Cc-Loss: Channel Correlation Loss for Image Classification

Zeyu Song, Dongliang Chang, Zhanyu Ma, Li Xiaoxu, Zheng-Hua Tan

Responsive image

Auto-TLDR; Channel correlation loss for ad- dressing image classification

Slides Poster

The loss function is a key component in deep learning models. A commonly used loss function for classification is the cross-entropy loss, which is simple yet effective application of information theory for classification problems. Based on this loss, many other loss functions have been proposed, e.g., by adding intra-class and inter-class constraints to enhance the discriminative the ability of the learned features. However, these loss functions fail to consider the connections between the feature distribution and the model structure. Aiming at ad- dressing this problem, we propose a channel correlation loss (CC-Loss) that is able to constrain the specific relations between classes and channels as well as maintain the intra- and the inter-class separability. CC-Loss uses a channel attention module to generate channel attention of features for each sample in the training stage. Next, an Euclidean distance matrix is calculated to make the channel attention vectors associated with the same class become identical and to increase the difference between different classes. Finally, we obtain a feature embedding with good intra-class compactness and inter- class separability. Experimental results show that two different backbone models trained with the proposed CC-Loss outperform the state-of-the-art loss functions on three image classification datasets.

Similar papers

Multi-Label Contrastive Focal Loss for Pedestrian Attribute Recognition

Xiaoqiang Zheng, Zhenxia Yu, Lin Chen, Fan Zhu, Shilong Wang

Responsive image

Auto-TLDR; Multi-label Contrastive Focal Loss for Pedestrian Attribute Recognition

Slides Poster Similar

Pedestrian Attribute Recognition (PAR) has received extensive attention during the past few years. With the advances of deep constitutional neural networks (CNNs), the performance of PAR has been significantly improved. Existing methods tend to acquire attribute-specific features by designing various complex network structures with additional modules. Such additional modules, however, dramatically increase the number of parameters. Meanwhile, the problems of class imbalance and hard attribute retrieving remain underestimated in PAR. In this paper, we explore the optimization mechanism of the training processing to account for these problems and propose a new loss function called Multi-label Contrastive Focal Loss (MCFL). This proposed MCFL emphasizes the hard and minority attributes by using a separated re-weighting mechanism for different positive and negative classes to alleviate the impact of the imbalance. MCFL is also able to enlarge the gaps between the intra-class of multi-label attributes, to force CNNs to extract more subtle discriminative features. We evaluate the proposed MCFL on three large public pedestrian datasets, including RAP, PA-100K, and PETA. The experimental results indicate that the proposed MCFL with the ResNet-50 backbone is able to outperform other state-of-the-art approaches in comparison.

Dual-Attention Guided Dropblock Module for Weakly Supervised Object Localization

Junhui Yin, Siqing Zhang, Dongliang Chang, Zhanyu Ma, Jun Guo

Responsive image

Auto-TLDR; Dual-Attention Guided Dropblock for Weakly Supervised Object Localization

Slides Poster Similar

Attention mechanisms is frequently used to learn the discriminative features for better feature representations. In this paper, we extend the attention mechanism to the task of weakly supervised object localization (WSOL) and propose the dual-attention guided dropblock module (DGDM), which aims at learning the informative and complementary visual patterns for WSOL. This module contains two key components, the channel attention guided dropout (CAGD) and the spatial attention guided dropblock (SAGD). To model channel interdependencies, the CAGD ranks the channel attentions and treats the top-k attentions with the largest magnitudes as the important ones. It also keeps some low-valued elements to increase their value if they become important during training. The SAGD can efficiently remove the most discriminative information by erasing the contiguous regions of feature maps rather than individual pixels. This guides the model to capture the less discriminative parts for classification. Furthermore, it can also distinguish the foreground objects from the background regions to alleviate the attention misdirection. Experimental results demonstrate that the proposed method achieves new state-of-the-art localization performance.

Angular Sparsemax for Face Recognition

Chi Ho Chan, Josef Kittler

Responsive image

Auto-TLDR; Angular Sparsemax for Face Recognition

Slides Poster Similar

We formulate a novel loss function, called Angular Sparsemax for face recognition. The proposed loss function promotes sparseness of the hypotheses prediction function similar to Sparsemax with Fenchel-Young regularisation. With introducing an additive angular margin on the score vector, the discriminatory power of the face embedding is further improved. The proposed loss function is experimentally validated on several databases in term of recognition accuracy. Its performance compares well with the state of the art Arcface loss.

DAIL: Dataset-Aware and Invariant Learning for Face Recognition

Gaoang Wang, Chen Lin, Tianqiang Liu, Mingwei He, Jiebo Luo

Responsive image

Auto-TLDR; DAIL: Dataset-Aware and Invariant Learning for Face Recognition

Slides Poster Similar

To achieve good performance in face recognition, a large scale training dataset is usually required. A simple yet effective way for improving the recognition performance is to use a dataset as large as possible by combining multiple datasets in the training. However, it is problematic and troublesome to naively combine different datasets due to two major issues. Firstly, the same person can possibly appear in different datasets, leading to the identity overlapping issue between different datasets. Natively treating the same person as different classes in different datasets during training will affect back-propagation and generate non-representative embeddings. On the other hand, manually cleaning labels will take a lot of human efforts, especially when there are millions of images and thousands of identities. Secondly, different datasets are collected in different situations and thus will lead to different domain distributions. Natively combining datasets will lead to domain distribution differences and make it difficult to learn domain invariant embeddings across different datasets. In this paper, we propose DAIL: Dataset-Aware and Invariant Learning to resolve the above-mentioned issues. To solve the first issue of identity overlapping, we propose a dataset-aware loss for multi-dataset training by reducing the penalty when the same person appears in multiple datasets. This can be readily achieved with a modified softmax loss with a dataset-aware term. To solve the second issue, the domain adaptation with gradient reversal layers is employed for dataset invariant learning. The proposed approach not only achieves state-of-the-art results on several commonly used face recognition validation sets, like LFW, CFP-FP, AgeDB-30, but also shows great benefit for practical usage.

Cam-Softmax for Discriminative Deep Feature Learning

Tamas Suveges, Stephen James Mckenna

Responsive image

Auto-TLDR; Cam-Softmax: A Generalisation of Activations and Softmax for Deep Feature Spaces

Slides Poster Similar

Deep convolutional neural networks are widely used to learn feature spaces for image classification tasks. We propose cam-softmax, a generalisation of the final layer activations and softmax function, that encourages deep feature spaces to exhibit high intra-class compactness and high inter-class separability. We provide an algorithm to automatically adapt the method's main hyperparameter so that it gradually diverges from the standard activations and softmax method during training. We report experiments using CASIA-Webface, LFW, and YTF face datasets demonstrating that cam-softmax leads to representations well suited to open-set face recognition and face pair matching. Furthermore, we provide empirical evidence that cam-softmax provides some robustness to class labelling errors in training data, making it of potential use for deep learning from large datasets with poorly verified labels.

G-FAN: Graph-Based Feature Aggregation Network for Video Face Recognition

He Zhao, Yongjie Shi, Xin Tong, Jingsi Wen, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Graph-based Feature Aggregation Network for Video Face Recognition

Slides Poster Similar

In this paper, we propose a graph-based feature aggregation network (G-FAN) for video face recognition. Compared with the still image, video face recognition exhibits great challenges due to huge intra-class variability and high inter-class ambiguity. To address this problem, our G-FAN first uses a Convolutional Neural Network to extract deep features for every input face of a subject. Then, we build an affinity graph based on the relation between facial features and apply Graph Convolutional Network to generate fine-grained quality vectors for each frame. Finally, the features among multiple frames are adaptively aggregated into a discriminative vector to represent a video face. Different from previous works that take a single image as input, our G-FAN could utilize the correlation information between image pairs and aggregate a template of faces simultaneously. The experiments on video face recognition benchmarks, including YTF, IJB-A, and IJB-C show that: (i) G-FAN automatically learns to advocate high-quality frames while repelling low-quality ones. (ii) G-FAN significantly boosts recognition accuracy and outperforms other state-of-the-art aggregation methods.

Dual Loss for Manga Character Recognition with Imbalanced Training Data

Yonggang Li, Yafeng Zhou, Yongtao Wang, Xiaoran Qin, Zhi Tang

Responsive image

Auto-TLDR; Dual Adaptive Re-weighting Loss for Manga Character Recognition

Slides Poster Similar

Manga character recognition is a key technology for manga character retrieval and verfication. This task is very challenging since the manga character images have a long-tailed distribution and large quality variations. Training models with cross-entropy softmax loss on such imbalanced data would introduce biases to feature and class weight norm. To handle this problem, we propose a novel dual loss which is the sum of two losses: dual ring loss and dual adaptive re-weighting loss. Dual ring loss combines weight and feature soft normalization and serves as a regularization term to softmax loss. Dual adaptive re-weighting loss re-weights softmax loss according to the norm of both feature and class weight. With the proposed losses, we have achieved encouraging results on Manga109 benchmark. Specifically, compared with the baseline softmax loss, our method improves the character retrieval mAP from 35.72% to 38.88% and the character verification accuracy from 87.00% to 88.50%.

Semantic Bilinear Pooling for Fine-Grained Recognition

Xinjie Li, Chun Yang, Song-Lu Chen, Chao Zhu, Xu-Cheng Yin

Responsive image

Auto-TLDR; Semantic bilinear pooling for fine-grained recognition with hierarchical label tree

Slides Poster Similar

Naturally, fine-grained recognition, e.g., vehicle identification or bird classification, has specific hierarchical labels, where fine categories are always harder to be classified than coarse categories. However, most of the recent deep learning based methods neglect the semantic structure of fine-grained objects and do not take advantage of the traditional fine-grained recognition techniques (e.g. coarse-to-fine classification). In this paper, we propose a novel framework with a two-branch network (coarse branch and fine branch), i.e., semantic bilinear pooling, for fine-grained recognition with a hierarchical label tree. This framework can adaptively learn the semantic information from the hierarchical levels. Specifically, we design a generalized cross-entropy loss for the training of the proposed framework to fully exploit the semantic priors via considering the relevance between adjacent levels and enlarge the distance between samples of different coarse classes. Furthermore, our method leverages only the fine branch when testing so that it adds no overhead to the testing time. Experimental results show that our proposed method achieves state-of-the-art performance on four public datasets.

Fixed Simplex Coordinates for Angular Margin Loss in CapsNet

Rita Pucci, Christian Micheloni, Gian Luca Foresti, Niki Martinel

Responsive image

Auto-TLDR; angular margin loss for capsule networks

Slides Poster Similar

A more stationary and discriminative embedding is necessary for robust classification of images. We focus our attention on the newel CapsNet model and we propose the angular margin loss function in composition with margin loss. We define a fixed classifier implemented with fixed weights vectors obtained by the vertex coordinates of a simplex polytope. The advantage of using simplex polytope is that we obtain the maximal symmetry for stationary features angularly centred. Each weight vector is to be considered as the centroid of a class in the dataset. The embedding of an image is obtained through the capsule network encoding phase, that is identified as digitcaps matrix. Based on the centroids from the simplex coordinates and the embedding from the model, we compute the angular distance between the image embedding and the centroid of the correspondent class of the image. We take this angular distance as angular margin loss. We keep the computation proposed for margin loss in the original architecture of CapsNet. We train the model to minimise the angular between the embedding and the centroid of the class and maximise the magnitude of the embedding for the predicted class. The experiments on different datasets demonstrate that the angular margin loss improves the capability of capsule networks with complex datasets.

Rethinking of Deep Models Parameters with Respect to Data Distribution

Shitala Prasad, Dongyun Lin, Yiqun Li, Sheng Dong, Zaw Min Oo

Responsive image

Auto-TLDR; A progressive stepwise training strategy for deep neural networks

Slides Poster Similar

The performance of deep learning models are driven by various parameters but to tune all of them every time, for every dataset, is a heuristic practice. In this paper, unlike the common practice of decaying the learning rate, we propose a step-wise training strategy where the learning rate and the batch size are tuned based on the dataset size. Here, the given dataset size is progressively increased during the training to boost the network performance without saturating the learning curve, after certain epochs. We conducted extensive experiments on multiple networks and datasets to validate the proposed training strategy. The experimental results proves our hypothesis that the learning rate, the batch size and the data size are interrelated and can improve the network accuracy if an optimal progressive stepwise training strategy is applied. The proposed strategy also the overall training computational cost is reduced.

An Experimental Evaluation of Recent Face Recognition Losses for Deepfake Detection

Yu-Cheng Liu, Chia-Ming Chang, I-Hsuan Chen, Yu Ju Ku, Jun-Cheng Chen

Responsive image

Auto-TLDR; Deepfake Classification and Detection using Loss Functions for Face Recognition

Slides Poster Similar

Due to the recent breakthroughs of deep generative models, the fake faces, also known as deepfake which has been abused to deceive the general public, can be easily produced at scale and in very high fidelity. Many works focus on exploring various network architectures or various artifacts produced by deep generative models. Instead, in this work, we focus on the loss functions which have been shown to play a significant role in the context of face recognition. We perform a thorough study of several recent state-of-the-art losses commonly used in face recognition task for deepfake classification and detection since the current deepfake is highly related to face generation. With extensive experiments on the challenging FaceForensic++ and Celeb-DF datasets, the evaluation results provide a clear overview of the performance comparisons of different loss functions and generalization capability across different deepfake data.

Context-Aware Residual Module for Image Classification

Jing Bai, Ran Chen

Responsive image

Auto-TLDR; Context-Aware Residual Module for Image Classification

Slides Poster Similar

Attention module has achieved great success in numerous vision tasks. However, existing visual attention modules generally consider the features of a single-scale, and cannot make full use of their multi-scale contextual information. Meanwhile, the multi-scale spatial feature representation has demonstrated its outstanding performance in a wide range of applications. However, the multi-scale features are always represented in a layer-wise manner, i.e. it is impossible to know their contextual information at a granular level. Focusing on the above issue, a context-aware residual module for image classification is proposed in this paper. It consists of a novel multi-scale channel attention module MSCAM to learn refined channel weights by considering the visual features of its own scale and its surrounding fields, and a multi-scale spatial aware module MSSAM to further capture more spatial information. Either or both of the two modules can be plugged into any CNN-based backbone image classification architecture with a short residual connection to obtain the context-aware enhanced features. The experiments on public image recognition datasets including CIFAR10, CIFAR100,Tiny-ImageNet and ImageNet consistently demonstrate that our proposed modules significantly outperforms a wide-used state-of-the-art methods, e.g., ResNet and the lightweight networks of MobileNet and SqueezeeNet.

Multi-Order Feature Statistical Model for Fine-Grained Visual Categorization

Qingtao Wang, Ke Zhang, Shaoli Huang, Lianbo Zhang, Jin Fan

Responsive image

Auto-TLDR; Multi-Order Feature Statistical Method for Fine-Grained Visual Categorization

Slides Poster Similar

Fine-grained visual categorization aims to learn a robust image representation modeling subtle differences from similar categories. Existing methods in this field tackle the problem by designing complex frameworks, which produce high-level features by performing first-order or second-order pooling. Despite the impressive performance achieved by these strategies, the single-order networks only carry linear or non-linear information of the last convolutional layer, neglecting the fact that feature from different orders are mutually complementary. In this paper, we propose a Multi-Order Feature Statistical Method (MOFS), which learns fine-grained features characterizing multiple orders. Specifically, the MOFS consists of two sub-modules: (i) a first-order module modeling both mid-level and high-level features. (ii) a covariance feature statistical module capturing high-order features. By deploying these two sub-modules on the top of existing backbone networks, MOFS simultaneously captures multi-level of discrimative patters including local, global and co-related patters. We evaluate the proposed method on three challenging benchmarks, namely CUB-200-2011, Stanford Cars, and FGVC-Aircraft. Compared with state-of-the-art methods, experiments results exhibit superior performance in recognizing fine-grained objects

Meta Generalized Network for Few-Shot Classification

Wei Wu, Shanmin Pang, Zhiqiang Tian, Yaochen Li

Responsive image

Auto-TLDR; Meta Generalized Network for Few-Shot Classification

Similar

Few-shot classification aims to learn a well performance model with very limited labeled examples. There are mainly two directions for this aim, namely, meta- and metric-learning. Meta learning trains models in a particular way to fast adapt to new tasks, but it neglects variational features of images. Metric learning considers relationships among same or different classes, however on the downside, it usually fails to achieve competitive performance on unseen boundary examples. In this paper, we propose a Meta Generalized Network (MGNet) that aims to combine advantages of both meta- and metric-learning. There are two novel components in MGNet. Specifically, we first develop a meta backbone training method that both learns a flexible feature extractor and a classifier initializer efficiently, delightedly leading to fast adaption to unseen few-shot tasks without overfitting. Second, we design a trainable adaptive interval model to improve the cosine classifier, which increases the recognition accuracy of hard examples. We train the meta backbone in the training stage by all classes, and fine-tune the meta-backbone as well as train the adaptive classifier in the testing stage.

TAAN: Task-Aware Attention Network for Few-Shot Classification

Zhe Wang, Li Liu, Fanzhang Li

Responsive image

Auto-TLDR; TAAN: Task-Aware Attention Network for Few-Shot Classification

Slides Poster Similar

Few-shot classification aims to recognize unlabeled samples from unseen classes given only a few labeled samples.Current approaches of few-shot learning usually employ a metriclearning framework to learn a feature similarity comparison between a query (test) example and the few support (training) examples. However, these approaches all extract features from samples independently without looking at the entire task as a whole, and so fail to provide an enough discrimination to features. Moreover, the existing approaches lack the ability to select the most relevant features for the task at hand. In this work, we propose a novel algorithm called Task-Aware Attention Network (TAAN) to address the above problems in few-shot classification. By inserting a Task-Relevant Channel Attention Module into metric-based few-shot learners, TAAN generates channel attentions for each sample by aggregating the context of the entire support set and identifies the most relevant features for similarity comparison. The experiment demonstrates that TAAN is competitive in overall performance comparing to the recent state-of-the-art systems and improves the performance considerably over baseline systems on both mini-ImageNet and tiered-ImageNet benchmarks.

Building Computationally Efficient and Well-Generalizing Person Re-Identification Models with Metric Learning

Vladislav Sovrasov, Dmitry Sidnev

Responsive image

Auto-TLDR; Cross-Domain Generalization in Person Re-identification using Omni-Scale Network

Slides Similar

This work considers the problem of domain shift in person re-identification.Being trained on one dataset, a re-identification model usually performs much worse on unseen data. Partially this gap is caused by the relatively small scale of person re-identification datasets (compared to face recognition ones, for instance), but it is also related to training objectives. We propose to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models. We use recently proposed Omni-Scale Network (OSNet) architecture combined with several training tricks and architecture adjustments to obtain state-of-the art results in cross-domain generalization problem on a large-scale MSMT17 dataset in three setups: MSMT17-all->DukeMTMC, MSMT17-train->Market1501 and MSMT17-all->Market1501.

Can Data Placement Be Effective for Neural Networks Classification Tasks? Introducing the Orthogonal Loss

Brais Cancela, Veronica Bolon-Canedo, Amparo Alonso-Betanzos

Responsive image

Auto-TLDR; Spatial Placement for Neural Network Training Loss Functions

Slides Poster Similar

Traditionally, a Neural Network classification training loss function follows the same principle: minimizing the distance between samples that belong to the same class, while maximizing the distance to the other classes. There are no restrictions on the spatial placement of deep features (last layer input). This paper addresses this issue when dealing with Neural Networks, providing a set of loss functions that are able to train a classifier by forcing the deep features to be projected over a predefined orthogonal basis. Experimental results shows that these `data placement' functions can overcome the training accuracy provided by the classic cross-entropy loss function.

Person Recognition with HGR Maximal Correlation on Multimodal Data

Yihua Liang, Fei Ma, Yang Li, Shao-Lun Huang

Responsive image

Auto-TLDR; A correlation-based multimodal person recognition framework that learns discriminative embeddings of persons by joint learning visual features and audio features

Slides Poster Similar

Multimodal person recognition is a common task in video analysis and public surveillance, where information from multiple modalities, such as images and audio extracted from videos, are used to jointly determine the identity of a person. Previous person recognition techniques either use only uni-modal data or only consider shared representations between different input modalities, while leaving the extraction of their relationship with identity information to downstream tasks. Furthermore, real-world data often contain noise, which makes recognition more challenging practical situations. In our work, we propose a novel correlation-based multimodal person recognition framework that is relatively simple but can efficaciously learn supervised information in multimodal data fusion and resist noise. Specifically, our framework learns a discriminative embeddings of persons by joint learning visual features and audio features while maximizing HGR maximal correlation among multimodal input and persons' identities. Experiments are done on a subset of Voxceleb2. Compared with state-of-the-art methods, the proposed method demonstrates an improvement of accuracy and robustness to noise.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Self and Channel Attention Network for Person Re-Identification

Asad Munir, Niki Martinel, Christian Micheloni

Responsive image

Auto-TLDR; SCAN: Self and Channel Attention Network for Person Re-identification

Slides Poster Similar

Recent research has shown promising results for person re-identification by focusing on several trends. One is designing efficient metric learning loss functions such as triplet loss family to learn the most discriminative representations. The other is learning local features by designing part based architectures to form an informative descriptor from semantically coherent parts. Some efforts adjust distant outliers to their most similar positions by using soft attention and learn the relationship between distant similar features. However, only a few prior efforts focus on channel-wise dependencies and learn non-local sharp similar part features directly for the degraded data in the person re-identification task. In this paper, we propose a novel Self and Channel Attention Network (SCAN) to model long-range dependencies between channels and feature maps. We add multiple classifiers to learn discriminative global features by using classification loss. Self Attention (SA) module and Channel Attention (CA) module are introduced to model non-local and channel-wise dependencies in the learned features. Spectral normalization is applied to the whole network to stabilize the training process. Experimental results on the person re-identification benchmarks show the proposed components achieve significant improvement with respect to the baseline.

Exploiting Knowledge Embedded Soft Labels for Image Recognition

Lixian Yuan, Riquan Chen, Hefeng Wu, Tianshui Chen, Wentao Wang, Pei Chen

Responsive image

Auto-TLDR; A Soft Label Vector for Image Recognition

Slides Poster Similar

Objects from correlated classes usually share highly similar appearances while objects from uncorrelated classes are very different. Most of current image recognition works treat each class independently, which ignores these class correlations and inevitably leads to sub-optimal performance in many cases. Fortunately, object classes inherently form a hierarchy with different levels of abstraction and this hierarchy encodes rich correlations among different classes. In this work, we utilize a soft label vector that encodes the prior knowledge of class correlations as extra regularization to train the image classifiers. Specifically, for each class, instead of simply using a one-hot vector, we assign a high value to its correlated classes and assign small values to those uncorrelated ones, thus generating knowledge embedded soft labels. We conduct experiments on both general and fine-grained image recognition benchmarks and demonstrate its superiority compared with existing methods.

Attentive Part-Aware Networks for Partial Person Re-Identification

Lijuan Huo, Chunfeng Song, Zhengyi Liu, Zhaoxiang Zhang

Responsive image

Auto-TLDR; Part-Aware Learning for Partial Person Re-identification

Slides Poster Similar

Partial person re-identification (re-ID) refers to re-identify a person through occluded images. It suffers from two major challenges, i.e., insufficient training data and incomplete probe image. In this paper, we introduce an automatic data augmentation module and a part-aware learning method for partial re-identification. On the one hand, we adopt the data augmentation to enhance the training data and help learns more stabler partial features. On the other hand, we intuitively find that the partial person images usually have fixed percentages of parts, therefore, in partial person re-id task, the probe image could be cropped from the pictures and divided into several different partial types following fixed ratios. Based on the cropped images, we propose the Cropping Type Consistency (CTC) loss to classify the cropping types of partial images. Moreover, in order to help the network better fit the generated and cropped data, we incorporate the Block Attention Mechanism (BAM) into the framework for attentive learning. To enhance the retrieval performance in the inference stage, we implement cropping on gallery images according to the predicted types of probe partial images. Through calculating feature distances between the partial image and the cropped holistic gallery images, we can recognize the right person from the gallery. To validate the effectiveness of our approach, we conduct extensive experiments on the partial re-ID benchmarks and achieve state-of-the-art performance.

Contextual Classification Using Self-Supervised Auxiliary Models for Deep Neural Networks

Sebastian Palacio, Philipp Engler, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Self-Supervised Autogenous Learning for Deep Neural Networks

Slides Poster Similar

Classification problems solved with deep neural networks (DNNs) typically rely on a closed world paradigm, and optimize over a single objective (e.g., minimization of the cross- entropy loss). This setup dismisses all kinds of supporting signals that can be used to reinforce the existence or absence of particular patterns. The increasing need for models that are interpretable by design makes the inclusion of said contextual signals a crucial necessity. To this end, we introduce the notion of Self-Supervised Autogenous Learning (SSAL). A SSAL objective is realized through one or more additional targets that are derived from the original supervised classification task, following architectural principles found in multi-task learning. SSAL branches impose low-level priors into the optimization process (e.g., grouping). The ability of using SSAL branches during inference, allow models to converge faster, focusing on a richer set of class-relevant features. We equip state-of-the-art DNNs with SSAL objectives and report consistent improvements for all of them on CIFAR100 and Imagenet. We show that SSAL models outperform similar state-of-the-art methods focused on contextual loss functions, auxiliary branches and hierarchical priors.

Dynamic Multi-Path Neural Network

Yingcheng Su, Yichao Wu, Ken Chen, Ding Liang, Xiaolin Hu

Responsive image

Auto-TLDR; Dynamic Multi-path Neural Network

Slides Similar

Although deeper and larger neural networks have achieved better performance, due to overwhelming burden on computation, they cannot meet the demands of deployment on resource-limited devices. An effective strategy to address this problem is to make use of dynamic inference mechanism, which changes the inference path for different samples at runtime. Existing methods only reduce the depth by skipping an entire specific layer, which may lose important information in this layer. In this paper, we propose a novel method called Dynamic Multi-path Neural Network (DMNN), which provides more topology choices in terms of both width and depth on the fly. For better modelling the inference path selection, we further introduce previous state and object category information to guide the training process. Compared to previous dynamic inference techniques, the proposed method is more flexible and easier to incorporate into most modern network architectures. Experimental results on ImageNet and CIFAR-100 demonstrate the superiority of our method on both efficiency and classification accuracy.

Improved Deep Classwise Hashing with Centers Similarity Learning for Image Retrieval

Ming Zhang, Hong Yan

Responsive image

Auto-TLDR; Deep Classwise Hashing for Image Retrieval Using Center Similarity Learning

Slides Poster Similar

Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.

GuCNet: A Guided Clustering-Based Network for Improved Classification

Ushasi Chaudhuri, Syomantak Chaudhuri, Subhasis Chaudhuri

Responsive image

Auto-TLDR; Semantic Classification of Challenging Dataset Using Guide Datasets

Slides Poster Similar

We deal with the problem of semantic classification of challenging and highly-cluttered dataset. We present a novel, and yet a very simple classification technique by leveraging the ease of classifiability of any existing well separable dataset for guidance. Since the guide dataset which may or may not have any semantic relationship with the experimental dataset, forms well separable clusters in the feature set, the proposed network tries to embed class-wise features of the challenging dataset to those distinct clusters of the guide set, making them more separable. Depending on the availability, we propose two types of guide sets: one using texture (image) guides and another using prototype vectors representing cluster centers. Experimental results obtained on the challenging benchmark RSSCN, LSUN, and TU-Berlin datasets establish the efficacy of the proposed method as we outperform the existing state-of-the-art techniques by a considerable margin.

Progressive Cluster Purification for Unsupervised Feature Learning

Yifei Zhang, Chang Liu, Yu Zhou, Wei Wang, Weiping Wang, Qixiang Ye

Responsive image

Auto-TLDR; Progressive Cluster Purification for Unsupervised Feature Learning

Slides Poster Similar

In unsupervised feature learning, sample specificity based methods ignore the inter-class information, which deteriorates the discriminative capability of representation models. Clustering based methods are error-prone to explore the complete class boundary information due to the inevitable class inconsistent samples in each cluster. In this work, we propose a novel clustering based method, which, by iteratively excluding class inconsistent samples during progressive cluster formation, alleviates the impact of noise samples in a simple-yet-effective manner. Our approach, referred to as Progressive Cluster Purification (PCP), implements progressive clustering by gradually reducing the number of clusters during training, while the sizes of clusters continuously expand consistently with the growth of model representation capability. With a well-designed cluster purification mechanism, it further purifies clusters by filtering noise samples which facilitate the subsequent feature learning by utilizing the refined clusters as pseudo-labels. Experiments on commonly used benchmarks demonstrate that the proposed PCP improves baseline method with significant margins. Our code will be available at https://github.com/zhangyifei0115/PCP.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Second-Order Attention Guided Convolutional Activations for Visual Recognition

Shannan Chen, Qian Wang, Qiule Sun, Bin Liu, Jianxin Zhang, Qiang Zhang

Responsive image

Auto-TLDR; Second-order Attention Guided Network for Convolutional Neural Networks for Visual Recognition

Slides Poster Similar

Recently, modeling deep convolutional activations by the global second-order pooling has shown great advance on visual recognition tasks. However, most of the existing deep second-order statistical models mainly compute second-order statistics of activations of the last convolutional layer as image representations, and they seldom introduce second-order statistics into earlier layers to better fit network topology, thus limiting the representational ability to a certain extent. Motivated by the flexibility of attention blocks that are commonly plugged into intermediate layers of deep convolutional networks (ConvNets), this work makes an attempt to combine deep second-order statistics with attention mechanisms in ConvNets, and further proposes a novel Second-order Attention Guided Network (SoAG-Net) for visual recognition. More specifically, SoAG-Net involves several SoAG modules seemingly inserted into intermediate layers of the network, in which SoAG collects second-order statistics of convolutional activations by polynomial kernel approximation to predict channel-wise attention maps utilized for guiding the learning of convolutional activations through tensor scaling along channel dimension. SoAG improves the nonlinearity of ConvNets and enables ConvNets to fit more complicated distribution of convolutional activations. Experiment results on three commonly used datasets illuminate that SoAG-Net outperforms its counterparts and achieves competitive performance with state-of-the-art models under the same backbone.

Aggregating Object Features Based on Attention Weights for Fine-Grained Image Retrieval

Hongli Lin, Yongqi Song, Zixuan Zeng, Weisheng Wang

Responsive image

Auto-TLDR; DSAW: Unsupervised Dual-selection for Fine-Grained Image Retrieval

Similar

Object localization and local feature representation are key issues in fine-grained image retrieval. However, the existing unsupervised methods still need to be improved in these two aspects. For conquering these issues in a unified framework, a novel unsupervised scheme, named DSAW for short, is presented in this paper. Firstly, we proposed a dual-selection (DS) method, which achieves more accurate object localization by using adaptive threshold method to perform feature selection on local and global activation map in turn. Secondly, a novel and faster self-attention weights (AW) method is developed to weight local features by measuring their importance in the global context. Finally, we also evaluated the performance of the proposed method on five fine-grained image datasets and the results showed that our DSAW outperformed the existing best method.

Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

Can Zhang, Hong Liu, Wei Guo, Mang Ye

Responsive image

Auto-TLDR; Multi-Scale Part-Aware Cascading for RGB-Infrared Person Re-identification

Slides Poster Similar

RGB-Infrared person re-identification (RGB-IR Re-ID) aims to matching persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in surveillance system under poor light conditions. Facing great challenges in complex variances including conventional single-modality and additional inter-modality discrepancies, most of existing RGB-IR Re-ID methods directly work on global features for simultaneous elimination, whereas modality-specific noises and modality-shared features are not well considered. To address these issues, a novel Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global in a cascading manner, which results in an unified representation robust to noises. Moreover, a marginal exponential center (MeCen) loss is introduced to jointly eliminate mixed variances, which enables to model cross-modality correlations on sharable salient features. Extensive experiments are conducted for demonstration that the proposed method outperforms all the state-of-the-arts by a large margin.

An Improved Bilinear Pooling Method for Image-Based Action Recognition

Wei Wu, Jiale Yu

Responsive image

Auto-TLDR; An improved bilinear pooling method for image-based action recognition

Slides Poster Similar

Action recognition in still images is a challenging task because of the complexity of human motions and the variance of background in the same action category. And some actions typically occur in fine-grained categories, with little visual differences between these categories. So extracting discriminative features or modeling various semantic parts is essential for image-based action recognition. Many methods apply expensive manual annotations to learn discriminative parts information for action recognition, which may severely discourage potential applications in real life. In recent years, bilinear pooling method has shown its effectiveness for image classification due to its learning distinctive features automatically. Inspired by this model, in this paper, an improved bilinear pooling method is proposed for avoiding the shortcomings of traditional bilinear pooling methods. The previous bilinear pooling approaches contain lots of noisy background or harmful feature information, which limit their application for action recognition. In our method, the attention mechanism is introduced into hierarchical bilinear pooling framework with mask aggregation for action recognition. The proposed model can generate the distinctive and ROI-aware feature information by combining multiple attention mask maps from the channel and spatial-wise attention features. To be more specific, our method makes the network to better pay attention to discriminative region of the vital objects in an image. We verify our model on the two challenging datasets: 1) Stanford 40 action dataset and 2) our action dataset that includes 60 categories. Experimental results demonstrate the effectiveness of our approach, which is superior to the traditional and state-of-the-art methods.

DFH-GAN: A Deep Face Hashing with Generative Adversarial Network

Bo Xiao, Lanxiang Zhou, Yifei Wang, Qiangfang Xu

Responsive image

Auto-TLDR; Deep Face Hashing with GAN for Face Image Retrieval

Slides Poster Similar

Face Image retrieval is one of the key research directions in computer vision field. Thanks to the rapid development of deep neural network in recent years, deep hashing has achieved good performance in the field of image retrieval. But for large-scale face image retrieval, the performance needs to be further improved. In this paper, we propose Deep Face Hashing with GAN (DFH-GAN), a novel deep hashing method for face image retrieval, which mainly consists of three components: a generator network for generating synthesized images, a discriminator network with a shared CNN to learn multi-domain face feature, and a hash encoding network to generate compact binary hash codes. The generator network is used to perform data augmentation so that the model could learn from both real images and diverse synthesized images. We adopt a two-stage training strategy. In the first stage, the GAN is trained to generate fake images, while in the second stage, to make the network convergence faster. The model inherits the trained shared CNN of discriminator to train the DFH model by using many different supervised loss functions not only in the last layer but also in the middle layer of the network. Extensive experiments on two widely used datasets demonstrate that DFH-GAN can generate high-quality binary hash codes and exceed the performance of the state-of-the-art model greatly.

Nonlinear Ranking Loss on Riemannian Potato Embedding

Byung Hyung Kim, Yoonje Suh, Honggu Lee, Sungho Jo

Responsive image

Auto-TLDR; Riemannian Potato for Rank-based Metric Learning

Slides Poster Similar

We propose a rank-based metric learning method by leveraging a concept of the Riemannian Potato for better separating non-linear data. By exploring the geometric properties of Riemannian manifolds, the proposed loss function optimizes the measure of dispersion using the distribution of Riemannian distances between a reference sample and neighbors and builds a ranked list according to the similarities. We show the proposed function can learn a hypersphere for each class, preserving the similarity structure inside it on Riemannian manifold. As a result, compared with Euclidean distance-based metric, our method can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features, consistently outperforming state-of-the-art methods on three widely used non-linear datasets.

Quasibinary Classifier for Images with Zero and Multiple Labels

Liao Shuai, Efstratios Gavves, Changyong Oh, Cees Snoek

Responsive image

Auto-TLDR; Quasibinary Classifiers for Zero-label and Multi-label Classification

Slides Poster Similar

The softmax and binary classifier are commonly preferred for image classification applications. However, as softmax is specifically designed for categorical classification, it assumes each image has just one class label. This limits its applicability for problems where the number of labels does not equal one, most notably zero- and multi-label problems. In these challenging settings, binary classifiers are, in theory, better suited. However, as they ignore the correlation between classes, they are not as accurate and scalable in practice. In this paper, we start from the observation that the only difference between binary and softmax classifiers is their normalization function. Specifically, while the binary classifier self-normalizes its score, the softmax classifier combines the scores from all classes before normalization. On the basis of this observation we introduce a normalization function that is learnable, constant, and shared between classes and data points. By doing so, we arrive at a new type of binary classifier that we coin quasibinary classifier. We show in a variety of image classification settings, and on several datasets, that quasibinary classifiers are considerably better in classification settings where regular binary and softmax classifiers suffer, including zero-label and multi-label classification. What is more, we show that quasibinary classifiers yield well-calibrated probabilities allowing for direct and reliable comparisons, not only between classes but also between data points.

Attentive Hybrid Feature Based a Two-Step Fusion for Facial Expression Recognition

Jun Weng, Yang Yang, Zichang Tan, Zhen Lei

Responsive image

Auto-TLDR; Attentive Hybrid Architecture for Facial Expression Recognition

Slides Poster Similar

Facial expression recognition is inherently a challenging task, especially for the in-the-wild images with various occlusions and large pose variations, which may lead to the loss of some crucial information. To address it, in this paper, we propose an attentive hybrid architecture (AHA) which learns global, local and integrated features based on different face regions. Compared with one type of feature, our extracted features own complementary information and can reduce the loss of crucial information. Specifically, AHA contains three branches, where all sub-networks in those branches employ the attention mechanism to further localize the interested pixels/regions. Moreover, we propose a two-step fusion strategy based on LSTM to deeply explore the hidden correlations among different face regions. Extensive experiments on four popular expression databases (i.e., CK+, FER-2013, SFEW 2.0, RAF-DB) show the effectiveness of the proposed method.

A Close Look at Deep Learning with Small Data

Lorenzo Brigato, Luca Iocchi

Responsive image

Auto-TLDR; Low-Complex Neural Networks for Small Data Conditions

Slides Poster Similar

In this work, we perform a wide variety of experiments with different Deep Learning architectures in small data conditions. We show that model complexity is a critical factor when only a few samples per class are available. Differently from the literature, we improve the state of the art using low complexity models. We show that standard convolutional neural networks with relatively few parameters are effective in this scenario. In many of our experiments, low complexity models outperform state-of-the-art architectures. Moreover, we propose a novel network that uses an unsupervised loss to regularize its training. Such architecture either improves the results either performs comparably well to low capacity networks. Surprisingly, experiments show that the dynamic data augmentation pipeline is not beneficial in this particular domain. Statically augmenting the dataset might be a promising research direction while dropout maintains its role as a good regularizer.

Augmented Bi-Path Network for Few-Shot Learning

Baoming Yan, Chen Zhou, Bo Zhao, Kan Guo, Yang Jiang, Xiaobo Li, Zhang Ming, Yizhou Wang

Responsive image

Auto-TLDR; Augmented Bi-path Network for Few-shot Learning

Slides Poster Similar

Few-shot Learning (FSL) which aims to learn from few labeled training data is becoming a popular research topic, due to the expensive labeling cost in many real-world applications. One kind of successful FSL method learns to compare the testing (query) image and training (support) image by simply concatenating the features of two images and feeding it into the neural network. However, with few labeled data in each class, the neural network has difficulty in learning or comparing the local features of two images. Such simple image-level comparison may cause serious mis-classification. To solve this problem, we propose Augmented Bi-path Network (ABNet) for learning to compare both global and local features on multi-scales. Specifically, the salient patches are extracted and embedded as the local features for every image. Then, the model learns to augment the features for better robustness. Finally, the model learns to compare global and local features separately, \emph{i.e.}, in two paths, before merging the similarities. Extensive experiments show that the proposed ABNet outperforms the state-of-the-art methods. Both quantitative and visual ablation studies are provided to verify that the proposed modules lead to more precise comparison results.

PSDNet: A Balanced Architecture of Accuracy and Parameters for Semantic Segmentation

Yue Liu, Zhichao Lian

Responsive image

Auto-TLDR; Pyramid Pooling Module with SE1Cblock and D2SUpsample Network (PSDNet)

Slides Poster Similar

Abstract—In this paper, we present our Pyramid Pooling Module (PPM) with SE1Cblock and D2SUpsample Network (PSDNet), a novel architecture for accurate semantic segmentation. Started from the known work called Pyramid Scene Parsing Network (PSPNet), PSDNet takes advantage of pyramid pooling structure with channel attention module and feature transform module in Pyramid Pooling Module (PPM). The enhanced PPM with these two components can strengthen context information flowing in the network instead of damaging it. The channel attention module we mentioned is an improved “Squeeze and Excitation with 1D Convolution” (SE1C) block which can explicitly model interrelationship between channels with fewer number of parameters. We propose a feature transform module named “Depth to Space Upsampling” (D2SUpsample) in the PPM which keeps integrity of features by transforming features while interpolating features, at the same time reducing parameters. In addition, we introduce a joint strategy in SE1Cblock which combines two variants of global pooling without increasing parameters. Compared with PSPNet, our work achieves higher accuracy on public datasets with 73.97% mIoU and 82.89% mAcc accuracy on Cityscapes Dataset based on ResNet50 backbone.

Revisiting ImprovedGAN with Metric Learning for Semi-Supervised Learning

Jaewoo Park, Yoon Gyo Jung, Andrew Teoh

Responsive image

Auto-TLDR; Improving ImprovedGAN with Metric Learning for Semi-supervised Learning

Slides Poster Similar

Semi-supervised Learning (SSL) is a classical problem where a model needs to solve classification as it is trained on a partially labeled train data. After the introduction of generative adversarial network (GAN) and its success, the model has been modified to be applicable to SSL. ImprovedGAN as a representative model for GAN-based SSL, it showed promising performance on the SSL problem. However, the inner mechanism of this model has been only partially revealed. In this work, we revisit ImprovedGAN with a fresh perspective based on metric learning. In particular, we interpret ImprovedGAN by general pair weighting, a recent framework in metric learning. Based on this interpretation, we derive two theoretical properties of ImprovedGAN: (i) its discriminator learns to make confident predictions over real samples, (ii) the adversarial interaction in ImprovedGAN along with semi-supervision results in cluster separation by reducing intra-class variance and increasing the inter-class variance, thereby improving the model generalization. These theoretical implications are experimentally supported. Motivated by the findings, we propose a variant of ImprovedGAN, called Intensified ImprovedGAN (I2GAN), where its cluster separation characteristic is enhanced by two proposed techniques: (a) the unsupervised discriminator loss is scaled up and (b) the generated batch size is enlarged. As a result, I2GAN produces better class-wise cluster separation and, hence, generalization. Extensive experiments on the widely known benchmark data sets verify the effectiveness of our proposed method, showing that its performance is better than or comparable to other GAN based SSL models.

A Duplex Spatiotemporal Filtering Network for Video-Based Person Re-Identification

Chong Zheng, Ping Wei, Nanning Zheng

Responsive image

Auto-TLDR; Duplex Spatiotemporal Filtering Network for Person Re-identification in Videos

Slides Poster Similar

Video-based person re-identification plays important roles in surveillance video analysis. This paper proposes a novel Duplex Spatiotemporal Filtering Network (DSFN) to re-identify persons in videos. A video sequence is represented as a duplex spatiotemporal matrix. DSFN model containing a group of filters performs filtering at feature level in both temporal and spatial dimensions, by which the model focuses on feature-level semantic information rather than image-level information as in the traditional filters. We propose sparse-orthogonal constraints to enforce the model to extract more discriminative features. DSFN characterizes not only the appearance features but also dynamic information such as gaits embedded in video sequences and obtains a better performance as a result. Experiments show that the proposed method outperforms state-of-the-art approaches.

Fine-Tuning DARTS for Image Classification

Muhammad Suhaib Tanveer, Umar Karim Khan, Chong Min Kyung

Responsive image

Auto-TLDR; Fine-Tune Neural Architecture Search using Fixed Operations

Slides Poster Similar

Neural Architecture Search (NAS) has gained attraction due to superior classification performance. Differential Architecture Search (DARTS) is a computationally light method. To limit computational resources DARTS makes numerous approximations. These approximations result in inferior performance. We propose to fine-tune DARTS using fixed operations as these are independent of these approximations. Our method offers a good trade-off between the number of parameters and classification accuracy. Our approach improves the top-1 accuracy on Fashion-MNIST, CompCars and MIO-TCD datasets by 0.56%, 0.50%, and 0.39%, respectively compared to the state-of-the-art approaches. Our approach performs better than DARTS, improving the accuracy by 0.28%, 1.64%, 0.34%, 4.5%, and 3.27% compared to DARTS, on CIFAR-10, CIFAR-100, Fashion-MNIST, CompCars, and MIO-TCD datasets, respectively.

Supervised Domain Adaptation Using Graph Embedding

Lukas Hedegaard, Omar Ali Sheikh-Omar, Alexandros Iosifidis

Responsive image

Auto-TLDR; Domain Adaptation from the Perspective of Multi-view Graph Embedding and Dimensionality Reduction

Slides Poster Similar

Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of multi-view graph embedding and dimensionality reduction. Instead of solving the generalised eigenvalue problem to perform the embedding, we formulate the graph-preserving criterion as loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework which generalises the prior methods CCSA and d-SNE, and enables simple and effective loss designs; an LDA-inspired instantiation of the framework leads to performance on par with the state-of-the-art on the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

Multi-Attribute Learning with Highly Imbalanced Data

Lady Viviana Beltran Beltran, Mickaël Coustaty, Nicholas Journet, Juan C. Caicedo, Antoine Doucet

Responsive image

Auto-TLDR; Data Imbalance in Multi-Attribute Deep Learning Models: Adaptation to face each one of the problems derived from imbalance

Slides Poster Similar

Data is one of the most important keys for success when studying a simple or a complex phenomenon. With the use of deep-learning exploding and its democratization, non-computer science experts may struggle to use highly complex deep learning architectures, even when straightforward models offer them suitable performances. In this article, we study the specific and common problem of data imbalance in real databases as most of the bad performance problems are due to the data itself. We review two points: first, when the data contains different levels of imbalance. Classical imbalanced learning strategies cannot be directly applied when using multi-attribute deep learning models, i.e., multi-task and multi-label architectures. Therefore, one of our contributions is our proposed adaptations to face each one of the problems derived from imbalance. Second, we demonstrate that with little to no imbalance, straightforward deep learning models work well. However, for non-experts, these models can be seen as black boxes, where all the effort is put in pre-processing the data. To simplify the problem, we performed the classification task ignoring information that is costly to extract, such as part localization which is widely used in the state of the art of attribute classification. We make use of a widely known attribute database, CUB-200-2011 - CUB as our main use case due to its deeply imbalanced nature, along with two better structured databases: celebA and Awa2. All of them contain multi-attribute annotations. The results of highly fine-grained attribute learning over CUB demonstrate that in the presence of imbalance, by using our proposed strategies is possible to have competitive results against the state of the art, while taking advantage of multi-attribute deep learning models. We also report results for two better-structured databases over which our models over-perform the state of the art.

Nearest Neighbor Classification Based on Activation Space of Convolutional Neural Network

Xinbo Ju, Shuo Shao, Huan Long, Weizhe Wang

Responsive image

Auto-TLDR; Convolutional Neural Network with Convex Hull Based Classifier

Poster Similar

In this paper, we propose a new image classifier based on the incorporation of the nearest neighbor algorithm and the activation space of convolutional neural network. The classifier has been successfully used on some state-of-the-art models and further improve their performance. Main technique tools we used are convex hull based classification and its acceleration. We find that 1) in several cases, the classifier can reach higher accuracy than original CNN; 2) by sampling, the classifier can work more efficiently; 3) centroid of each convex hull shows surprising ability in classification. Most of the work has strong geometry meanings, which helps us have a new understanding about convolutional layers.

Feature-Dependent Cross-Connections in Multi-Path Neural Networks

Dumindu Tissera, Kasun Vithanage, Rukshan Wijesinghe, Kumara Kahatapitiya, Subha Fernando, Ranga Rodrigo

Responsive image

Auto-TLDR; Multi-path Networks for Adaptive Feature Extraction

Slides Poster Similar

Learning a particular task from a dataset, samples in which originate from diverse contexts, is challenging, and usually addressed by deepening or widening standard neural networks. As opposed to conventional network widening, multi-path architectures restrict the quadratic increment of complexity to a linear scale. However, existing multi-column/path networks or model ensembling methods do not consider any feature-dependant allocation of parallel resources, and therefore, tend to learn redundant features. Given a layer in a multi-path network, if we restrict each path to learn a context-specific set of features and introduce a mechanism to intelligently allocate incoming feature maps to such paths, each path can specialize in a certain context, reducing the redundancy and improving the quality of extracted features. This eventually leads to better-optimized usage of parallel resources. To do this, we propose inserting feature-dependant cross-connections between parallel sets of feature maps in successive layers. The weights of these cross-connections are learned based on the input features of the particular layer. Our multi-path networks show improved image recognition accuracy at a similar complexity compared to conventional and state-of-the-art methods for deepening, widening and adaptive feature extracting, in both small and large scale datasets.