A Duplex Spatiotemporal Filtering Network for Video-Based Person Re-Identification

Chong Zheng, Ping Wei, Nanning Zheng

Responsive image

Auto-TLDR; Duplex Spatiotemporal Filtering Network for Person Re-identification in Videos

Slides Poster

Video-based person re-identification plays important roles in surveillance video analysis. This paper proposes a novel Duplex Spatiotemporal Filtering Network (DSFN) to re-identify persons in videos. A video sequence is represented as a duplex spatiotemporal matrix. DSFN model containing a group of filters performs filtering at feature level in both temporal and spatial dimensions, by which the model focuses on feature-level semantic information rather than image-level information as in the traditional filters. We propose sparse-orthogonal constraints to enforce the model to extract more discriminative features. DSFN characterizes not only the appearance features but also dynamic information such as gaits embedded in video sequences and obtains a better performance as a result. Experiments show that the proposed method outperforms state-of-the-art approaches.

Similar papers

Not 3D Re-ID: Simple Single Stream 2D Convolution for Robust Video Re-Identification

Toby Breckon, Aishah Alsehaim

Responsive image

Auto-TLDR; ResNet50-IBN for Video-based Person Re-Identification using Single Stream 2D Convolution Network

Slides Poster Similar

Video-based person re-identification has received increasing attention recently, as it plays an important role within the surveillance video analysis. Video-based Re-ID is an expansion of earlier image-based re-identification methods by learning features from a video via multiple image frames for each person. Most contemporary video Re-ID methods utilise complex CNN-based network architectures using 3D convolution or multi-branch networks to extract spatial-temporal features from the video. By contrast, in this paper, we will illustrate superior performance from a simple single stream 2D convolution network leveraging the ResNet50-IBN architecture to extract frame-level features followed by temporal attention for clip level features. These clip level features can be generalised to extract video level features by averaging clip level features without any additional cost. Our model, uses best video Re-ID practice and transfer learning between datasets, outperforms existing state-of-the-art approaches on MARS, PRID2011 and iLIDSVID datasets with 89:62%, 97:75%, 97:33% rank-1 accuracy respectively and with 84:61% mAP for MARS, without reliance on complex and memory intensive 3D convolutions or multistream networks architectures as found in other contemporary work. Conversely, this work shows that global features extracted by the 2D convolution network are a sufficient representation for robust state of the art video Re-ID.

Attention-Based Model with Attribute Classification for Cross-Domain Person Re-Identification

Simin Xu, Lingkun Luo, Shiqiang Hu

Responsive image

Auto-TLDR; An attention-based model with attribute classification for cross-domain person re-identification

Poster Similar

Person re-identification (re-ID) which aims to recognize a pedestrian observed by non-overlapping cameras is a challenging task due to high variance between images from different viewpoints. Although remarkable progresses on research of re-ID had been obtained via leveraging the merits of deep learning framework through sufficient quantity training on a large amount of well labeled data, whereas, in real scenarios, re-ID generally suffers from lacking of well labeled training data. In this paper, we propose an attention-based model with attribute classification (AMAC) to facilitate a well trained model transferring across different data domains, which further enables an efficient cross-domain video-based person re-ID. Specifically, an attention-based sub-network is proposed for deep insight into the quality variations of local parts, hence, different local parts are cooperated with different weights to avoid the heavy occlusions or the cluttered background in datasets. Moreover, we introduce a transferred attribute classification sub-network to extract attribute-semantic features of any new target datasets without the requirement for new training attribute labels which are costly to annotate. Attribute-semantic features can be considered as valuable complementary information for person re-identification since they are robust to illumination varieties and different viewpoints across cameras. Due to the large gap between different datasets, we finetune each sub-network with pseudo labels on the target datasets respectively to strengthen the original model trained on other labeled datasets. Extensive comparable evaluations demonstrate the superiority of our AMAC in solving cross-domain person re-ID task on two benchmarks including PRID-2011 and iLIDS-VID.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Decoupled Self-Attention Module for Person Re-Identification

Chao Zhao, Zhenyu Zhang, Jian Yang, Yan Yan

Responsive image

Auto-TLDR; Decoupled Self-attention Module for Person Re-identification

Slides Poster Similar

Person re-identification aims to identifying the same person from different cameras, which needs to integrate whole-body information and capture global correlation. However, convolutional neural network is able to only capture short-distance information because of the size of filters. Self-attention is introduced to capture long-distance correlation, but inner-product similarity calculation in self-attention mingles semantic response and semantic difference together. Semantic difference is more important for person re-identification, because it is robust to illumination without the effect of semantic response. However, we find the scale of norms measuring semantic response is much larger than angle measuring semantic difference by decoupling inner-product similarity into norms and angle. To balance the importance of semantic response and semantic difference in self-attention, we propose the decoupled self-attention module for person re-identification to make the most of self-attention. Extensive experiments show that the decoupled self-attention module obtains significant performance with easier convergence and stronger robustness.

Self and Channel Attention Network for Person Re-Identification

Asad Munir, Niki Martinel, Christian Micheloni

Responsive image

Auto-TLDR; SCAN: Self and Channel Attention Network for Person Re-identification

Slides Poster Similar

Recent research has shown promising results for person re-identification by focusing on several trends. One is designing efficient metric learning loss functions such as triplet loss family to learn the most discriminative representations. The other is learning local features by designing part based architectures to form an informative descriptor from semantically coherent parts. Some efforts adjust distant outliers to their most similar positions by using soft attention and learn the relationship between distant similar features. However, only a few prior efforts focus on channel-wise dependencies and learn non-local sharp similar part features directly for the degraded data in the person re-identification task. In this paper, we propose a novel Self and Channel Attention Network (SCAN) to model long-range dependencies between channels and feature maps. We add multiple classifiers to learn discriminative global features by using classification loss. Self Attention (SA) module and Channel Attention (CA) module are introduced to model non-local and channel-wise dependencies in the learned features. Spectral normalization is applied to the whole network to stabilize the training process. Experimental results on the person re-identification benchmarks show the proposed components achieve significant improvement with respect to the baseline.

Top-DB-Net: Top DropBlock for Activation Enhancement in Person Re-Identification

Rodolfo Quispe, Helio Pedrini

Responsive image

Auto-TLDR; Top-DB-Net for Person Re-Identification using Top DropBlock

Slides Poster Similar

Person Re-Identification is a challenging task that aims to retrieve all instances of a query image across a system of non-overlapping cameras. Due to the various extreme changes of view, it is common that local regions that could be used to match people are suppressed, which leads to a scenario where approaches have to evaluate the similarity of images based on less informative regions. In this work, we introduce the Top-DB-Net, a method based on Top DropBlock that pushes the network to learn to focus on the scene foreground, with special emphasis on the most task-relevant regions and, at the same time, encodes low informative regions to provide high discriminability. The Top-DB-Net is composed of three streams: (i) a global stream encodes rich image information from a backbone, (ii) the Top DropBlock stream encourages the backbone to encode low informative regions with high discriminative features, and (iii) a regularization stream helps to deal with the noise created by the dropping process of the second stream, when testing the first two streams are used. Vast experiments on three challenging datasets show the capabilities of our approach against state-of-the-art methods. Qualitative results demonstrate that our method exhibits better activation maps focusing on reliable parts of the input images.

Deep Top-Rank Counter Metric for Person Re-Identification

Chen Chen, Hao Dou, Xiyuan Hu, Silong Peng

Responsive image

Auto-TLDR; Deep Top-Rank Counter Metric for Person Re-identification

Slides Poster Similar

In the research field of person re-identification, deep metric learning that guides the efficient and effective embedding learning serves as one of the most fundamental tasks. Recent efforts of the loss function based deep metric learning methods mainly focus on the top rank accuracy optimization by minimiz- ing the distance difference between the correctly matching sample pair and wrongly matched sample pair. However, it is more straightforward to count the occurrences of correct top-rank candidates and maximize the counting results for better top rank accuracy. In this paper, we propose a generalized logistic function based metric with effective practicalness in deep learning, namely the“deep top-rank counter metric”, to approximately optimize the counted occurrences of the correct top-rank matches. The properties that qualify the proposed metric as a well-suited deep re-identification metric have been discussed and a progressive hard sample mining strategy is also introduced for effective training and performance boosting. The extensive experiments show that the proposed top-rank counter metric outperforms other loss function based deep metrics and achieves the state-of- the-art accuracies.

Multi-Level Deep Learning Vehicle Re-Identification Using Ranked-Based Loss Functions

Eleni Kamenou, Jesus Martinez-Del-Rincon, Paul Miller, Patricia Devlin - Hill

Responsive image

Auto-TLDR; Multi-Level Re-identification Network for Vehicle Re-Identification

Slides Poster Similar

Identifying vehicles across a network of cameras with non-overlapping fields of view remains a challenging research problem due to scene occlusions, significant inter-class similarity and intra-class variability. In this paper, we propose an end-to-end multi-level re-identification network that is capable of successfully projecting same identity vehicles closer to one another in the embedding space, compared to vehicles of different identities. Robust feature representations are obtained by combining features at multiple levels of the network. As for the learning process, we employ a recent state-of-the-art structured metric learning loss function previously applied to other retrieval problems and adjust it to the vehicle re-identification task. Furthermore, we explore the cases of image-to-image, image-to-video and video-to-video similarity metric. Finally, we evaluate our system and achieve great performance on two large-scale publicly available datasets, CityFlow-ReID and VeRi-776. Compared to most existing state-of-art approaches, our approach is simpler and more straightforward, utilizing only identity-level annotations, while avoiding post-processing the ranking results (re-ranking) at the testing phase.

Recurrent Deep Attention Network for Person Re-Identification

Changhao Wang, Jun Zhou, Xianfei Duan, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Recurrent Deep Attention Network for Person Re-identification

Slides Poster Similar

Person re-identification (re-id) is an important task in video surveillance. It is challenging due to the appearance of person varying a wide range acrossnon-overlapping camera views. Recent years, attention-based models are introduced to learn discriminative representation. In this paper, we consider the attention selection in a natural way as like human moving attention on different parts of the visual field for person re-id. In concrete, we propose a Recurrent Deep Attention Network (RDAN) with an attention selection mechanism based on reinforcement learning. The RDAN aims to adaptively observe the identity-sensitive regions to build up the representation of individuals step by step. Extensive experiments on three person re-id benchmarks Market-1501, DukeMTMC-reID and CUHK03-NP demonstrate the proposed method can achieve competitive performance.

Attentive Part-Aware Networks for Partial Person Re-Identification

Lijuan Huo, Chunfeng Song, Zhengyi Liu, Zhaoxiang Zhang

Responsive image

Auto-TLDR; Part-Aware Learning for Partial Person Re-identification

Slides Poster Similar

Partial person re-identification (re-ID) refers to re-identify a person through occluded images. It suffers from two major challenges, i.e., insufficient training data and incomplete probe image. In this paper, we introduce an automatic data augmentation module and a part-aware learning method for partial re-identification. On the one hand, we adopt the data augmentation to enhance the training data and help learns more stabler partial features. On the other hand, we intuitively find that the partial person images usually have fixed percentages of parts, therefore, in partial person re-id task, the probe image could be cropped from the pictures and divided into several different partial types following fixed ratios. Based on the cropped images, we propose the Cropping Type Consistency (CTC) loss to classify the cropping types of partial images. Moreover, in order to help the network better fit the generated and cropped data, we incorporate the Block Attention Mechanism (BAM) into the framework for attentive learning. To enhance the retrieval performance in the inference stage, we implement cropping on gallery images according to the predicted types of probe partial images. Through calculating feature distances between the partial image and the cropped holistic gallery images, we can recognize the right person from the gallery. To validate the effectiveness of our approach, we conduct extensive experiments on the partial re-ID benchmarks and achieve state-of-the-art performance.

Adaptive L2 Regularization in Person Re-Identification

Xingyang Ni, Liang Fang, Heikki Juhani Huttunen

Responsive image

Auto-TLDR; AdaptiveReID: Adaptive L2 Regularization for Person Re-identification

Slides Poster Similar

We introduce an adaptive L2 regularization mechanism termed AdaptiveReID, in the setting of person re-identification. In the literature, it is common practice to utilize hand-picked regularization factors which remain constant throughout the training procedure. Unlike existing approaches, the regularization factors in our proposed method are updated adaptively through backpropagation. This is achieved by incorporating trainable scalar variables as the regularization factors, which are further fed into a scaled hard sigmoid function. Extensive experiments on the Market-1501, DukeMTMC-reID and MSMT17 datasets validate the effectiveness of our framework. Most notably, we obtain state-of-the-art performance on MSMT17, which is the largest dataset for person re-identification. Source code will be published at https://github.com/nixingyang/AdaptiveReID.

Building Computationally Efficient and Well-Generalizing Person Re-Identification Models with Metric Learning

Vladislav Sovrasov, Dmitry Sidnev

Responsive image

Auto-TLDR; Cross-Domain Generalization in Person Re-identification using Omni-Scale Network

Slides Similar

This work considers the problem of domain shift in person re-identification.Being trained on one dataset, a re-identification model usually performs much worse on unseen data. Partially this gap is caused by the relatively small scale of person re-identification datasets (compared to face recognition ones, for instance), but it is also related to training objectives. We propose to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models. We use recently proposed Omni-Scale Network (OSNet) architecture combined with several training tricks and architecture adjustments to obtain state-of-the art results in cross-domain generalization problem on a large-scale MSMT17 dataset in three setups: MSMT17-all->DukeMTMC, MSMT17-train->Market1501 and MSMT17-all->Market1501.

G-FAN: Graph-Based Feature Aggregation Network for Video Face Recognition

He Zhao, Yongjie Shi, Xin Tong, Jingsi Wen, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Graph-based Feature Aggregation Network for Video Face Recognition

Slides Poster Similar

In this paper, we propose a graph-based feature aggregation network (G-FAN) for video face recognition. Compared with the still image, video face recognition exhibits great challenges due to huge intra-class variability and high inter-class ambiguity. To address this problem, our G-FAN first uses a Convolutional Neural Network to extract deep features for every input face of a subject. Then, we build an affinity graph based on the relation between facial features and apply Graph Convolutional Network to generate fine-grained quality vectors for each frame. Finally, the features among multiple frames are adaptively aggregated into a discriminative vector to represent a video face. Different from previous works that take a single image as input, our G-FAN could utilize the correlation information between image pairs and aggregate a template of faces simultaneously. The experiments on video face recognition benchmarks, including YTF, IJB-A, and IJB-C show that: (i) G-FAN automatically learns to advocate high-quality frames while repelling low-quality ones. (ii) G-FAN significantly boosts recognition accuracy and outperforms other state-of-the-art aggregation methods.

How Important Are Faces for Person Re-Identification?

Julia Dietlmeier, Joseph Antony, Kevin Mcguinness, Noel E O'Connor

Responsive image

Auto-TLDR; Anonymization of Person Re-identification Datasets with Face Detection and Blurring

Slides Poster Similar

This paper investigates the dependence of existing state-of-the-art person re-identification models on the presence and visibility of human faces. We apply a face detection and blurring algorithm to create anonymized versions of several popular person re-identification datasets including Market1501, DukeMTMC-reID, CUHK03, Viper, and Airport. Using a cross-section of existing state-of-the-art models that range in accuracy and computational efficiency, we evaluate the effect of this anonymization on re-identification performance using standard metrics. Perhaps surprisingly, the effect on mAP is very small, and accuracy is recovered by simply training on the anonymized versions of the data rather than the original data. These findings are consistent across multiple models and datasets. These results indicate that datasets can be safely anonymized by blurring faces without significantly impacting the performance of person re-identification systems, and may allow for the release of new richer re-identification datasets where previously there were privacy or data protection concerns.

PHNet: Parasite-Host Network for Video Crowd Counting

Shiqiao Meng, Jiajie Li, Weiwei Guo, Jinfeng Jiang, Lai Ye

Responsive image

Auto-TLDR; PHNet: A Parasite-Host Network for Video Crowd Counting

Slides Poster Similar

Crowd counting plays an increasingly important role in public security. Recently, many crowd counting methods for a single image have been proposed but few studies have focused on using temporal information from image sequences of videos to improve prediction performance. In the existing methods using videos for crowd estimation, temporal features and spatial features are modeled jointly for the prediction, which makes the model less efficient in extracting spatiotemporal features and difficult to improve the performance of predictions. In order to solve these problems, this paper proposes a Parasite-Host Network(PHNet) which is composed of Parasite branch and Host branch to extract temporal features and spatial features respectively. To specifically extract the transform features in the time domain, we propose a novel architecture termed as “Relational Extractor”(RE) which models the multiplicative interaction features of adjacent frames. In addition, the Host branch extracts the spatial features from a current frame which can be replaced with any model that uses a single image for the prediction. We conducted experiments by using our PHNet on four video crowd counting benchmarks: Venice,UCSD,FDST and CrowdFlow. Experimental results show that PHnet achieves superior performance on these four datasets to the state-of-the-art methods.

Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

Can Zhang, Hong Liu, Wei Guo, Mang Ye

Responsive image

Auto-TLDR; Multi-Scale Part-Aware Cascading for RGB-Infrared Person Re-identification

Slides Poster Similar

RGB-Infrared person re-identification (RGB-IR Re-ID) aims to matching persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in surveillance system under poor light conditions. Facing great challenges in complex variances including conventional single-modality and additional inter-modality discrepancies, most of existing RGB-IR Re-ID methods directly work on global features for simultaneous elimination, whereas modality-specific noises and modality-shared features are not well considered. To address these issues, a novel Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global in a cascading manner, which results in an unified representation robust to noises. Moreover, a marginal exponential center (MeCen) loss is introduced to jointly eliminate mixed variances, which enables to model cross-modality correlations on sharable salient features. Extensive experiments are conducted for demonstration that the proposed method outperforms all the state-of-the-arts by a large margin.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

Pose Variation Adaptation for Person Re-Identification

Lei Zhang, Na Jiang, Qishuai Diao, Yue Xu, Zhong Zhou, Wei Wu

Responsive image

Auto-TLDR; Pose Transfer Generative Adversarial Network for Person Re-identification

Slides Poster Similar

Person re-identification (reid) plays an important role in surveillance video analysis, especially for criminal investigation and intelligent security. Although a large number of effective feature or distance metric learning approaches have been proposed, it still suffers from pedestrians appearance variations caused by pose changing. Most of the previous methods address this problem by learning a pose-invariant descriptor subspace. In this paper, we propose a pose variation adaptation method for person reid in the view of data augmentation. It can reduce the probability of deep learning network over-fitting. Specifically, we introduce a pose transfer generative adversarial network with a similarity measurement constraint. With the learned pose transfer model, training images can be pose-transferred to any given poses, and along with the original images, form a augmented training dataset. It increases data diversity against over-fitting. In contrast to previous GAN-based methods, we consider the influence of pose variations on similarity measure to generate more realistic and shaper samples for person reid. Besides, we optimize hard example mining to introduce a novel manner of samples (pose-transferred images) used with the learned pose transfer model. It focuses on the inferior samples which are caused by pose variations to increase the number of effective hard examples for learning discriminative features and improve the generalization ability. We extensively conduct comparative evaluations to demonstrate the advantages and superiority of our proposed method over the state-of-the-art approaches on Market-1501 and DukeMTMC-reID, the rank-1 accuracy is 96.1% for Market-1501 and 92.0% for DukeMTMC-reID.

TSMSAN: A Three-Stream Multi-Scale Attentive Network for Video Saliency Detection

Jingwen Yang, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Three-stream Multi-scale attentive network for video saliency detection in dynamic scenes

Slides Poster Similar

Video saliency detection is an important low-level task that has been used in a large range of high-level applications. In this paper, we proposed a three-stream multi-scale attentive network (TSMSAN) for saliency detection in dynamic scenes. TSMSAN integrates motion vector representation, static saliency map, and RGB information in multi-scales together into one framework on the basis of Fully Convolutional Network (FCN) and spatial attention mechanism. On the one hand, the respective motion features, spatial features, as well as the scene features can provide abundant information for video saliency detection. On the other hand, spatial attention mechanism can combine features with multi-scales to focus on key information in dynamic scenes. In this manner, the proposed TSMSAN can encode the spatiotemporal features of the dynamic scene comprehensively. We evaluate the proposed approach on two public dynamic saliency data sets. The experimental results demonstrate TSMSAN is able to achieve the state-of-the-art performance as well as the excellent generalization ability. Furthermore, the proposed TSMSAN can provide more convincing video saliency information, in line with human perception.

Open-World Group Retrieval with Ambiguity Removal: A Benchmark

Ling Mei, Jian-Huang Lai, Zhanxiang Feng, Xiaohua Xie

Responsive image

Auto-TLDR; P2GSM-AR: Re-identifying changing groups of people under the open-world and group-ambiguity scenarios

Slides Poster Similar

Group retrieval has attracted plenty of attention in artificial intelligence, traditional group retrieval researches assume that members in a group are unique and do not change under different cameras. However, the assumption may not be met for practical situations such as open-world and group-ambiguity scenarios. This paper tackles an important yet non-studied problem: re-identifying changing groups of people under the open-world and group-ambiguity scenarios in different camera fields. The open-world scenario considers that there are probably non-target people for the probe set appear in the searching gallery, while the group-ambiguity scenario means the group members may change. The open-world and group-ambiguity issue is very challenging for the existing methods because the changing of group members results in dramatic visual variations. Nevertheless, as far as we know, the existing literature lacks benchmarks which target on coping with this issue. In this paper, we propose a new group retrieval dataset named OWGA-Campus to consider these challenges. Moreover, we propose a person-to-group similarity matching based ambiguity removal (P2GSM-AR) method to solve these problems and realize the intention of group retrieval. Experimental results on OWGA-Campus dataset demonstrate the effectiveness and robustness of the proposed P2GSM-AR approach in improving the performance of the state-of-the-art feature extraction methods of person re-id towards the open-world and ambiguous group retrieval task.

A Grid-Based Representation for Human Action Recognition

Soufiane Lamghari, Guillaume-Alexandre Bilodeau, Nicolas Saunier

Responsive image

Auto-TLDR; GRAR: Grid-based Representation for Action Recognition in Videos

Slides Poster Similar

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for the task, and are limited in the way they fuse temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets that demonstrate that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.

MixTConv: Mixed Temporal Convolutional Kernels for Efficient Action Recognition

Kaiyu Shan, Yongtao Wang, Zhi Tang, Ying Chen, Yangyan Li

Responsive image

Auto-TLDR; Mixed Temporal Convolution for Action Recognition

Slides Poster Similar

To efficiently extract spatiotemporal features of video for action recognition, most state-of-the-art methods integrate 1D temporal convolution into a conventional 2D CNN backbone. However, they all exploit 1D temporal convolution of fixed kernel size (i.e., 3) in the network building block, thus have suboptimal temporal modeling capability to handle both long term and short-term actions. To address this problem, we first investigate the impacts of different kernel sizes for the 1D temporal convolutional filters. Then, we propose a simple yet efficient operation called Mixed Temporal Convolution (MixTConv) in methodology, which consists of multiple depthwise 1D convolutional filters with different kernel sizes. By plugging MixTConv into the conventional 2D CNN backbone ResNet-50, we further propose an efficient and effective network architecture named MSTNet for action recognition, and achieve state-of-the-art results on multiple large-scale benchmarks.

Multi-Label Contrastive Focal Loss for Pedestrian Attribute Recognition

Xiaoqiang Zheng, Zhenxia Yu, Lin Chen, Fan Zhu, Shilong Wang

Responsive image

Auto-TLDR; Multi-label Contrastive Focal Loss for Pedestrian Attribute Recognition

Slides Poster Similar

Pedestrian Attribute Recognition (PAR) has received extensive attention during the past few years. With the advances of deep constitutional neural networks (CNNs), the performance of PAR has been significantly improved. Existing methods tend to acquire attribute-specific features by designing various complex network structures with additional modules. Such additional modules, however, dramatically increase the number of parameters. Meanwhile, the problems of class imbalance and hard attribute retrieving remain underestimated in PAR. In this paper, we explore the optimization mechanism of the training processing to account for these problems and propose a new loss function called Multi-label Contrastive Focal Loss (MCFL). This proposed MCFL emphasizes the hard and minority attributes by using a separated re-weighting mechanism for different positive and negative classes to alleviate the impact of the imbalance. MCFL is also able to enlarge the gaps between the intra-class of multi-label attributes, to force CNNs to extract more subtle discriminative features. We evaluate the proposed MCFL on three large public pedestrian datasets, including RAP, PA-100K, and PETA. The experimental results indicate that the proposed MCFL with the ResNet-50 backbone is able to outperform other state-of-the-art approaches in comparison.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Convolutional Feature Transfer via Camera-Specific Discriminative Pooling for Person Re-Identification

Tetsu Matsukawa, Einoshin Suzuki

Responsive image

Auto-TLDR; A small-scale CNN feature transfer method for person re-identification

Slides Poster Similar

Modern Convolutional Neural Networks~(CNNs) have been improving the accuracy of person re-identification (re-id) using a large number of training samples. Such a re-id system suffers from a lack of training samples for deployment to practical security applications. To address this problem, we focus on the approach that transfers CNN features pre-trained on a large-scale person re-id dataset to a small-scale dataset. Most of the ordinal CNN feature transfer methods use the features of fully connected layers that entangle locally pooled features of different spatial locations on an image. Unfortunately, due to the difference of view angles and the bias of walking directions of the persons, each camera view in a dataset has a unique spatial property in the person image, which reduces the generality of the local pooling for different cameras/datasets. To account for the camera- and dataset-specific spatial bias, we propose a method to learn camera and dataset-specific position weight maps for discriminative local pooling of convolutional features. Our experiments on four public datasets confirm the effectiveness of the proposed feature transfer with a small number of training samples in the target datasets.

A Base-Derivative Framework for Cross-Modality RGB-Infrared Person Re-Identification

Hong Liu, Ziling Miao, Bing Yang, Runwei Ding

Responsive image

Auto-TLDR; Cross-modality RGB-Infrared Person Re-identification with Auxiliary Modalities

Slides Poster Similar

Cross-modality RGB-infrared (RGB-IR) person re-identification (Re-ID) is a challenging research topic due to the heterogeneity of RGB and infrared images. In this paper, we aim to find some auxiliary modalities, which are homologous with the visible or infrared modalities, to help reduce the modality discrepancy caused by heterogeneous images. Accordingly, a new base-derivative framework is proposed, where base refers to the original visible and infrared modalities, and derivative refers to the two auxiliary modalities that are derived from base. In the proposed framework, the double-modality cross-modal learning problem is reformulated as a four-modality one. After that, the images of all the base and derivative modalities are fed into the feature learning network. With the doubled input images, the learned person features become more discriminative. Furthermore, the proposed framework is optimized by the enhanced intra- and cross-modality constraints with the assistance of two derivative modalities. Experimental results on two publicly available datasets SYSU-MM01 and RegDB show that the proposed method outperforms the other state-of-the-art methods. For instance, we achieve a gain of over 13\% in terms of both Rank-1 and mAP on RegDB dataset.

RGB-Infrared Person Re-Identification Via Image Modality Conversion

Huangpeng Dai, Qing Xie, Yanchun Ma, Yongjian Liu, Shengwu Xiong

Responsive image

Auto-TLDR; CE2L: A Novel Network for Cross-Modality Re-identification with Feature Alignment

Slides Poster Similar

As a cross modality retrieval task, RGB-infrared person re-identification(Re-ID) is an important and challenging tasking, because of its important role in video surveillance applications and large cross-modality variations between visible and infrared images. Most previous works addressed the problem of cross-modality gap with feature alignment by original feature representation learning straightly. In this paper, different from existing works, we propose a novel network(CE2L) to tackle the cross-modality gap with feature alignment. CE2L mainly focuses on adding discriminative information and learning robust features by converting modality between visible and infrared images. Its merits are highlighted in two aspects: 1)Using CycleGAN to convert infrared images into color images can not only increase the recognition characteristics of images, but also allow the our network to better learn the two modal image features; 2)Our novel method can serve as data augmentation. Specifically, it can increase data diversity and total data against over-fitting by converting labeled training images to another modal images. Extensive experimental results on two datasets demonstrate superior performance compared to the baseline and the state-of-the-art methods.

Flow-Guided Spatial Attention Tracking for Egocentric Activity Recognition

Tianshan Liu, Kin-Man Lam

Responsive image

Auto-TLDR; flow-guided spatial attention tracking for egocentric activity recognition

Slides Poster Similar

The popularity of wearable cameras has opened up a new dimension for egocentric activity recognition. While some methods introduce attention mechanisms into deep learning networks to capture fine-grained hand-object interactions, they often neglect exploring the spatio-temporal relationships. Generating spatial attention, without adequately exploiting temporal consistency, will result in potentially sub-optimal performance in the video-based task. In this paper, we propose a flow-guided spatial attention tracking (F-SAT) module, which is based on enhancing motion patterns and inter-frame information, to highlight the discriminative features from regions of interest across a video sequence. A new form of input, namely the optical-flow volume, is presented to provide informative cues from moving parts for spatial attention tracking. The proposed F-SAT module is deployed to a two-branch-based deep architecture, which fuses complementary information for egocentric activity recognition. Experimental results on three egocentric activity benchmarks show that the proposed method achieves state-of-the-art performance.

Video Object Detection Using Object's Motion Context and Spatio-Temporal Feature Aggregation

Jaekyum Kim, Junho Koh, Byeongwon Lee, Seungji Yang, Jun Won Choi

Responsive image

Auto-TLDR; Video Object Detection Using Spatio-Temporal Aggregated Features and Gated Attention Network

Slides Poster Similar

The deep learning technique has recently led to significant improvement in object-detection accuracy. Numerous object detection schemes have been designed to process each frame independently. However, in many applications, object detection is performed using video data, which consists of a sequence of two-dimensional (2D) image frames. Thus, the object detection accuracy can be improved by exploiting the temporal context of the video sequence. In this paper, we propose a novel video object detection method that exploits both the motion context of the object and spatio-temporal aggregated features in the video sequence to enhance the object detection performance. First, the motion of the object is captured by the correlation between the spatial feature maps of two adjacent frames. Then, the embedding vector, representing the motion context, is obtained by feeding the N correlation maps to long short term memory (LSTM). In addition to generating the motion context vector, the spatial feature maps for N adjacent frames are aggregated to boost the quality of the feature map. The gated attention network is employed to selectively combine only highly correlated feature maps based on their relevance. While most video object detectors are applied to two-stage detectors, our proposed method is applicable to one-stage detectors, which tend to be preferred for practical applications owing to reduced computational complexity. Our numerical evaluation conducted on the ImageNet VID dataset shows that our network offers significant performance gain over baseline algorithms, and it outperforms the existing state-of-the-art one-stage video object detection methods.

ACCLVOS: Atrous Convolution with Spatial-Temporal ConvLSTM for Video Object Segmentation

Muzhou Xu, Shan Zong, Chunping Liu, Shengrong Gong, Zhaohui Wang, Yu Xia

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation using U-shape Convolution and ConvLSTM

Slides Poster Similar

Semi-supervised video object segmentation aims at segmenting the target of interest throughout a video sequence when only the annotated mask of the first frame is given. A feasible method for segmentation is to capture the spatial-temporal coherence between frames. However, it may suffer from mask drift when the spatial-temporal coherence is unreliable. To relieve this problem, we propose an encoder-decoder-recurrent model for semi-supervised video object segmentation. The model adopts a U-shape architecture that combines atrous convolution and ConvLSTM to establish the coherence in both the spatial and temporal domains. Furthermore, the weight ratio for each block is also reconstructed to make the model more suitable for the VOS task. We evaluate our method on two benchmarks, DAVIS-2017 and Youtube-VOS, where state-of-the-art segmentation accuracy with a real-time inference speed of 21.3 frames per second on a Tesla P100 is obtained.

Attention-Driven Body Pose Encoding for Human Activity Recognition

Bappaditya Debnath, Swagat Kumar, Marry O'Brien, Ardhendu Behera

Responsive image

Auto-TLDR; Attention-based Body Pose Encoding for Human Activity Recognition

Slides Poster Similar

This article proposes a novel attention-based body pose encoding for human activity recognition. Most of the existing human activity recognition approaches based on 3D pose data often enrich the input data using additional handcrafted representations such as velocity, super normal vectors, pairwise relations, and so on. The enriched data complements the 3D body joint position data and improves the model performance. In this paper, we propose a novel approach that learns enhanced feature representations from a given sequence of 3D body joints. To achieve this, the approach exploits two body pose streams: 1) a spatial stream which encodes the spatial relationship between various body joints at each time point to learn spatial structure involving the spatial distribution of different body joints 2) a temporal stream that learns the temporal variation of individual body joints over the entire sequence duration to present a temporally enhanced representation. Afterwards, these two pose streams are fused with a multi-head attention mechanism. We also capture the contextual information from the RGB video stream using a deep Convolutional Neural Network (CNN) model combined with a multi-head attention and a bidirectional Long Short-Term Memory (LSTM) network. Finally, the RGB video stream is combined with the fused body pose stream to give a novel end-to-end deep model for effective human activity recognition. The proposed model is evaluated on three datasets including the challenging NTU-RGBD dataset and achieves state-of-the-art results.

Video-Based Facial Expression Recognition Using Graph Convolutional Networks

Daizong Liu, Hongting Zhang, Pan Zhou

Responsive image

Auto-TLDR; Graph Convolutional Network for Video-based Facial Expression Recognition

Slides Poster Similar

Facial expression recognition (FER), aiming to classify the expression present in the facial image or video, has attracted a lot of research interests in the field of artificial intelligence and multimedia. In terms of video based FER task, it is sensible to capture the dynamic expression variation among the frames to recognize facial expression. However, existing methods directly utilize CNN-RNN or 3D CNN to extract the spatial-temporal features from different facial units, instead of concentrating on a certain region during expression variation capturing, which leads to limited performance in FER. In our paper, we introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based FER. First, the GCN layer is utilized to learn more contributing facial expression features which concentrate on certain regions after sharing information between nodes those represent CNN extracted features. Then, a LSTM layer is applied to learn long-term dependencies among the GCN learned features to model the variation. In addition, a weight assignment mechanism is also designed to weight the output of different nodes for final classification by characterizing the expression intensities in each frame. To the best of our knowledge, it is the first time to use GCN in FER task. We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0, and the experimental results demonstrate that our method has superior performance to existing methods.

SCA Net: Sparse Channel Attention Module for Action Recognition

Hang Song, Yonghong Song, Yuanlin Zhang

Responsive image

Auto-TLDR; SCA Net: Efficient Group Convolution for Sparse Channel Attention

Slides Poster Similar

Channel attention has shown its great performance recently when it was incorporated into deep convolutional neural networks. However, existing methods usually require extensive computing resources due to their involuted structure, which is hard for 3D CNNs to take full advantage of. In this paper, a lightweight sparse channel attention (SCA) module implemented by efficient group convolution is proposed, which adopts the idea of sparse channel connection and involves much less parameters but brings clear performance gain. Meanwhile, to solve the lack of local channel interaction brought by group convolution, a dominant function called Aggregate-Shuffle-Diverge (ASD) is leveraged to enhance information flow over each group with no additional parameters. We also adjust the existing mainstream 3D CNNs by employing 3D convolution factorization, so as to further reduce the parameters. Our SCA module can be flexibly incorporated into most existing 3D CNNs, all of which can achieve a perfect trade-off between performance and complexity on action recognition task with factorized I3D or 3D ResNet backbone networks. The experimental results also indicate that the resulting network, namely, SCA Net can achieve an outstanding performance on UCF-101 and HMDB-51 datasets.

MFI: Multi-Range Feature Interchange for Video Action Recognition

Sikai Bai, Qi Wang, Xuelong Li

Responsive image

Auto-TLDR; Multi-range Feature Interchange Network for Action Recognition in Videos

Slides Poster Similar

Short-range motion features and long-range dependencies are two complementary and vital cues for action recognition in videos, but it remains unclear how to efficiently and effectively extract these two features. In this paper, we propose a novel network to capture these two features in a unified 2D framework. Specifically, we first construct a Short-range Temporal Interchange (STI) block, which contains a Channels-wise Temporal Interchange (CTI) module for encoding short-range motion features. Then a Graph-based Regional Interchange (GRI) module is built to present long-range dependencies using graph convolution. Finally, we replace original bottleneck blocks in the ResNet with STI blocks and insert several GRI modules between STI blocks, to form a Multi-range Feature Interchange (MFI) Network. Practically, extensive experiments are conducted on three action recognition datasets (i.e., Something-Something V1, HMDB51, and UCF101), which demonstrate that the proposed MFI network achieves impressive results with very limited computing cost.

An Improved Bilinear Pooling Method for Image-Based Action Recognition

Wei Wu, Jiale Yu

Responsive image

Auto-TLDR; An improved bilinear pooling method for image-based action recognition

Slides Poster Similar

Action recognition in still images is a challenging task because of the complexity of human motions and the variance of background in the same action category. And some actions typically occur in fine-grained categories, with little visual differences between these categories. So extracting discriminative features or modeling various semantic parts is essential for image-based action recognition. Many methods apply expensive manual annotations to learn discriminative parts information for action recognition, which may severely discourage potential applications in real life. In recent years, bilinear pooling method has shown its effectiveness for image classification due to its learning distinctive features automatically. Inspired by this model, in this paper, an improved bilinear pooling method is proposed for avoiding the shortcomings of traditional bilinear pooling methods. The previous bilinear pooling approaches contain lots of noisy background or harmful feature information, which limit their application for action recognition. In our method, the attention mechanism is introduced into hierarchical bilinear pooling framework with mask aggregation for action recognition. The proposed model can generate the distinctive and ROI-aware feature information by combining multiple attention mask maps from the channel and spatial-wise attention features. To be more specific, our method makes the network to better pay attention to discriminative region of the vital objects in an image. We verify our model on the two challenging datasets: 1) Stanford 40 action dataset and 2) our action dataset that includes 60 categories. Experimental results demonstrate the effectiveness of our approach, which is superior to the traditional and state-of-the-art methods.

Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Nina Weng, Jiahao Wang, Annan Li, Yunhong Wang

Responsive image

Auto-TLDR; 2S-TCN: A Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Slides Poster Similar

In the field of facial attractiveness prediction, while deep models using static pictures have shown promising results, little attention is paid to dynamic facial information, which is proven to be influential by psychological studies. Meanwhile, the increasing popularity of short video apps creates an enormous demand of facial attractiveness prediction from short video clips. In this paper, we target on the dynamic facial attractiveness prediction problem. To begin with, a large-scale video-based facial attractiveness prediction dataset (VFAP) with more than one thousand clips from TikTok is collected. A two-stream temporal convolutional network (2S-TCN) is then proposed to capture dynamic attractiveness feature from both facial appearance and landmarks. We employ attentive feature enhancement along with specially designed modality and temporal fusion strategies to better explore the temporal dynamics. Extensive experiments on the proposed VFAP dataset demonstrate that 2S-TCN has a distinct advantage over the state-of-the-art static prediction methods.

Attention-Based Deep Metric Learning for Near-Duplicate Video Retrieval

Kuan-Hsun Wang, Chia Chun Cheng, Yi-Ling Chen, Yale Song, Shang-Hong Lai

Responsive image

Auto-TLDR; Attention-based Deep Metric Learning for Near-duplicate Video Retrieval

Slides Similar

Near-duplicate video retrieval (NDVR) is an important and challenging problem due to the increasing amount of videos uploaded to the Internet. In this paper, we propose an attention-based deep metric learning method for NDVR. Our method is based on well-established principles: We leverage two-stream networks to combine RGB and optical flow features, and incorporate an attention module to effectively deal with distractor frames commonly observed in near duplicate videos. We further aggregate the features corresponding to multiple video segments to enhance the discriminative power. The whole system is trained using a deep metric learning objective with a Siamese architecture. Our experiments show that the attention module helps eliminate redundant and noisy frames, while focusing on visually relevant frames for solving NVDR. We evaluate our approach on recent large-scale NDVR datasets, CC_WEB_VIDEO, VCDB, FIVR and SVD. To demonstrate the generalization ability of our approach, we report results in both within- and cross-dataset settings, and show that the proposed method significantly outperforms state-of-the-art approaches.

Channel-Wise Dense Connection Graph Convolutional Network for Skeleton-Based Action Recognition

Michael Lao Banteng, Zhiyong Wu

Responsive image

Auto-TLDR; Two-stream channel-wise dense connection GCN for human action recognition

Slides Poster Similar

Skeleton-based action recognition task has drawn much attention for many years. Graph Convolutional Network (GCN) has proved its effectiveness in this task. However, how to improve the model's robustness to different human actions and how to make effective use of features produced by the network are main topics needed to be further explored. Human actions are time series sequence, meaning that temporal information is a key factor to model the representation of data. The ranges of body parts involved in small actions (e.g. raise a glass or shake head) and big actions (e.g. walking or jumping) are diverse. It's crucial for the model to generate and utilize more features that can be adaptive to a wider range of actions. Furthermore, feature channels are specific with the action class, the model needs to weigh their importance and pay attention to more related ones. To address these problems, in this work, we propose a two-stream channel-wise dense connection GCN (2s-CDGCN). Specifically, the skeleton data was extracted and processed into spatial and temporal information for better feature representation. A channel-wise attention module was used to select and emphasize the more useful features generated by the network. Moreover, to ensure maximum information flow, dense connection was introduced to the network structure, which enables the network to reuse the skeleton features and generate more information adaptive and related to different human actions. Our model has shown its ability to improve the accuracy of human action recognition task on two large datasets, NTU-RGB+D and Kinetics. Extensive evaluations were conducted to prove the effectiveness of our model.

Vision-Based Multi-Modal Framework for Action Recognition

Djamila Romaissa Beddiar, Mourad Oussalah, Brahim Nini

Responsive image

Auto-TLDR; Multi-modal Framework for Human Activity Recognition Using RGB, Depth and Skeleton Data

Slides Poster Similar

Human activity recognition plays a central role in the development of intelligent systems for video surveillance, public security, health care and home monitoring, where detection and recognition of activities can improve the quality of life and security of humans. Typically, automated, intuitive and real-time systems are required to recognize human activities and identify accurately unusual behaviors in order to prevent dangerous situations. In this work, we explore the combination of three modalities (RGB, depth and skeleton data) to design a robust multi-modal framework for vision-based human activity recognition. Especially, spatial information, body shape/posture and temporal evolution of actions are highlighted using illustrative representations obtained from a combination of dynamic RGB images, dynamic depth images and skeleton data representations. Therefore, each video is represented with three images that summarize the ongoing action. Our framework takes advantage of transfer learning from pre trained models to extract significant features from these newly created images. Next, we fuse extracted features using Canonical Correlation Analysis and train a Long Short-Term Memory network to classify actions from visual descriptive images. Experimental results demonstrated the reliability of our feature-fusion framework that allows us to capture highly significant features and enables us to achieve the state-of-the-art performance on the public UTD-MHAD and NTU RGB+D datasets.

Learning Object Deformation and Motion Adaption for Semi-Supervised Video Object Segmentation

Xiaoyang Zheng, Xin Tan, Jianming Guo, Lizhuang Ma

Responsive image

Auto-TLDR; Semi-supervised Video Object Segmentation with Mask-propagation-based Model

Slides Poster Similar

We propose a novel method to solve the task of semi-supervised video object segmentation in this paper, where the mask annotation is only given at the first frame of the video sequence. A mask-propagation-based model is applied to learn the past and current information for segmentation. Besides, due to the scarcity of training data, image/mask pairs that model object deformation and shape variance are generated for the training phase. In addition, we generate the key flips between two adjacent frames for motion adaptation. The method works in an end-to-end way, without any online fine-tuning on test videos. Extensive experiments demonstrate that our method achieves competitive performance against state-of-the-art algorithms on benchmark datasets, covering cases with single object or multiple objects. We also conduct extensive ablation experiments to analyze the effectiveness of our proposed method.

Progressive Unsupervised Domain Adaptation for Image-Based Person Re-Identification

Mingliang Yang, Da Huang, Jing Zhao

Responsive image

Auto-TLDR; Progressive Unsupervised Domain Adaptation for Person Re-Identification

Slides Poster Similar

Unsupervised domain adaptation (UDA) has emerged as an effective paradigm for reducing the huge manual annotation cost for Person Re-Identification (Re-ID). Many of the recent UDA methods for Re-ID are clustering-based and select all the pseudo-label samples in each iteration for the model training. However, there are many wrong labeled samples that will mislead the model optimization under this circumstance. To solve this problem, we propose a Progressive Unsupervised Domain Adaptation (PUDA) framework for image-based Person Re-ID to reduce the negative effect of wrong pseudo-label samples on the model training process. Specifically, we first pretrain a CNN model on a labeled source dataset, then finetune the model on unlabeled target dataset with the following three steps iteratively: 1) estimating pseudo-labels for all the images in the target dataset with the model trained in the last iteration; 2) extending the training set by adding pseudo-label samples with higher label confidence; 3) updating the CNN model with the expanded training set in a supervised manner. During the iteration process, the number of pseudo-label samples added increased progressively. In particular, a Moderate Initial Selections (MIS) strategy for pseudo-label sampling is also proposed to reduce the negative impacts of random noise features in the early iterations and mislabeled samples in the late iterations on the model. The proposed framework with MIS strategy is validated on the Duke-to-Market, Market-to-Duke unsupervised domain adaptation tasks and achieves improvements of 4.2 points (absolute, i.e., 80.0% vs. 75.8%) and 1.7 points (absolute, i.e., 70.7% vs. 69.0%) in mAP correspondingly.

You Ought to Look Around: Precise, Large Span Action Detection

Ge Pan, Zhang Han, Fan Yu, Yonghong Song, Yuanlin Zhang, Han Yuan

Responsive image

Auto-TLDR; YOLA: Local Feature Extraction for Action Localization with Variable receptive field

Slides Similar

For the action localization task, pre-defined action anchors are the cornerstone of mainstream techniques. State-of-the-art models mostly rely on a dense segmenting scheme, where anchors are sampled uniformly over the temporal domain with a predefined set of scales. However, it is not sufficient because action duration varies greatly. Therefore, it is necessary for the anchors or proposals to have a variable receptive field. In this paper, we propose a method called YOLA (You Ought to Look Around) which includes three parts: 1) a robust backbone SPN-I3D for extracting spatio-temporal features. In this part, we employ a stronger backbone I3D with SPN (Segment Pyramid Network) instead of C3D to obtain multi-scale features; 2) a simple but useful feature fusion module named LFE (Local Feature Extraction). Compared with the fully connected layer and global average pooling, our LFE model is more advantageous for network to fit and fuse features. 3) a new feature segment aligning method called TPGC (Two Pathway Graph Convolution), which allows one proposal to leverage semantic features of adjacent proposals to update its content and make sure the proposals have a variable receptive field. YOLA add only a small overhead to the baseline network, and is easy to train in an end-to-end manner, running at a speed of 1097 fps. YOLA achieves a mAP of 58.3%, outperforming all existing models including both RGB-based and two stream on THUMOS'14, and achieves competitive results on ActivityNet 1.3.

Polynomial Universal Adversarial Perturbations for Person Re-Identification

Wenjie Ding, Xing Wei, Rongrong Ji, Xiaopeng Hong, Yihong Gong

Responsive image

Auto-TLDR; Polynomial Universal Adversarial Perturbation for Re-identification Methods

Slides Poster Similar

In this paper, we focus on Universal Adversarial Perturbations (UAP) attack on state-of-the-art person re-identification (Re-ID) methods. Existing UAP methods usually compute a perturbation image and add it to the images of interest. Such a simple constant form greatly limits the attack power. To address this problem, we extend the formulation of UAP to a polynomial form and propose the Polynomial Universal Adversarial Perturbation (PUAP). Unlike traditional UAP methods which only rely on the additive perturbation signal, the proposed PUAP consists of both an additive perturbation and a multiplicative modulation factor. The additive perturbation produces the fundamental component of the signal, while the multiplicative factor modulates the perturbation signal in line with the unit impulse pattern of the input image. Moreover, we design a Pearson correlation coefficient loss to generate universal perturbations, for disrupting the outputs of person Re-ID methods. Extensive experiments on DukeMTMC-ReID, Market-1501, and MARS show that the proposed method can efficiently improve the attack performance, especially when the magnitude of UAP is constrained to a small value.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

Temporal Feature Enhancement Network with External Memory for Object Detection in Surveillance Video

Masato Fujitake, Akihiro Sugimoto

Responsive image

Auto-TLDR; Temporal Attention Based External Memory Network for Surveillance Object Detection

Poster Similar

Video object detection is challenging and essential in practical applications, such as surveillance cameras for traffic control and public security. Unlike the video in natural scenes, the surveillance video tends to contain dense, and small objects (typically vehicles) in their appearances. Therefore, existing methods for surveillance object detection utilize still-image object detection approaches with rich feature extractors at the expense of their run-time speeds. The run-time speed, however, becomes essential when the video is being streamed. In this paper, we exploit temporal information in videos to enrich the feature maps, proposing the first temporal attention based external memory network for the live stream of video. Extensive experiments on real-world traffic surveillance benchmarks demonstrate the real-time performance of the proposed model while keeping comparable accuracy with state-of-the-art.

Siamese Dynamic Mask Estimation Network for Fast Video Object Segmentation

Dexiang Hong, Guorong Li, Kai Xu, Li Su, Qingming Huang

Responsive image

Auto-TLDR; Siamese Dynamic Mask Estimation for Video Object Segmentation

Slides Poster Similar

Video object segmentation(VOS) has been a fundamental topic in recent years, and many deep learning-based methods have achieved state-of-the-art performance on multiple benchmarks. However, most of these methods rely on pixel-level matching between the template and the searched frames on the whole image while the targets only occupy a small region. Calculating on the entire image brings lots of additional computation cost. Besides, the whole image may contain some distracting information resulting in many false-positive matching points. To address this issue, motivated by one-stage instance object segmentation methods, we propose an efficient siamese dynamic mask estimation network for fast video object segmentation. The VOS is decoupled into two tasks, i.e. mask feature learning and dynamic kernel prediction. The former is responsible for learning high-quality features to preserve structural geometric information, and the latter learns a dynamic kernel which is used to convolve with the mask feature to generate a mask output. We use Siamese neural network as a feature extractor and directly predict masks after correlation. In this way, we can avoid using pixel-level matching, making our framework more simple and efficient. Experiment results on DAVIS 2016 /2017 datasets show that our proposed methods can run at 35 frames per second on NVIDIA RTX TITAN while preserving competitive accuracy.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

VTT: Long-Term Visual Tracking with Transformers

Tianling Bian, Yang Hua, Tao Song, Zhengui Xue, Ruhui Ma, Neil Robertson, Haibing Guan

Responsive image

Auto-TLDR; Visual Tracking Transformer with transformers for long-term visual tracking

Slides Similar

Long-term visual tracking is a challenging problem. State-of-the-art long-term trackers, e.g., GlobalTrack, utilize region proposal networks (RPNs) to generate target proposals. However, the performance of the trackers is affected by occlusions and large scale or ratio variations. To address these issues, in this paper, we are the first to propose a novel architecture with transformers for long-term visual tracking. Specifically, the proposed Visual Tracking Transformer (VTT) utilizes a transformer encoder-decoder architecture for aggregating global information to deal with occlusion and large scale or ratio variation. Furthermore, it also shows better discriminative power against instance-level distractors without the need for extra labeling and hard-sample mining. We conduct extensive experiments on three largest long-term tracking dataset and have achieved state-of-the-art performance.