Cam-Softmax for Discriminative Deep Feature Learning

Tamas Suveges, Stephen James Mckenna

Responsive image

Auto-TLDR; Cam-Softmax: A Generalisation of Activations and Softmax for Deep Feature Spaces

Slides Poster

Deep convolutional neural networks are widely used to learn feature spaces for image classification tasks. We propose cam-softmax, a generalisation of the final layer activations and softmax function, that encourages deep feature spaces to exhibit high intra-class compactness and high inter-class separability. We provide an algorithm to automatically adapt the method's main hyperparameter so that it gradually diverges from the standard activations and softmax method during training. We report experiments using CASIA-Webface, LFW, and YTF face datasets demonstrating that cam-softmax leads to representations well suited to open-set face recognition and face pair matching. Furthermore, we provide empirical evidence that cam-softmax provides some robustness to class labelling errors in training data, making it of potential use for deep learning from large datasets with poorly verified labels.

Similar papers

Angular Sparsemax for Face Recognition

Chi Ho Chan, Josef Kittler

Responsive image

Auto-TLDR; Angular Sparsemax for Face Recognition

Slides Poster Similar

We formulate a novel loss function, called Angular Sparsemax for face recognition. The proposed loss function promotes sparseness of the hypotheses prediction function similar to Sparsemax with Fenchel-Young regularisation. With introducing an additive angular margin on the score vector, the discriminatory power of the face embedding is further improved. The proposed loss function is experimentally validated on several databases in term of recognition accuracy. Its performance compares well with the state of the art Arcface loss.

DAIL: Dataset-Aware and Invariant Learning for Face Recognition

Gaoang Wang, Chen Lin, Tianqiang Liu, Mingwei He, Jiebo Luo

Responsive image

Auto-TLDR; DAIL: Dataset-Aware and Invariant Learning for Face Recognition

Slides Poster Similar

To achieve good performance in face recognition, a large scale training dataset is usually required. A simple yet effective way for improving the recognition performance is to use a dataset as large as possible by combining multiple datasets in the training. However, it is problematic and troublesome to naively combine different datasets due to two major issues. Firstly, the same person can possibly appear in different datasets, leading to the identity overlapping issue between different datasets. Natively treating the same person as different classes in different datasets during training will affect back-propagation and generate non-representative embeddings. On the other hand, manually cleaning labels will take a lot of human efforts, especially when there are millions of images and thousands of identities. Secondly, different datasets are collected in different situations and thus will lead to different domain distributions. Natively combining datasets will lead to domain distribution differences and make it difficult to learn domain invariant embeddings across different datasets. In this paper, we propose DAIL: Dataset-Aware and Invariant Learning to resolve the above-mentioned issues. To solve the first issue of identity overlapping, we propose a dataset-aware loss for multi-dataset training by reducing the penalty when the same person appears in multiple datasets. This can be readily achieved with a modified softmax loss with a dataset-aware term. To solve the second issue, the domain adaptation with gradient reversal layers is employed for dataset invariant learning. The proposed approach not only achieves state-of-the-art results on several commonly used face recognition validation sets, like LFW, CFP-FP, AgeDB-30, but also shows great benefit for practical usage.

ClusterFace: Joint Clustering and Classification for Set-Based Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Joint Clustering and Classification for Face Recognition in the Wild

Slides Poster Similar

Deep learning technology has enabled successful modeling of complex facial features when high quality images are available. Nonetheless, accurate modeling and recognition of human faces in real world scenarios 'on the wild' or under adverse conditions remains an open problem. When unconstrained faces are mapped into deep features, variations such as illumination, pose, occlusion, etc., can create inconsistencies in the resultant feature space. Hence, deriving conclusions based on direct associations could lead to degraded performance. This rises the requirement for a basic feature space analysis prior to face recognition. This paper devises a joint clustering and classification scheme which learns deep face associations in an easy-to-hard way. Our method is based on hierarchical clustering where the early iterations tend to preserve high reliability. The rationale of our method is that a reliable clustering result can provide insights on the distribution of the feature space, that can guide the classification that follows. Experimental evaluations on three tasks, face verification, face identification and rank-order search, demonstrates better or competitive performance compared to the state-of-the-art, on all three experiments.

G-FAN: Graph-Based Feature Aggregation Network for Video Face Recognition

He Zhao, Yongjie Shi, Xin Tong, Jingsi Wen, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Graph-based Feature Aggregation Network for Video Face Recognition

Slides Poster Similar

In this paper, we propose a graph-based feature aggregation network (G-FAN) for video face recognition. Compared with the still image, video face recognition exhibits great challenges due to huge intra-class variability and high inter-class ambiguity. To address this problem, our G-FAN first uses a Convolutional Neural Network to extract deep features for every input face of a subject. Then, we build an affinity graph based on the relation between facial features and apply Graph Convolutional Network to generate fine-grained quality vectors for each frame. Finally, the features among multiple frames are adaptively aggregated into a discriminative vector to represent a video face. Different from previous works that take a single image as input, our G-FAN could utilize the correlation information between image pairs and aggregate a template of faces simultaneously. The experiments on video face recognition benchmarks, including YTF, IJB-A, and IJB-C show that: (i) G-FAN automatically learns to advocate high-quality frames while repelling low-quality ones. (ii) G-FAN significantly boosts recognition accuracy and outperforms other state-of-the-art aggregation methods.

SSDL: Self-Supervised Domain Learning for Improved Face Recognition

Samadhi Poornima Kumarasinghe Wickrama Arachchilage, Ebroul Izquierdo

Responsive image

Auto-TLDR; Self-supervised Domain Learning for Face Recognition in unconstrained environments

Slides Poster Similar

Face recognition in unconstrained environments is challenging due to variations in illumination, quality of sensing, motion blur and etc. An individual’s face appearance can vary drastically under different conditions creating a gap between train (source) and varying test (target) data. The domain gap could cause decreased performance levels in direct knowledge transfer from source to target. Despite fine-tuning with domain specific data could be an effective solution, collecting and annotating data for all domains is extremely expensive. To this end, we propose a self-supervised domain learning (SSDL) scheme that trains on triplets mined from unlabelled data. A key factor in effective discriminative learning, is selecting informative triplets. Building on most confident predictions, we follow an “easy-to-hard” scheme of alternate triplet mining and self-learning. Comprehensive experiments on four different benchmarks show that SSDL generalizes well on different domains.

Lightweight Low-Resolution Face Recognition for Surveillance Applications

Yoanna Martínez-Díaz, Heydi Mendez-Vazquez, Luis S. Luevano, Leonardo Chang, Miguel Gonzalez-Mendoza

Responsive image

Auto-TLDR; Efficiency of Lightweight Deep Face Networks on Low-Resolution Surveillance Imagery

Slides Poster Similar

Typically, real-world requirements to deploy face recognition models in unconstrained surveillance scenarios demand to identify low-resolution faces with extremely low computational cost. In the last years, several methods based on complex deep learning models have been proposed with promising recognition results but at a high computational cost. Inspired by the compactness and computation efficiency of lightweight deep face networks and their high accuracy on general face recognition tasks, in this work we propose to benchmark two recently introduced lightweight face models on low-resolution surveillance imagery to enable efficient system deployment. In this way, we conduct a comprehensive evaluation on the two typical settings: LR-to-HR and LR-to-LR matching. In addition, we investigate the effect of using trained models with down-sampled synthetic data from high-resolution images, as well as the combination of different models, for face recognition on real low-resolution images. Experimental results show that the used lightweight face models achieve state-of-the-art results on low-resolution benchmarks with low memory footprint and computational complexity. Moreover, we observed that combining models trained with different degradations improves the recognition accuracy on low-resolution surveillance imagery, which is feasible due to their low computational cost.

Dual Loss for Manga Character Recognition with Imbalanced Training Data

Yonggang Li, Yafeng Zhou, Yongtao Wang, Xiaoran Qin, Zhi Tang

Responsive image

Auto-TLDR; Dual Adaptive Re-weighting Loss for Manga Character Recognition

Slides Poster Similar

Manga character recognition is a key technology for manga character retrieval and verfication. This task is very challenging since the manga character images have a long-tailed distribution and large quality variations. Training models with cross-entropy softmax loss on such imbalanced data would introduce biases to feature and class weight norm. To handle this problem, we propose a novel dual loss which is the sum of two losses: dual ring loss and dual adaptive re-weighting loss. Dual ring loss combines weight and feature soft normalization and serves as a regularization term to softmax loss. Dual adaptive re-weighting loss re-weights softmax loss according to the norm of both feature and class weight. With the proposed losses, we have achieved encouraging results on Manga109 benchmark. Specifically, compared with the baseline softmax loss, our method improves the character retrieval mAP from 35.72% to 38.88% and the character verification accuracy from 87.00% to 88.50%.

Unsupervised Disentangling of Viewpoint and Residues Variations by Substituting Representations for Robust Face Recognition

Minsu Kim, Joanna Hong, Junho Kim, Hong Joo Lee, Yong Man Ro

Responsive image

Auto-TLDR; Unsupervised Disentangling of Identity, viewpoint, and Residue Representations for Robust Face Recognition

Slides Poster Similar

It is well-known that identity-unrelated variations (e.g., viewpoint or illumination) degrade the performances of face recognition methods. In order to handle this challenge, a robust method for disentangling the identity and view representations has drawn an attention in the machine learning area. However, existing methods learn discriminative features which require a manual supervision of such factors of variations. In this paper, we propose a novel disentangling framework through modeling three representations of identity, viewpoint, and residues (i.e., identity and pose unrelated) which do not require supervision of the variations. By jointly modeling the three representations, we enhance the disentanglement of each representation and achieve robust face recognition performance. Further, the learned viewpoint representation can be utilized for pose estimation or editing of a posed facial image. Extensive quantitative and qualitative evaluations verify the effectiveness of our proposed method which disentangles identity, viewpoint, and residues of facial images.

Fixed Simplex Coordinates for Angular Margin Loss in CapsNet

Rita Pucci, Christian Micheloni, Gian Luca Foresti, Niki Martinel

Responsive image

Auto-TLDR; angular margin loss for capsule networks

Slides Poster Similar

A more stationary and discriminative embedding is necessary for robust classification of images. We focus our attention on the newel CapsNet model and we propose the angular margin loss function in composition with margin loss. We define a fixed classifier implemented with fixed weights vectors obtained by the vertex coordinates of a simplex polytope. The advantage of using simplex polytope is that we obtain the maximal symmetry for stationary features angularly centred. Each weight vector is to be considered as the centroid of a class in the dataset. The embedding of an image is obtained through the capsule network encoding phase, that is identified as digitcaps matrix. Based on the centroids from the simplex coordinates and the embedding from the model, we compute the angular distance between the image embedding and the centroid of the correspondent class of the image. We take this angular distance as angular margin loss. We keep the computation proposed for margin loss in the original architecture of CapsNet. We train the model to minimise the angular between the embedding and the centroid of the class and maximise the magnitude of the embedding for the predicted class. The experiments on different datasets demonstrate that the angular margin loss improves the capability of capsule networks with complex datasets.

Cc-Loss: Channel Correlation Loss for Image Classification

Zeyu Song, Dongliang Chang, Zhanyu Ma, Li Xiaoxu, Zheng-Hua Tan

Responsive image

Auto-TLDR; Channel correlation loss for ad- dressing image classification

Slides Poster Similar

The loss function is a key component in deep learning models. A commonly used loss function for classification is the cross-entropy loss, which is simple yet effective application of information theory for classification problems. Based on this loss, many other loss functions have been proposed, e.g., by adding intra-class and inter-class constraints to enhance the discriminative the ability of the learned features. However, these loss functions fail to consider the connections between the feature distribution and the model structure. Aiming at ad- dressing this problem, we propose a channel correlation loss (CC-Loss) that is able to constrain the specific relations between classes and channels as well as maintain the intra- and the inter-class separability. CC-Loss uses a channel attention module to generate channel attention of features for each sample in the training stage. Next, an Euclidean distance matrix is calculated to make the channel attention vectors associated with the same class become identical and to increase the difference between different classes. Finally, we obtain a feature embedding with good intra-class compactness and inter- class separability. Experimental results show that two different backbone models trained with the proposed CC-Loss outperform the state-of-the-art loss functions on three image classification datasets.

An Experimental Evaluation of Recent Face Recognition Losses for Deepfake Detection

Yu-Cheng Liu, Chia-Ming Chang, I-Hsuan Chen, Yu Ju Ku, Jun-Cheng Chen

Responsive image

Auto-TLDR; Deepfake Classification and Detection using Loss Functions for Face Recognition

Slides Poster Similar

Due to the recent breakthroughs of deep generative models, the fake faces, also known as deepfake which has been abused to deceive the general public, can be easily produced at scale and in very high fidelity. Many works focus on exploring various network architectures or various artifacts produced by deep generative models. Instead, in this work, we focus on the loss functions which have been shown to play a significant role in the context of face recognition. We perform a thorough study of several recent state-of-the-art losses commonly used in face recognition task for deepfake classification and detection since the current deepfake is highly related to face generation. With extensive experiments on the challenging FaceForensic++ and Celeb-DF datasets, the evaluation results provide a clear overview of the performance comparisons of different loss functions and generalization capability across different deepfake data.

Building Computationally Efficient and Well-Generalizing Person Re-Identification Models with Metric Learning

Vladislav Sovrasov, Dmitry Sidnev

Responsive image

Auto-TLDR; Cross-Domain Generalization in Person Re-identification using Omni-Scale Network

Slides Similar

This work considers the problem of domain shift in person re-identification.Being trained on one dataset, a re-identification model usually performs much worse on unseen data. Partially this gap is caused by the relatively small scale of person re-identification datasets (compared to face recognition ones, for instance), but it is also related to training objectives. We propose to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models. We use recently proposed Omni-Scale Network (OSNet) architecture combined with several training tricks and architecture adjustments to obtain state-of-the art results in cross-domain generalization problem on a large-scale MSMT17 dataset in three setups: MSMT17-all->DukeMTMC, MSMT17-train->Market1501 and MSMT17-all->Market1501.

Pose-Robust Face Recognition by Deep Meta Capsule Network-Based Equivariant Embedding

Fangyu Wu, Jeremy Simon Smith, Wenjin Lu, Bailing Zhang

Responsive image

Auto-TLDR; Deep Meta Capsule Network-based Equivariant Embedding Model for Pose-Robust Face Recognition

Similar

Despite the exceptional success in face recognition related technologies, handling large pose variations still remains a key challenge. Current techniques for pose-robust face recognition either, directly extract pose-invariant features, or first synthesize a face that matches the target pose before feature extraction. It is more desirable to learn face representations equivariant to pose variations. To this end, this paper proposes a deep meta Capsule network-based Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the proposed RB-CapsNet allows DM-CEEM to learn an equivariant embedding for pose variations and achieve the desired transformation for input face images. Second, we introduce a new version of a Capsule network called RB-CapsNet to extend CapsNet to perform a profile-to-frontal face transformation in deep feature space. Third, we train the DM-CEEM in a meta way by treating a single overall classification target as multiple sub-tasks that satisfy certain unknown probabilities. In each sub-task, we sample the support and query sets randomly. The experimental results on both controlled and in-the-wild databases demonstrate the superiority of DM-CEEM over state-of-the-art.

Sample-Dependent Distance for 1 : N Identification Via Discriminative Feature Selection

Naoki Kawamura, Susumu Kubota

Responsive image

Auto-TLDR; Feature Selection Mask for 1:N Identification Problems with Binary Features

Slides Poster Similar

We focus on 1:N identification problems with binary features. Most multiclass classification methods, including identification and verification methods, use a shared metric space in which distances between samples are measured regardless of their identities. This is because dedicated metric spaces learned for each identity in the training set are of little use for the test set. In 1:N identification problems, however, gallery samples contain rich information about the test domain. Given a sample and its neighbors in the gallery set, we propose a method for calculating a discriminative feature selection mask that is used as a sample-dependent distance metric. Experiments on several re-identification datasets show that the proposed method enhances the performance of state-of-the-art feature extractors.

SoftmaxOut Transformation-Permutation Network for Facial Template Protection

Hakyoung Lee, Cheng Yaw Low, Andrew Teoh

Responsive image

Auto-TLDR; SoftmaxOut Transformation-Permutation Network for C cancellable Biometrics

Slides Poster Similar

In this paper, we propose a data-driven cancellable biometrics scheme, referred to as SoftmaxOut Transformation-Permutation Network (SOTPN). The SOTPN is a neural version of Random Permutation Maxout (RPM) transform, which was introduced for facial template protection. We present a specialized SoftmaxOut layer integrated with the permutable MaxOut units and the parameterized softmax function to approximate the non-differentiable permutation and the winner-takes-all operations in the RPM transform. On top of that, a novel pairwise ArcFace loss and a code balancing loss are also formulated to ensure that the SOTPN-transformed facial template is cancellable, discriminative, high entropy and free from quantization errors when coupled with the SoftmaxOut layer. The proposed SOTPN is evaluated on three face datasets, namely LFW, YouTube Face and Facescrub, and our experimental results disclosed that the SOTPN outperforms the RPM transform significantly.

Revisiting ImprovedGAN with Metric Learning for Semi-Supervised Learning

Jaewoo Park, Yoon Gyo Jung, Andrew Teoh

Responsive image

Auto-TLDR; Improving ImprovedGAN with Metric Learning for Semi-supervised Learning

Slides Poster Similar

Semi-supervised Learning (SSL) is a classical problem where a model needs to solve classification as it is trained on a partially labeled train data. After the introduction of generative adversarial network (GAN) and its success, the model has been modified to be applicable to SSL. ImprovedGAN as a representative model for GAN-based SSL, it showed promising performance on the SSL problem. However, the inner mechanism of this model has been only partially revealed. In this work, we revisit ImprovedGAN with a fresh perspective based on metric learning. In particular, we interpret ImprovedGAN by general pair weighting, a recent framework in metric learning. Based on this interpretation, we derive two theoretical properties of ImprovedGAN: (i) its discriminator learns to make confident predictions over real samples, (ii) the adversarial interaction in ImprovedGAN along with semi-supervision results in cluster separation by reducing intra-class variance and increasing the inter-class variance, thereby improving the model generalization. These theoretical implications are experimentally supported. Motivated by the findings, we propose a variant of ImprovedGAN, called Intensified ImprovedGAN (I2GAN), where its cluster separation characteristic is enhanced by two proposed techniques: (a) the unsupervised discriminator loss is scaled up and (b) the generated batch size is enlarged. As a result, I2GAN produces better class-wise cluster separation and, hence, generalization. Extensive experiments on the widely known benchmark data sets verify the effectiveness of our proposed method, showing that its performance is better than or comparable to other GAN based SSL models.

Verifying the Causes of Adversarial Examples

Honglin Li, Yifei Fan, Frieder Ganz, Tony Yezzi, Payam Barnaghi

Responsive image

Auto-TLDR; Exploring the Causes of Adversarial Examples in Neural Networks

Slides Poster Similar

The robustness of neural networks is challenged by adversarial examples that contain almost imperceptible perturbations to inputs which mislead a classifier to incorrect outputs in high confidence. Limited by the extreme difficulty in examining a high-dimensional image space thoroughly, research on explaining and justifying the causes of adversarial examples falls behind studies on attacks and defenses. In this paper, we present a collection of potential causes of adversarial examples and verify (or partially verify) them through carefully-designed controlled experiments. The major causes of adversarial examples include model linearity, one-sum constraint, and geometry of the categories. To control the effect of those causes, multiple techniques are applied such as $L_2$ normalization, replacement of loss functions, construction of reference datasets, and novel models using multi-layer perceptron probabilistic neural networks (MLP-PNN) and density estimation (DE). Our experiment results show that geometric factors tend to be more direct causes and statistical factors magnify the phenomenon, especially for assigning high prediction confidence. We hope this paper will inspire more studies to rigorously investigate the root causes of adversarial examples, which in turn provide useful guidance on designing more robust models.

Identifying Missing Children: Face Age-Progression Via Deep Feature Aging

Debayan Deb, Divyansh Aggarwal, Anil Jain

Responsive image

Auto-TLDR; Aging Face Features for Missing Children Identification

Similar

Given a face image of a recovered child at probe-age, we search a gallery of missing children with known identities and gallery-ages at which they were either lost or stolen in an attempt to unite the recovered child with his family. We propose a feature aging module that can age-progress deep face features output by a face matcher to improve the recognition accuracy of age-separated child face images. In addition, the feature aging module guides age-progression in the image space such that synthesized aged gallery faces can be utilized to further enhance cross-age face matching accuracy of any commodity face matcher. For time lapses larger than 10 years (the missing child is recovered after 10 or more years), the proposed age-progression module improves the closed-set identification accuracy of CosFace from 60.72% to 66.12% on a child celebrity dataset, namely ITWCC. The proposed method also outperforms state-of-the-art approaches with a rank-1 identification rate of 95.91%, compared to 94.91%, on a public aging dataset, FG-NET, and 99.58%, compared to 99.50%, on CACD-VS. These results suggest that aging face features enhances the ability to identify young children who are possible victims of child trafficking or abduction.

One-Shot Representational Learning for Joint Biometric and Device Authentication

Sudipta Banerjee, Arun Ross

Responsive image

Auto-TLDR; Joint Biometric and Device Recognition from a Single Biometric Image

Slides Poster Similar

In this work, we propose a method to simultaneously perform (i) biometric recognition (\textit{i.e.}, identify the individual), and (ii) device recognition, (\textit{i.e.}, identify the device) from a single biometric image, say, a face image, using a one-shot schema. Such a joint recognition scheme can be useful in devices such as smartphones for enhancing security as well as privacy. We propose to automatically learn a joint representation that encapsulates both biometric-specific and sensor-specific features. We evaluate the proposed approach using iris, face and periocular images acquired using near-infrared iris sensors and smartphone cameras. Experiments conducted using 14,451 images from 13 sensors resulted in a rank-1 identification accuracy of upto 99.81\% and a verification accuracy of upto 100\% at a false match rate of 1\%.

Multi-Level Deep Learning Vehicle Re-Identification Using Ranked-Based Loss Functions

Eleni Kamenou, Jesus Martinez-Del-Rincon, Paul Miller, Patricia Devlin - Hill

Responsive image

Auto-TLDR; Multi-Level Re-identification Network for Vehicle Re-Identification

Slides Poster Similar

Identifying vehicles across a network of cameras with non-overlapping fields of view remains a challenging research problem due to scene occlusions, significant inter-class similarity and intra-class variability. In this paper, we propose an end-to-end multi-level re-identification network that is capable of successfully projecting same identity vehicles closer to one another in the embedding space, compared to vehicles of different identities. Robust feature representations are obtained by combining features at multiple levels of the network. As for the learning process, we employ a recent state-of-the-art structured metric learning loss function previously applied to other retrieval problems and adjust it to the vehicle re-identification task. Furthermore, we explore the cases of image-to-image, image-to-video and video-to-video similarity metric. Finally, we evaluate our system and achieve great performance on two large-scale publicly available datasets, CityFlow-ReID and VeRi-776. Compared to most existing state-of-art approaches, our approach is simpler and more straightforward, utilizing only identity-level annotations, while avoiding post-processing the ranking results (re-ranking) at the testing phase.

InsideBias: Measuring Bias in Deep Networks and Application to Face Gender Biometrics

Ignacio Serna, Alejandro Peña Almansa, Aythami Morales, Julian Fierrez

Responsive image

Auto-TLDR; InsideBias: Detecting Bias in Deep Neural Networks from Face Images

Slides Poster Similar

This work explores the biases in learning processes based on deep neural network architectures. We analyze how bias affects deep learning processes through a toy example using the MNIST database and a case study in gender detection from face images. We employ two gender detection models based on popular deep neural networks. We present a comprehensive analysis of bias effects when using an unbalanced training dataset on the features learned by the models. We show how bias impacts in the activations of gender detection models based on face images. We finally propose InsideBias, a novel method to detect biased models. InsideBias is based on how the models represent the information instead of how they perform, which is the normal practice in other existing methods for bias detection. Our strategy with InsideBias allows to detect biased models with very few samples (only 15 images in our case study). Our experiments include 72K face images from 24K identities and 3 ethnic groups.

Cross-spectrum Face Recognition Using Subspace Projection Hashing

Hanrui Wang, Xingbo Dong, Jin Zhe, Jean-Luc Dugelay, Massimo Tistarelli

Responsive image

Auto-TLDR; Subspace Projection Hashing for Cross-Spectrum Face Recognition

Slides Poster Similar

Cross-spectrum face recognition, e.g. visible to thermal matching, remains a challenging task due to the large variation originated from different domains. This paper proposed a subspace projection hashing (SPH) to enable the cross-spectrum face recognition task. The intrinsic idea behind SPH is to project the features from different domains onto a common subspace, where matching the faces from different domains can be accomplished. Notably, we proposed a new loss function that can (i) preserve both inter-domain and intra-domain similarity; (ii) regularize a scaled-up pairwise distance between hashed codes, to optimize projection matrix. Three datasets, Wiki, EURECOM VIS-TH paired face and TDFace are adopted to evaluate the proposed SPH. The experimental results indicate that the proposed SPH outperforms the original linear subspace ranking hashing (LSRH) in the benchmark dataset (Wiki) and demonstrates a reasonably good performance for visible-thermal, visible-near-infrared face recognition, therefore suggests the feasibility and effectiveness of the proposed SPH.

Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

Kalun Ho, Janis Keuper, Franz-Josef Pfreundt, Margret Keuper

Responsive image

Auto-TLDR; Clustering Objectives for K-means and Correlation Clustering Using Triplet Loss

Slides Poster Similar

In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.

An Adaptive Video-To-Video Face Identification System Based on Self-Training

Eric Lopez-Lopez, Carlos V. Regueiro, Xosé M. Pardo

Responsive image

Auto-TLDR; Adaptive Video-to-Video Face Recognition using Dynamic Ensembles of SVM's

Slides Poster Similar

Video-to-video face recognition in unconstrained conditions is still a very challenging problem, as the combination of several factors leads to an in general low-quality of facial frames. Besides, in some real contexts, the availability of labelled samples is limited, or data is streaming or it is only available temporarily due to storage constraints or privacy issues. In these cases, dealing with learning as an unsupervised incremental process is a feasible option. This work proposes a system based on dynamic ensembles of SVM's, which uses the ideas of self-training to perform adaptive Video-to-video face identification. The only label requirements of the system are a few frames (5 in our experiments) directly taken from the video-surveillance stream. The system will autonomously use additional video-frames to update and improve the initial model in an unsupervised way. Results show a significant improvement in comparison to other state-of-the-art static models.

DFH-GAN: A Deep Face Hashing with Generative Adversarial Network

Bo Xiao, Lanxiang Zhou, Yifei Wang, Qiangfang Xu

Responsive image

Auto-TLDR; Deep Face Hashing with GAN for Face Image Retrieval

Slides Poster Similar

Face Image retrieval is one of the key research directions in computer vision field. Thanks to the rapid development of deep neural network in recent years, deep hashing has achieved good performance in the field of image retrieval. But for large-scale face image retrieval, the performance needs to be further improved. In this paper, we propose Deep Face Hashing with GAN (DFH-GAN), a novel deep hashing method for face image retrieval, which mainly consists of three components: a generator network for generating synthesized images, a discriminator network with a shared CNN to learn multi-domain face feature, and a hash encoding network to generate compact binary hash codes. The generator network is used to perform data augmentation so that the model could learn from both real images and diverse synthesized images. We adopt a two-stage training strategy. In the first stage, the GAN is trained to generate fake images, while in the second stage, to make the network convergence faster. The model inherits the trained shared CNN of discriminator to train the DFH model by using many different supervised loss functions not only in the last layer but also in the middle layer of the network. Extensive experiments on two widely used datasets demonstrate that DFH-GAN can generate high-quality binary hash codes and exceed the performance of the state-of-the-art model greatly.

Probability Guided Maxout

Claudio Ferrari, Stefano Berretti, Alberto Del Bimbo

Responsive image

Auto-TLDR; Probability Guided Maxout for CNN Training

Slides Poster Similar

In this paper, we propose an original CNN training strategy that brings together ideas from both dropout-like regularization methods and solutions that learn discriminative features. We propose a dropping criterion that, differently from dropout and its variants, is deterministic rather than random. It grounds on the empirical evidence that feature descriptors with larger $L2$-norm and highly-active nodes are strongly correlated to confident class predictions. Thus, our criterion guides towards dropping a percentage of the most active nodes of the descriptors, proportionally to the estimated class probability. We simultaneously train a per-sample scaling factor to balance the expected output across training and inference. This further allows us to keep high the descriptor's L2-norm, which we show enforces confident predictions. The combination of these two strategies resulted in our ``Probability Guided Maxout'' solution that acts as a training regularizer. We prove the above behaviors by reporting extensive image classification results on the CIFAR10, CIFAR100, and Caltech256 datasets.

Can Data Placement Be Effective for Neural Networks Classification Tasks? Introducing the Orthogonal Loss

Brais Cancela, Veronica Bolon-Canedo, Amparo Alonso-Betanzos

Responsive image

Auto-TLDR; Spatial Placement for Neural Network Training Loss Functions

Slides Poster Similar

Traditionally, a Neural Network classification training loss function follows the same principle: minimizing the distance between samples that belong to the same class, while maximizing the distance to the other classes. There are no restrictions on the spatial placement of deep features (last layer input). This paper addresses this issue when dealing with Neural Networks, providing a set of loss functions that are able to train a classifier by forcing the deep features to be projected over a predefined orthogonal basis. Experimental results shows that these `data placement' functions can overcome the training accuracy provided by the classic cross-entropy loss function.

Supervised Domain Adaptation Using Graph Embedding

Lukas Hedegaard, Omar Ali Sheikh-Omar, Alexandros Iosifidis

Responsive image

Auto-TLDR; Domain Adaptation from the Perspective of Multi-view Graph Embedding and Dimensionality Reduction

Slides Poster Similar

Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of multi-view graph embedding and dimensionality reduction. Instead of solving the generalised eigenvalue problem to perform the embedding, we formulate the graph-preserving criterion as loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework which generalises the prior methods CCSA and d-SNE, and enables simple and effective loss designs; an LDA-inspired instantiation of the framework leads to performance on par with the state-of-the-art on the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.

A Flatter Loss for Bias Mitigation in Cross-Dataset Facial Age Estimation

Ali Akbari, Muhammad Awais, Zhenhua Feng, Ammarah Farooq, Josef Kittler

Responsive image

Auto-TLDR; Cross-dataset Age Estimation for Neural Network Training

Slides Poster Similar

Existing studies in facial age estimation have mostly focused on intra-dataset protocols that assume training and test images captured under similar conditions. However, this is rarely valid in practical applications, where training and test sets usually have different characteristics. In this paper, we advocate a cross-dataset protocol for age estimation benchmarking. In order to improve the cross-dataset age estimation performance, we mitigate the inherent bias caused by the learning algorithm. To this end, we propose a novel loss function that is more effective for neural network training. The relative smoothness of the proposed loss function is its advantage with regards to the optimisation process performed by stochastic gradient decent. Its lower gradient, compared with existing loss functions, facilitates the discovery of and convergence to a better optimum, and consequently a better generalisation. The cross-dataset experimental results demonstrate the superiority of the proposed method over the state-of-the-art algorithms in terms of accuracy and generalisation capability.

Generalized Local Attention Pooling for Deep Metric Learning

Carlos Roig Mari, David Varas, Issey Masuda, Juan Carlos Riveiro, Elisenda Bou-Balust

Responsive image

Auto-TLDR; Generalized Local Attention Pooling for Deep Metric Learning

Slides Poster Similar

Deep metric learning has been key to recent advances in face verification and image retrieval amongst others. These systems consist on a feature extraction block (extracts feature maps from images) followed by a spatial dimensionality reduction block (generates compact image representations from the feature maps) and an embedding generation module (projects the image representation to the embedding space). While research on deep metric learning has focused on improving the losses for the embedding generation module, the dimensionality reduction block has been overlooked. In this work, we propose a novel method to generate compact image representations which uses local spatial information through an attention mechanism, named Generalized Local Attention Pooling (GLAP). This method, instead of being placed at the end layer of the backbone, is connected at an intermediate level, resulting in lower memory requirements. We assess the performance of the aforementioned method by comparing it with multiple dimensionality reduction techniques, demonstrating the importance of using attention weights to generate robust compact image representations. Moreover, we compare the performance of multiple state-of-the-art losses using the standard deep metric learning system against the same experiment with our GLAP. Experiments showcase that the proposed Generalized Local Attention Pooling mechanism outperforms other pooling methods when compared with current state-of-the-art losses for deep metric learning.

Towards Robust Learning with Different Label Noise Distributions

Diego Ortego, Eric Arazo, Paul Albert, Noel E O'Connor, Kevin Mcguinness

Responsive image

Auto-TLDR; Distribution Robust Pseudo-Labeling with Semi-supervised Learning

Slides Similar

Noisy labels are an unavoidable consequence of labeling processes and detecting them is an important step towards preventing performance degradations in Convolutional Neural Networks. Discarding noisy labels avoids a harmful memorization, while the associated image content can still be exploited in a semi-supervised learning (SSL) setup. Clean samples are usually identified using the small loss trick, i.e. they exhibit a low loss. However, we show that different noise distributions make the application of this trick less straightforward and propose to continuously relabel all images to reveal a discriminative loss against multiple distributions. SSL is then applied twice, once to improve the clean-noisy detection and again for training the final model. We design an experimental setup based on ImageNet32/64 for better understanding the consequences of representation learning with differing label noise distributions and find that non-uniform out-of-distribution noise better resembles real-world noise and that in most cases intermediate features are not affected by label noise corruption. Experiments in CIFAR-10/100, ImageNet32/64 and WebVision (real-world noise) demonstrate that the proposed label noise Distribution Robust Pseudo-Labeling (DRPL) approach gives substantial improvements over recent state-of-the-art. Code will be made available.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

P-DIFF: Learning Classifier with Noisy Labels Based on Probability Difference Distributions

Wei Hu, Qihao Zhao, Yangyu Huang, Fan Zhang

Responsive image

Auto-TLDR; P-DIFF: A Simple and Effective Training Paradigm for Deep Neural Network Classifier with Noisy Labels

Slides Poster Similar

Learning deep neural network (DNN) classifier with noisy labels is a challenging task because the DNN can easily over- fit on these noisy labels due to its high capability. In this paper, we present a very simple but effective training paradigm called P-DIFF, which can train DNN classifiers but obviously alleviate the adverse impact of noisy labels. Our proposed probability difference distribution implicitly reflects the probability of a training sample to be clean, then this probability is employed to re-weight the corresponding sample during the training process. P-DIFF can also achieve good performance even without prior- knowledge on the noise rate of training samples. Experiments on benchmark datasets also demonstrate that P-DIFF is superior to the state-of-the-art sample selection methods.

Contrastive Data Learning for Facial Pose and Illumination Normalization

Gee-Sern Hsu, Chia-Hao Tang

Responsive image

Auto-TLDR; Pose and Illumination Normalization with Contrast Data Learning for Face Recognition

Slides Poster Similar

Face normalization can be a crucial step when handling generic face recognition. We propose the Pose and Illumination Normalization (PIN) framework with contrast data learning for face normalization. The PIN framework is designed to learn the transformation from a source set to a target set. The source set and the target set compose a contrastive data set for learning. The source set contains faces collected in the wild and thus covers a wide range of variation across illumination, pose, expression and other variables. The target set contains face images taken under controlled conditions and all faces are in frontal pose and balanced in illumination. The PIN framework is composed of an encoder, a decoder and two discriminators. The encoder is made of a state-of-the-art face recognition network and acts as a facial feature extractor, which is not updated during training. The decoder is trained on both the source and target sets, and aims to learn the transformation from the source set to the target set; and therefore, it can transform an arbitrary face into a illumination and pose normalized face. The discriminators are trained to ensure the photo-realistic quality of the normalized face images generated by the decoder. The loss functions employed in the decoder and discriminators are appropriately designed and weighted for yielding better normalization outcomes and recognition performance. We verify the performance of the propose framework on several benchmark databases, and compare with state-of-the-art approaches.

Attentive Part-Aware Networks for Partial Person Re-Identification

Lijuan Huo, Chunfeng Song, Zhengyi Liu, Zhaoxiang Zhang

Responsive image

Auto-TLDR; Part-Aware Learning for Partial Person Re-identification

Slides Poster Similar

Partial person re-identification (re-ID) refers to re-identify a person through occluded images. It suffers from two major challenges, i.e., insufficient training data and incomplete probe image. In this paper, we introduce an automatic data augmentation module and a part-aware learning method for partial re-identification. On the one hand, we adopt the data augmentation to enhance the training data and help learns more stabler partial features. On the other hand, we intuitively find that the partial person images usually have fixed percentages of parts, therefore, in partial person re-id task, the probe image could be cropped from the pictures and divided into several different partial types following fixed ratios. Based on the cropped images, we propose the Cropping Type Consistency (CTC) loss to classify the cropping types of partial images. Moreover, in order to help the network better fit the generated and cropped data, we incorporate the Block Attention Mechanism (BAM) into the framework for attentive learning. To enhance the retrieval performance in the inference stage, we implement cropping on gallery images according to the predicted types of probe partial images. Through calculating feature distances between the partial image and the cropped holistic gallery images, we can recognize the right person from the gallery. To validate the effectiveness of our approach, we conduct extensive experiments on the partial re-ID benchmarks and achieve state-of-the-art performance.

AdvHat: Real-World Adversarial Attack on ArcFace Face ID System

Stepan Komkov, Aleksandr Petiushko

Responsive image

Auto-TLDR; Adversarial Sticker Attack on ArcFace in Shooting Conditions

Slides Poster Similar

In this paper we propose a novel easily reproducible technique to attack the best public Face ID system ArcFace in different shooting conditions. To create an attack, we print the rectangular paper sticker on a common color printer and put it on the hat. The adversarial sticker is prepared with a novel algorithm for off-plane transformations of the image which imitates sticker location on the hat. Such an approach confuses the state-of-the-art public Face ID model LResNet100E-IR, ArcFace@ms1m-refine-v2 and is transferable to other Face ID models.

Nonlinear Ranking Loss on Riemannian Potato Embedding

Byung Hyung Kim, Yoonje Suh, Honggu Lee, Sungho Jo

Responsive image

Auto-TLDR; Riemannian Potato for Rank-based Metric Learning

Slides Poster Similar

We propose a rank-based metric learning method by leveraging a concept of the Riemannian Potato for better separating non-linear data. By exploring the geometric properties of Riemannian manifolds, the proposed loss function optimizes the measure of dispersion using the distribution of Riemannian distances between a reference sample and neighbors and builds a ranked list according to the similarities. We show the proposed function can learn a hypersphere for each class, preserving the similarity structure inside it on Riemannian manifold. As a result, compared with Euclidean distance-based metric, our method can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features, consistently outperforming state-of-the-art methods on three widely used non-linear datasets.

Face Image Quality Assessment for Model and Human Perception

Ken Chen, Yichao Wu, Zhenmao Li, Yudong Wu, Ding Liang

Responsive image

Auto-TLDR; A labour-saving method for FIQA training with contradictory data from multiple sources

Slides Poster Similar

Practical face image quality assessment (FIQA) models are trained under the supervision of labeled data, which requires more or less human labor. The human labeled quality scores are consistent with perceptual intuition but laborious. On the other hand, models can be trained with data generated automatically by the recognition models with artificially selected references. However, the recognition scores are sometimes inaccurate, which may give wrong quality scores during FIQA training. In this paper, we propose a labour-saving method for quality scores generation. For the first time, we conduct systematic investigations to show that there exist severe contradictions between different types of target quality, namely distribution gap (DG). To bridge the gap, we propose a novel framework for training FIQA models by combining the merits of data from different sources. In order to make the target score from multiple sources compatible, we design a method called quality distribution alignment (QDA). Meanwhile, to correct the wrong target by recognition models, contradictory samples selection (CSS) is adopted to select samples from the human labeled dataset adaptively. Extensive experiments and analysis on public benchmarks including MegaFace has demonstrated the superiority of our in terms of effectiveness and efficiency.

Age Gap Reducer-GAN for Recognizing Age-Separated Faces

Daksha Yadav, Naman Kohli, Mayank Vatsa, Richa Singh, Afzel Noore

Responsive image

Auto-TLDR; Generative Adversarial Network for Age-separated Face Recognition

Slides Poster Similar

In this paper, we propose a novel algorithm for matching faces with temporal variations caused due to age progression. The proposed generative adversarial network algorithm is a unified framework which combines facial age estimation and age-separated face verification. The key idea of this approach is to learn the age variations across time by conditioning the input image on the subject's gender and the target age group to which the face needs to be progressed. The loss function accounts for reducing the age gap between the original image and generated face image as well as preserving the identity. Both visual fidelity and quantitative evaluations demonstrate the efficacy of the proposed architecture on different facial age databases for age-separated face recognition.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

End-To-End Triplet Loss Based Emotion Embedding System for Speech Emotion Recognition

Puneet Kumar, Sidharth Jain, Balasubramanian Raman, Partha Pratim Roy, Masakazu Iwamura

Responsive image

Auto-TLDR; End-to-End Neural Embedding System for Speech Emotion Recognition

Slides Poster Similar

In this paper, an end-to-end neural embedding system based on triplet loss and residual learning has been proposed for speech emotion recognition. The proposed system learns the embeddings from the emotional information of the speech utterances. The learned embeddings are used to recognize the emotions portrayed by given speech samples of various lengths. The proposed system implements Residual Neural Network architecture. It is trained using softmax pre-training and triplet loss function. The weights between the fully connected and embedding layers of the trained network are used to calculate the embedding values. The embedding representations of various emotions are mapped onto a hyperplane, and the angles among them are computed using the cosine similarity. These angles are utilized to classify a new speech sample into its appropriate emotion class. The proposed system has demonstrated 91.67\% and 64.44\% accuracy while recognizing emotions for RAVDESS and IEMOCAP dataset, respectively.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

SATGAN: Augmenting Age Biased Dataset for Cross-Age Face Recognition

Wenshuang Liu, Wenting Chen, Yuanlue Zhu, Linlin Shen

Responsive image

Auto-TLDR; SATGAN: Stable Age Translation GAN for Cross-Age Face Recognition

Slides Poster Similar

In this paper, we propose a Stable Age Translation GAN (SATGAN) to generate fake face images at different ages to augment age biased face datasets for Cross-Age Face Recognition (CAFR) . The proposed SATGAN consists of both generator and discriminator. As a part of the generator, a novel Mask Attention Module (MAM) is introduced to make the generator focus on the face area. In addition, the generator employs a Uniform Distribution Discriminator (UDD) to supervise the learning of latent feature map and enforce the uniform distribution. Besides, the discriminator employs a Feature Separation Module (FSM) to disentangle identity information from the age information. The quantitative and qualitative evaluations on Morph dataset prove that SATGAN achieves much better performance than existing methods. The face recognition model trained using dataset (VGGFace2 and MS-Celeb-1M) augmented using our SATGAN achieves better accuracy on cross age dataset like Cross-Age LFW and AgeDB-30.

Lookalike Disambiguation: Improving Face Identification Performance at Top Ranks

Thomas Swearingen, Arun Ross

Responsive image

Auto-TLDR; Lookalike Face Identification Using a Disambiguator for Lookalike Images

Poster Similar

A face identification system compares an unknown input probe image to a gallery of face images labeled with identities in order to determine the identity of the probe image. The result of identification is a ranked match list with the most similar gallery face image at the top (rank 1) and the least similar gallery face image at the bottom. In many systems, the top ranked gallery images may look very similar to the probe image as well as to each other and can sometimes result in the misidentification of the probe image. Such similar looking faces pertaining to different identities are referred to as lookalike faces. We hypothesize that a matcher specifically trained to disambiguate lookalike face images and combined with a regular face matcher may improve overall identification performance. This work proposes reranking the initial ranked match list using a disambiguator especially for lookalike face pairs. This work also evaluates schemes to select gallery images in the initial ranked match list that should be re-ranked. Experiments on the challenging TinyFace dataset shows that the proposed approach improves the closed-set identification accuracy of a state-of-the-art face matcher.

Beyond Cross-Entropy: Learning Highly Separable Feature Distributions for Robust and Accurate Classification

Arslan Ali, Andrea Migliorati, Tiziano Bianchi, Enrico Magli

Responsive image

Auto-TLDR; Gaussian class-conditional simplex loss for adversarial robust multiclass classifiers

Slides Poster Similar

Deep learning has shown outstanding performance in several applications including image classification. However, deep classifiers are known to be highly vulnerable to adversarial attacks, in that a minor perturbation of the input can easily lead to an error. Providing robustness to adversarial attacks is a very challenging task especially in problems involving a large number of classes, as it typically comes at the expense of an accuracy decrease. In this work, we propose the Gaussian class-conditional simplex (GCCS) loss: a novel approach for training deep robust multiclass classifiers that provides adversarial robustness while at the same time achieving or even surpassing the classification accuracy of state-of-the-art methods. Differently from other frameworks, the proposed method learns a mapping of the input classes onto target distributions in a latent space such that the classes are linearly separable. Instead of maximizing the likelihood of target labels for individual samples, our objective function pushes the network to produce feature distributions yielding high inter-class separation. The mean values of the distributions are centered on the vertices of a simplex such that each class is at the same distance from every other class. We show that the regularization of the latent space based on our approach yields excellent classification accuracy and inherently provides robustness to multiple adversarial attacks, both targeted and untargeted, outperforming state-of-the-art approaches over challenging datasets.

Meta Generalized Network for Few-Shot Classification

Wei Wu, Shanmin Pang, Zhiqiang Tian, Yaochen Li

Responsive image

Auto-TLDR; Meta Generalized Network for Few-Shot Classification

Similar

Few-shot classification aims to learn a well performance model with very limited labeled examples. There are mainly two directions for this aim, namely, meta- and metric-learning. Meta learning trains models in a particular way to fast adapt to new tasks, but it neglects variational features of images. Metric learning considers relationships among same or different classes, however on the downside, it usually fails to achieve competitive performance on unseen boundary examples. In this paper, we propose a Meta Generalized Network (MGNet) that aims to combine advantages of both meta- and metric-learning. There are two novel components in MGNet. Specifically, we first develop a meta backbone training method that both learns a flexible feature extractor and a classifier initializer efficiently, delightedly leading to fast adaption to unseen few-shot tasks without overfitting. Second, we design a trainable adaptive interval model to improve the cosine classifier, which increases the recognition accuracy of hard examples. We train the meta backbone in the training stage by all classes, and fine-tune the meta-backbone as well as train the adaptive classifier in the testing stage.

Semantics-Guided Representation Learning with Applications to Visual Synthesis

Jia-Wei Yan, Ci-Siang Lin, Fu-En Yang, Yu-Jhe Li, Yu-Chiang Frank Wang

Responsive image

Auto-TLDR; Learning Interpretable and Interpolatable Latent Representations for Visual Synthesis

Slides Poster Similar

Learning interpretable and interpolatable latent representations has been an emerging research direction, allowing researchers to understand and utilize the derived latent space for further applications such as visual synthesis or recognition. While most existing approaches derive an interpolatable latent space and induces smooth transition in image appearance, it is still not clear how to observe desirable representations which would contain semantic information of interest. In this paper, we aim to learn meaningful representations and simultaneously perform semantic-oriented and visually-smooth interpolation. To this end, we propose an angular triplet-neighbor loss (ATNL) that enables learning a latent representation whose distribution matches the semantic information of interest. With the latent space guided by ATNL, we further utilize spherical semantic interpolation for generating semantic warping of images, allowing synthesis of desirable visual data. Experiments on MNIST and CMU Multi-PIE datasets qualitatively and quantitatively verify the effectiveness of our method.

Person Recognition with HGR Maximal Correlation on Multimodal Data

Yihua Liang, Fei Ma, Yang Li, Shao-Lun Huang

Responsive image

Auto-TLDR; A correlation-based multimodal person recognition framework that learns discriminative embeddings of persons by joint learning visual features and audio features

Slides Poster Similar

Multimodal person recognition is a common task in video analysis and public surveillance, where information from multiple modalities, such as images and audio extracted from videos, are used to jointly determine the identity of a person. Previous person recognition techniques either use only uni-modal data or only consider shared representations between different input modalities, while leaving the extraction of their relationship with identity information to downstream tasks. Furthermore, real-world data often contain noise, which makes recognition more challenging practical situations. In our work, we propose a novel correlation-based multimodal person recognition framework that is relatively simple but can efficaciously learn supervised information in multimodal data fusion and resist noise. Specifically, our framework learns a discriminative embeddings of persons by joint learning visual features and audio features while maximizing HGR maximal correlation among multimodal input and persons' identities. Experiments are done on a subset of Voxceleb2. Compared with state-of-the-art methods, the proposed method demonstrates an improvement of accuracy and robustness to noise.