham Sinha, Jonathan Byrne

Responsive image

Auto-TLDR; Efficient Convolutional Neural Networks for Edge Devices using Neural Architecture Search

Slides Poster Similar

The success of deep learning at computer vision tasks has led to an ever-increasing number of applications on edge devices. Often with the use of edge AI hardware accelerators like the Intel Movidius Vision Processing Unit (VPU). Performing computer vision tasks on edge devices is challenging. Many Convolutional Neural Networks (CNNs) are too complex to run on edge devices with limited computing power. This has created large interest in designing efficient CNNs and one promising way of doing this is through Neural Architecture Search (NAS). NAS aims to automate the design of neural networks. NAS can also optimize multiple different objectives together, like accuracy and efficiency, which is difficult for humans. In this paper, we use a differentiable NAS method to find efficient CNNs for VPU that achieves state-of-the-art classification accuracy on ImageNet. Our NAS designed model outperforms MobileNetV2, having almost 1\% higher top-1 accuracy while being 13\% faster on MyriadX VPU. To the best of our knowledge, this is the first time a VPU specific CNN has been designed using a NAS algorithm. Our results also reiterate the fact that efficient networks must be designed for each specific hardware. We show that efficient networks targeted at different devices do not perform as well on the VPU.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Progressive Scene Segmentation Based on Self-Attention Mechanism

Yunyi Pan, Yuan Gan, Kun Liu, Yan Zhang

Responsive image

Auto-TLDR; Two-Stage Semantic Scene Segmentation with Self-Attention

Slides Poster Similar

Semantic scene segmentation is vital for a large variety of applications as it enables understanding of 3D data. Nowadays, various approaches based upon point clouds ignore the mathematical distribution of points and treat the points equally. The methods following this direction neglect the imbalance problem of samples that naturally exists in scenes. To avoid these issues, we propose a two-stage semantic scene segmentation framework based on self-attention mechanism and achieved state-of-the-art performance on 3D scene understanding tasks. We split the whole task into two small ones which efficiently relief the sample imbalance issue. In addition, we have designed a new self-attention block which could be inserted into submanifold convolution networks to model the long-range dependencies that exists among points. The proposed network consists of an encoder and a decoder, with the spatial-wise and channel-wise attention modules inserted. The two-stage network shares a U-Net architecture and is an end-to-end trainable framework which could predict the semantic label for the scene point clouds fed into it. Experiments on standard benchmarks of 3D scenes implies that our network could perform at par or better than the existing state-of-the-art methods.

FastSal: A Computationally Efficient Network for Visual Saliency Prediction

Feiyan Hu, Kevin Mcguinness

Responsive image

Auto-TLDR; MobileNetV2: A Convolutional Neural Network for Saliency Prediction

Slides Poster Similar

This paper focuses on the problem of visual saliency prediction, predicting regions of an image that tend to attract human visual attention, under a constrained computational budget. We modify and test various recent efficient convolutional neural network architectures like EfficientNet and MobileNetV2 and compare them with existing state-of-the-art saliency models such as SalGAN and DeepGaze II both in terms of standard accuracy metrics like AUC and NSS, and in terms of the computational complexity and model size. We find that MobileNetV2 makes an excellent backbone for a visual saliency model and can be effective even without a complex decoder. We also show that knowledge transfer from a more computationally expensive model like DeepGaze II can be achieved via pseudo-labelling an unlabelled dataset, and that this approach gives result on-par with many state-of-the-art algorithms with a fraction of the computational cost and model size.

Dual Encoder Fusion U-Net (DEFU-Net) for Cross-manufacturer Chest X-Ray Segmentation

Zhang Lipei, Aozhi Liu, Jing Xiao

Responsive image

Auto-TLDR; Inception Convolutional Neural Network with Dilation for Chest X-Ray Segmentation

Slides Similar

A number of methods based on the deep learning have been applied to medical image segmentation and have achieved state-of-the-art performance. The most famous technique is U-Net which has been used to many medical datasets including the Chest X-ray. Due to the importance of chest x- ray data in studying COVID-19, there is a demand for state-of- art models capable of precisely segmenting chest x-rays. In this paper, we propose a dual encoder fusion U-Net framework for Chest X-rays based on Inception Convolutional Neural Network with dilation, Densely Connected Recurrent Convolutional Neural Network, which is named DEFU-Net. The densely connected recurrent path extends the network deeper for facilitating context feature extraction. In order to increase the width of network and enrich representation of features, the inception blocks with dilation have been used. The inception blocks can capture globally and locally spatial information with various receptive fields to avoid information loss caused by max-pooling. Meanwhile, the features fusion of two path by summation preserve the context and the spatial information for decoding part. We applied this model in Chest X-ray dataset from two different manufacturers (Montgomery and Shenzhen hospital). The DEFU-Net achieves the better performance than basic U-Net, residual U-Net, BCDU- Net, R2U-Net and attention R2U-Net. This model approaches state-of-the-art in this mixed dataset. The open source code for this proposed framework is public available.

Hierarchically Aggregated Residual Transformation for Single Image Super Resolution

Zejiang Hou, Sy Kung

Responsive image

Auto-TLDR; HARTnet: Hierarchically Aggregated Residual Transformation for Multi-Scale Super-resolution

Slides Poster Similar

Visual patterns usually appear at different scales/sizes in natural images. Multi-scale feature representation is of great importance for the single-image super-resolution(SISR) task to reconstruct image objects at different scales.However, such characteristic has been rarely considered by CNN-based SISR methods. In this work, we propose a novel build-ing block, i.e. hierarchically aggregated residual transformation(HART), to achieve multi-scale feature representation in each layer of the network. Within each HART block, we connect multiple convolutions in a hierarchical residual-like manner, which greatly expands the range of effective receptive fields and helps to detect image features at different scales. To theoretically understand the proposed HART block, we recast SISR as an optimal control problem and show that HART effectively approximates the classical4th-order Runge-Kutta method, which has the merit of small local truncation error for solving numerical ordinary differential equation. By cascading the proposed HART blocks, we establish our high-performing HARTnet. Comparedwith existing SR state-of-the-arts (including those in NTIRE2019 SR Challenge leaderboard), the proposed HARTnet demonstrates consistent PSNR/SSIM performance improvements on various benchmark datasets under different degradation models.Moreover, HARTnet can efficiently restore more faithful high-resolution images than comparative SR methods (cf. Figure 1).

LiNet: A Lightweight Network for Image Super Resolution

Armin Mehri, Parichehr Behjati Ardakani, Angel D. Sappa

Responsive image

Auto-TLDR; LiNet: A Compact Dense Network for Lightweight Super Resolution

Slides Poster Similar

This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.

Neural Architecture Search for Image Super-Resolution Using Densely Connected Search Space: DeCoNAS

Joon Young Ahn, Nam Ik Cho

Responsive image

Auto-TLDR; DeCoNASNet: Automated Neural Architecture Search for Super-Resolution

Slides Poster Similar

Abstract—The recent progress of deep convolutional neural networks has enabled great success in single image superresolution (SISR) and many other vision tasks. Their performances are also being increased by deepening the networks and developing more sophisticated network structures. However, finding an optimal structure for the given problem is a difficult task, even for human experts. For this reason, neural architecture search (NAS) methods have been introduced, which automate the procedure of constructing the structures. In this paper, we expand the NAS to the super-resolution domain and find a lightweight densely connected network named DeCoNASNet. We use a hierarchical search strategy to find the best connection with local and global features. In this process, we define a complexitybased penalty for solving image super-resolution, which can be considered a multi-objective problem. Experiments show that our DeCoNASNet outperforms the state-of-the-art lightweight superresolution networks designed by handcraft methods and existing NAS-based design.

Operation and Topology Aware Fast Differentiable Architecture Search

Shahid Siddiqui, Christos Kyrkou, Theocharis Theocharides

Responsive image

Auto-TLDR; EDARTS: Efficient Differentiable Architecture Search with Efficient Optimization

Slides Poster Similar

Differentiable architecture search (DARTS) has gained significant attention amongst neural architecture search approaches due to its effectiveness in finding competitive network architectures with reasonable computational complexity. DARTS' search space however is designed such that even a randomly picked architecture is very competitive and due to the complexity of search architectural building block or cell, it is unclear whether these are certain operations or the cell topology that contributes most to achieving higher final accuracy. In this work, we dissect the DARTS's search space as to understand which components are most effective in producing better architectures. Our experiments show that: (1) Good architectures can be found regardless of the search network depth; (2) Seperable convolution is the most effective operation in the search space; and (3) The cell topology also has substantial effect on the accuracy. Based on these insights, we propose an efficient search approach based referred to as eDARTS, that searches on a pre-specified cell with a good topology with increased attention to important operations using a shallow supernet. Moreover, we propose some optimizations for eDARTS which significantly speed up the search as well as alleviate the well known skip connection aggregation problem of DARTS. eDARTS achieves an error rate of 2.53% on CIFAR-10 using a 3.1M parameters model; while the search cost is less than 30 minutes.

Dynamic Multi-Path Neural Network

Yingcheng Su, Yichao Wu, Ken Chen, Ding Liang, Xiaolin Hu

Responsive image

Auto-TLDR; Dynamic Multi-path Neural Network

Slides Similar

Although deeper and larger neural networks have achieved better performance, due to overwhelming burden on computation, they cannot meet the demands of deployment on resource-limited devices. An effective strategy to address this problem is to make use of dynamic inference mechanism, which changes the inference path for different samples at runtime. Existing methods only reduce the depth by skipping an entire specific layer, which may lose important information in this layer. In this paper, we propose a novel method called Dynamic Multi-path Neural Network (DMNN), which provides more topology choices in terms of both width and depth on the fly. For better modelling the inference path selection, we further introduce previous state and object category information to guide the training process. Compared to previous dynamic inference techniques, the proposed method is more flexible and easier to incorporate into most modern network architectures. Experimental results on ImageNet and CIFAR-100 demonstrate the superiority of our method on both efficiency and classification accuracy.

Temporal Feature Enhancement Network with External Memory for Object Detection in Surveillance Video

Masato Fujitake, Akihiro Sugimoto

Responsive image

Auto-TLDR; Temporal Attention Based External Memory Network for Surveillance Object Detection

Poster Similar

Video object detection is challenging and essential in practical applications, such as surveillance cameras for traffic control and public security. Unlike the video in natural scenes, the surveillance video tends to contain dense, and small objects (typically vehicles) in their appearances. Therefore, existing methods for surveillance object detection utilize still-image object detection approaches with rich feature extractors at the expense of their run-time speeds. The run-time speed, however, becomes essential when the video is being streamed. In this paper, we exploit temporal information in videos to enrich the feature maps, proposing the first temporal attention based external memory network for the live stream of video. Extensive experiments on real-world traffic surveillance benchmarks demonstrate the real-time performance of the proposed model while keeping comparable accuracy with state-of-the-art.

ResFPN: Residual Skip Connections in Multi-Resolution Feature Pyramid Networks for Accurate Dense Pixel Matching

Rishav ., René Schuster, Ramy Battrawy, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; Resolution Feature Pyramid Networks for Dense Pixel Matching

Slides Similar

Dense pixel matching is required for many computer vision algorithms such as disparity, optical flow or scene flow estimation. Feature Pyramid Networks (FPN) have proven to be a suitable feature extractor for CNN-based dense matching tasks. FPN generates well localized and semantically strong features at multiple scales. However, the generic FPN is not utilizing its full potential, due to its reasonable but limited localization accuracy. Thus, we present ResFPN – a multiresolution feature pyramid network with multiple residual skip connections, where at any scale, we leverage the information from higher resolution maps for stronger and better localized features. In our ablation study we demonstrate the effectiveness of our novel architecture with clearly higher accuracy than FPN. In addition, we verify the superior accuracy of ResFPN in many different pixel matching applications on established datasets like KITTI, Sintel, and FlyingThings3D.

Slimming ResNet by Slimming Shortcut

Donggyu Joo, Doyeon Kim, Junmo Kim

Responsive image

Auto-TLDR; SSPruning: Slimming Shortcut Pruning on ResNet Based Networks

Slides Poster Similar

Conventional network pruning methods on convolutional neural networks (CNNs) reduce the number of input or output channels of convolution layers. With these approaches, the channels in the plain network can be pruned without any restrictions. However, in case of the ResNet based networks which have shortcuts (skip connections), the channel slimming of existing pruning methods is limited to the inside of each residual block. Since the number of Flops and parameters are also highly related to the number of channels in the shortcuts, more investigation on pruning channels in shortcuts is required. In this paper, we propose a novel pruning method, Slimming Shortcut Pruning (SSPruning), for pruning channels in shortcuts on ResNet based networks. First, we separate the long shortcut in individual regions that can be pruned independently without considering its long connections. Then, by applying our Importance Learning Gate (ILG) which learns the importance of channels globally regardless of channel type and location (i.e., in the shortcut or inside of the block), we can finally achieve an optimally pruned model. Through various experiments, we have confirmed that our method yields outstanding results when we prune the shortcuts and inside of the block together.

Dynamic Guided Network for Monocular Depth Estimation

Xiaoxia Xing, Yinghao Cai, Yiping Yang, Dayong Wen

Responsive image

Auto-TLDR; DGNet: Dynamic Guidance Upsampling for Self-attention-Decoding for Monocular Depth Estimation

Slides Poster Similar

Self-attention or encoder-decoder structure has been widely used in deep neural networks for monocular depth estimation tasks. The former mechanism are capable to capture long-range information by computing the representation of each position by a weighted sum of the features at all positions, while the latter networks can capture structural details information by gradually recovering the spatial information. In this work, we combine the advantages of both methods. Specifically, our proposed model, DGNet, extends EMANet Network by adding an effective decoder module to refine the depth results. In the decoder stage, we further design dynamic guidance upsampling which uses local neighboring information of low-level features guide coarser depth to upsample. In this way, dynamic guidance upsampling generates content-dependent and spatially-variant kernels for depth upsampling which makes full use of spatial details information from low-level features. Experimental results demonstrate that our method obtains higher accuracy and generates the desired depth map.

Deeply-Fused Attentive Network for Stereo Matching

Zuliu Yang, Xindong Ai, Weida Yang, Yong Zhao, Qifei Dai, Fuchi Li

Responsive image

Auto-TLDR; DF-Net: Deep Learning-based Network for Stereo Matching

Slides Poster Similar

In this paper, we propose a novel learning-based network for stereo matching called DF-Net, which makes three main contributions that are experimentally shown to have practical merit. Firstly, we further increase the accuracy by using the deeply fused spatial pyramid pooling (DF-SPP) module, which can acquire the continuous multi-scale context information in both parallel and cascade manners. Secondly, we introduce channel attention block to dynamically boost the informative features. Finally, we propose a stacked encoder-decoder structure with 3D attention gate for cost regularization. More precisely, the module fuses the coding features to their next encoder-decoder structure under the supervision of attention gate with long-range skip connection, and thus exploit deep and hierarchical context information for disparity prediction. The performance on SceneFlow and KITTI datasets shows that our model is able to generate better results against several state-of-the-art algorithms.

BiLuNet: A Multi-Path Network for Semantic Segmentation on X-Ray Images

Van Luan Tran, Huei-Yung Lin, Rachel Liu, Chun-Han Tseng, Chun-Han Tseng

Responsive image

Auto-TLDR; BiLuNet: Multi-path Convolutional Neural Network for Semantic Segmentation of Lumbar vertebrae, sacrum,

Similar

Semantic segmentation and shape detection of lumbar vertebrae, sacrum, and femoral heads from clinical X-ray images are important and challenging tasks. In this paper, we propose a new multi-path convolutional neural network, BiLuNet, for semantic segmentation on X-ray images. The network is capable of medical image segmentation with very limited training data. With the shape fitting of the bones, we can identify the location of the target regions very accurately for lumbar vertebra inspection. We collected our dataset and annotated by doctors for model training and performance evaluation. Compared to the state-of-the-art methods, the proposed technique provides better mIoUs and higher success rates with the same training data. The experimental results have demonstrated the feasibility of our network to perform semantic segmentation for lumbar vertebrae, sacrum, and femoral heads.

PC-Net: A Deep Network for 3D Point Clouds Analysis

Zhuo Chen, Tao Guan, Yawei Luo, Yuesong Wang

Responsive image

Auto-TLDR; PC-Net: A Hierarchical Neural Network for 3D Point Clouds Analysis

Slides Poster Similar

Due to the irregularity and sparsity of 3D point clouds, applying convolutional neural networks directly on them can be nontrivial. In this work, we propose a simple but effective approach for 3D Point Clouds analysis, named PC-Net. PC-Net directly learns on point sets and is equipped with three new operations: first, we apply a novel scale-aware neighbor search for adaptive neighborhood extracting; second, for each neighboring point, we learn a local spatial feature as a complement to their associated features; finally, at the end we use a distance re-weighted pooling to aggregate all the features from local structure. With this module, we design hierarchical neural network for point cloud understanding. For both classification and segmentation tasks, our architecture proves effective in the experiments and our models demonstrate state-of-the-art performance over existing deep learning methods on popular point cloud benchmarks.

Fine-Tuning DARTS for Image Classification

Muhammad Suhaib Tanveer, Umar Karim Khan, Chong Min Kyung

Responsive image

Auto-TLDR; Fine-Tune Neural Architecture Search using Fixed Operations

Slides Poster Similar

Neural Architecture Search (NAS) has gained attraction due to superior classification performance. Differential Architecture Search (DARTS) is a computationally light method. To limit computational resources DARTS makes numerous approximations. These approximations result in inferior performance. We propose to fine-tune DARTS using fixed operations as these are independent of these approximations. Our method offers a good trade-off between the number of parameters and classification accuracy. Our approach improves the top-1 accuracy on Fashion-MNIST, CompCars and MIO-TCD datasets by 0.56%, 0.50%, and 0.39%, respectively compared to the state-of-the-art approaches. Our approach performs better than DARTS, improving the accuracy by 0.28%, 1.64%, 0.34%, 4.5%, and 3.27% compared to DARTS, on CIFAR-10, CIFAR-100, Fashion-MNIST, CompCars, and MIO-TCD datasets, respectively.

FatNet: A Feature-Attentive Network for 3D Point Cloud Processing

Chaitanya Kaul, Nick Pears, Suresh Manandhar

Responsive image

Auto-TLDR; Feature-Attentive Neural Networks for Point Cloud Classification and Segmentation

Slides Similar

The application of deep learning to 3D point clouds is challenging due to its lack of order. Inspired by the point embeddings of PointNet and the edge embeddings of DGCNNs, we propose three improvements to the task of point cloud analysis. First, we introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings. Second, we find that applying the same attention mechanism across two different forms of feature map aggregation, max pooling and average pooling, gives better performance than either alone. Third, we observe that residual feature reuse in this setting propagates information more effectively between the layers, and makes the network easier to train. Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset, and an extremely competitive performance on the ShapeNet part segmentation challenge.