Polynomial Universal Adversarial Perturbations for Person Re-Identification

Wenjie Ding, Xing Wei, Rongrong Ji, Xiaopeng Hong, Yihong Gong

Responsive image

Auto-TLDR; Polynomial Universal Adversarial Perturbation for Re-identification Methods

Slides Poster

In this paper, we focus on Universal Adversarial Perturbations (UAP) attack on state-of-the-art person re-identification (Re-ID) methods. Existing UAP methods usually compute a perturbation image and add it to the images of interest. Such a simple constant form greatly limits the attack power. To address this problem, we extend the formulation of UAP to a polynomial form and propose the Polynomial Universal Adversarial Perturbation (PUAP). Unlike traditional UAP methods which only rely on the additive perturbation signal, the proposed PUAP consists of both an additive perturbation and a multiplicative modulation factor. The additive perturbation produces the fundamental component of the signal, while the multiplicative factor modulates the perturbation signal in line with the unit impulse pattern of the input image. Moreover, we design a Pearson correlation coefficient loss to generate universal perturbations, for disrupting the outputs of person Re-ID methods. Extensive experiments on DukeMTMC-ReID, Market-1501, and MARS show that the proposed method can efficiently improve the attack performance, especially when the magnitude of UAP is constrained to a small value.

Similar papers

Progressive Unsupervised Domain Adaptation for Image-Based Person Re-Identification

Mingliang Yang, Da Huang, Jing Zhao

Responsive image

Auto-TLDR; Progressive Unsupervised Domain Adaptation for Person Re-Identification

Slides Poster Similar

Unsupervised domain adaptation (UDA) has emerged as an effective paradigm for reducing the huge manual annotation cost for Person Re-Identification (Re-ID). Many of the recent UDA methods for Re-ID are clustering-based and select all the pseudo-label samples in each iteration for the model training. However, there are many wrong labeled samples that will mislead the model optimization under this circumstance. To solve this problem, we propose a Progressive Unsupervised Domain Adaptation (PUDA) framework for image-based Person Re-ID to reduce the negative effect of wrong pseudo-label samples on the model training process. Specifically, we first pretrain a CNN model on a labeled source dataset, then finetune the model on unlabeled target dataset with the following three steps iteratively: 1) estimating pseudo-labels for all the images in the target dataset with the model trained in the last iteration; 2) extending the training set by adding pseudo-label samples with higher label confidence; 3) updating the CNN model with the expanded training set in a supervised manner. During the iteration process, the number of pseudo-label samples added increased progressively. In particular, a Moderate Initial Selections (MIS) strategy for pseudo-label sampling is also proposed to reduce the negative impacts of random noise features in the early iterations and mislabeled samples in the late iterations on the model. The proposed framework with MIS strategy is validated on the Duke-to-Market, Market-to-Duke unsupervised domain adaptation tasks and achieves improvements of 4.2 points (absolute, i.e., 80.0% vs. 75.8%) and 1.7 points (absolute, i.e., 70.7% vs. 69.0%) in mAP correspondingly.

Adaptive L2 Regularization in Person Re-Identification

Xingyang Ni, Liang Fang, Heikki Juhani Huttunen

Responsive image

Auto-TLDR; AdaptiveReID: Adaptive L2 Regularization for Person Re-identification

Slides Poster Similar

We introduce an adaptive L2 regularization mechanism termed AdaptiveReID, in the setting of person re-identification. In the literature, it is common practice to utilize hand-picked regularization factors which remain constant throughout the training procedure. Unlike existing approaches, the regularization factors in our proposed method are updated adaptively through backpropagation. This is achieved by incorporating trainable scalar variables as the regularization factors, which are further fed into a scaled hard sigmoid function. Extensive experiments on the Market-1501, DukeMTMC-reID and MSMT17 datasets validate the effectiveness of our framework. Most notably, we obtain state-of-the-art performance on MSMT17, which is the largest dataset for person re-identification. Source code will be published at https://github.com/nixingyang/AdaptiveReID.

Building Computationally Efficient and Well-Generalizing Person Re-Identification Models with Metric Learning

Vladislav Sovrasov, Dmitry Sidnev

Responsive image

Auto-TLDR; Cross-Domain Generalization in Person Re-identification using Omni-Scale Network

Slides Similar

This work considers the problem of domain shift in person re-identification.Being trained on one dataset, a re-identification model usually performs much worse on unseen data. Partially this gap is caused by the relatively small scale of person re-identification datasets (compared to face recognition ones, for instance), but it is also related to training objectives. We propose to use the metric learning objective, namely AM-Softmax loss, and some additional training practices to build well-generalizing, yet, computationally efficient models. We use recently proposed Omni-Scale Network (OSNet) architecture combined with several training tricks and architecture adjustments to obtain state-of-the art results in cross-domain generalization problem on a large-scale MSMT17 dataset in three setups: MSMT17-all->DukeMTMC, MSMT17-train->Market1501 and MSMT17-all->Market1501.

RGB-Infrared Person Re-Identification Via Image Modality Conversion

Huangpeng Dai, Qing Xie, Yanchun Ma, Yongjian Liu, Shengwu Xiong

Responsive image

Auto-TLDR; CE2L: A Novel Network for Cross-Modality Re-identification with Feature Alignment

Slides Poster Similar

As a cross modality retrieval task, RGB-infrared person re-identification(Re-ID) is an important and challenging tasking, because of its important role in video surveillance applications and large cross-modality variations between visible and infrared images. Most previous works addressed the problem of cross-modality gap with feature alignment by original feature representation learning straightly. In this paper, different from existing works, we propose a novel network(CE2L) to tackle the cross-modality gap with feature alignment. CE2L mainly focuses on adding discriminative information and learning robust features by converting modality between visible and infrared images. Its merits are highlighted in two aspects: 1)Using CycleGAN to convert infrared images into color images can not only increase the recognition characteristics of images, but also allow the our network to better learn the two modal image features; 2)Our novel method can serve as data augmentation. Specifically, it can increase data diversity and total data against over-fitting by converting labeled training images to another modal images. Extensive experimental results on two datasets demonstrate superior performance compared to the baseline and the state-of-the-art methods.

Attentive Part-Aware Networks for Partial Person Re-Identification

Lijuan Huo, Chunfeng Song, Zhengyi Liu, Zhaoxiang Zhang

Responsive image

Auto-TLDR; Part-Aware Learning for Partial Person Re-identification

Slides Poster Similar

Partial person re-identification (re-ID) refers to re-identify a person through occluded images. It suffers from two major challenges, i.e., insufficient training data and incomplete probe image. In this paper, we introduce an automatic data augmentation module and a part-aware learning method for partial re-identification. On the one hand, we adopt the data augmentation to enhance the training data and help learns more stabler partial features. On the other hand, we intuitively find that the partial person images usually have fixed percentages of parts, therefore, in partial person re-id task, the probe image could be cropped from the pictures and divided into several different partial types following fixed ratios. Based on the cropped images, we propose the Cropping Type Consistency (CTC) loss to classify the cropping types of partial images. Moreover, in order to help the network better fit the generated and cropped data, we incorporate the Block Attention Mechanism (BAM) into the framework for attentive learning. To enhance the retrieval performance in the inference stage, we implement cropping on gallery images according to the predicted types of probe partial images. Through calculating feature distances between the partial image and the cropped holistic gallery images, we can recognize the right person from the gallery. To validate the effectiveness of our approach, we conduct extensive experiments on the partial re-ID benchmarks and achieve state-of-the-art performance.

Progressive Learning Algorithm for Efficient Person Re-Identification

Zhen Li, Hanyang Shao, Liang Niu, Nian Xue

Responsive image

Auto-TLDR; Progressive Learning Algorithm for Large-Scale Person Re-Identification

Slides Poster Similar

This paper studies the problem of Person Re-Identification (ReID) for large-scale applications. Recent research efforts have been devoted to building complicated part models, which introduce considerably high computational cost and memory consumption, inhibiting its practicability in large-scale applications. This paper aims to develop a novel learning strategy to find efficient feature embeddings while maintaining the balance of accuracy and model complexity. More specifically, we find by enhancing the classical triplet loss together with cross-entropy loss, our method can explore the hard examples and build a discriminant feature embedding yet compact enough for large-scale applications. Our method is carried out progressively using Bayesian optimization, and we call it the Progressive Learning Algorithm (PLA). Extensive experiments on three large-scale datasets show that our PLA is comparable or better than the state-of-the-arts. Especially, on the challenging Market-1501 dataset, we achieve Rank-1=94.7\%/mAP=89.4\% while saving at least 30\% parameters than strong part models.

A Base-Derivative Framework for Cross-Modality RGB-Infrared Person Re-Identification

Hong Liu, Ziling Miao, Bing Yang, Runwei Ding

Responsive image

Auto-TLDR; Cross-modality RGB-Infrared Person Re-identification with Auxiliary Modalities

Slides Poster Similar

Cross-modality RGB-infrared (RGB-IR) person re-identification (Re-ID) is a challenging research topic due to the heterogeneity of RGB and infrared images. In this paper, we aim to find some auxiliary modalities, which are homologous with the visible or infrared modalities, to help reduce the modality discrepancy caused by heterogeneous images. Accordingly, a new base-derivative framework is proposed, where base refers to the original visible and infrared modalities, and derivative refers to the two auxiliary modalities that are derived from base. In the proposed framework, the double-modality cross-modal learning problem is reformulated as a four-modality one. After that, the images of all the base and derivative modalities are fed into the feature learning network. With the doubled input images, the learned person features become more discriminative. Furthermore, the proposed framework is optimized by the enhanced intra- and cross-modality constraints with the assistance of two derivative modalities. Experimental results on two publicly available datasets SYSU-MM01 and RegDB show that the proposed method outperforms the other state-of-the-art methods. For instance, we achieve a gain of over 13\% in terms of both Rank-1 and mAP on RegDB dataset.

Attack Agnostic Adversarial Defense via Visual Imperceptible Bound

Saheb Chhabra, Akshay Agarwal, Richa Singh, Mayank Vatsa

Responsive image

Auto-TLDR; Robust Adversarial Defense with Visual Imperceptible Bound

Slides Poster Similar

High susceptibility of deep learning algorithms against structured and unstructured perturbations has motivated the development of efficient adversarial defense algorithms. However, the lack of generalizability of existing defense algorithms and the high variability in the performance of the attack algorithms for different databases raises several questions on the effectiveness of the defense algorithms. In this research, we aim to design a defense model that is robust within the certain bound against both seen and unseen adversarial attacks. This bound is related to the visual appearance of an image and we termed it as \textit{Visual Imperceptible Bound (VIB)}. To compute this bound, we propose a novel method that uses the database characteristics. The VIB is further used to compute the effectiveness of attack algorithms. In order to design a defense model, we propose a defense algorithm which makes the model robust within the VIB against both seen and unseen attacks. The performance of the proposed defense algorithm and the method to compute VIB are evaluated on MNIST, CIFAR-10, and Tiny ImageNet databases on multiple attacks including C\&W ($l_2$) and DeepFool. The proposed defense algorithm is not only able to increase the robustness against several attacks but also retain or improve the classification accuracy on an original clean test set. Experimentally, it is demonstrated that the proposed defense is better than existing strong defense algorithms based on adversarial retraining. We have additionally performed the PGD attack in white box settings and compared the results with the existing algorithms. The proposed defense is independent of the target model and adversarial attacks, and therefore can be utilized against any attack.

Multi-Scale Cascading Network with Compact Feature Learning for RGB-Infrared Person Re-Identification

Can Zhang, Hong Liu, Wei Guo, Mang Ye

Responsive image

Auto-TLDR; Multi-Scale Part-Aware Cascading for RGB-Infrared Person Re-identification

Slides Poster Similar

RGB-Infrared person re-identification (RGB-IR Re-ID) aims to matching persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in surveillance system under poor light conditions. Facing great challenges in complex variances including conventional single-modality and additional inter-modality discrepancies, most of existing RGB-IR Re-ID methods directly work on global features for simultaneous elimination, whereas modality-specific noises and modality-shared features are not well considered. To address these issues, a novel Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global in a cascading manner, which results in an unified representation robust to noises. Moreover, a marginal exponential center (MeCen) loss is introduced to jointly eliminate mixed variances, which enables to model cross-modality correlations on sharable salient features. Extensive experiments are conducted for demonstration that the proposed method outperforms all the state-of-the-arts by a large margin.

Cost-Effective Adversarial Attacks against Scene Text Recognition

Mingkun Yang, Haitian Zheng, Xiang Bai, Jiebo Luo

Responsive image

Auto-TLDR; Adversarial Attacks on Scene Text Recognition

Slides Poster Similar

Scene text recognition is a challenging task due to the diversity in text appearance and complexity of natural scenes. Thanks to the development of deep learning and the large volume of training data, scene text recognition has made impressive progress in recent years. However, recent research on adversarial examples has shown that deep learning models are vulnerable to adversarial input with imperceptible changes. As one of the most practical tasks in computer vision, scene text recognition is also facing huge security risks. To our best knowledge, there has been no work on adversarial attacks against scene text recognition. To investigate its effects on scene text recognition, we make the first attempt to attack the state-of-the-art scene text recognizer, i.e., attention-based recognizer. To that end, we first adjust the objective function designed for non-sequential tasks, such as image classification, semantic segmentation and image retrieval, to the sequential form. We then propose a novel and effective objective function to further reduce the amount of perturbation while achieving a higher attack success rate. Comprehensive experiments on several standard benchmarks clearly demonstrate effective adversarial effects on scene text recognition by the proposed attacks.

Deep Top-Rank Counter Metric for Person Re-Identification

Chen Chen, Hao Dou, Xiyuan Hu, Silong Peng

Responsive image

Auto-TLDR; Deep Top-Rank Counter Metric for Person Re-identification

Slides Poster Similar

In the research field of person re-identification, deep metric learning that guides the efficient and effective embedding learning serves as one of the most fundamental tasks. Recent efforts of the loss function based deep metric learning methods mainly focus on the top rank accuracy optimization by minimiz- ing the distance difference between the correctly matching sample pair and wrongly matched sample pair. However, it is more straightforward to count the occurrences of correct top-rank candidates and maximize the counting results for better top rank accuracy. In this paper, we propose a generalized logistic function based metric with effective practicalness in deep learning, namely the“deep top-rank counter metric”, to approximately optimize the counted occurrences of the correct top-rank matches. The properties that qualify the proposed metric as a well-suited deep re-identification metric have been discussed and a progressive hard sample mining strategy is also introduced for effective training and performance boosting. The extensive experiments show that the proposed top-rank counter metric outperforms other loss function based deep metrics and achieves the state-of- the-art accuracies.

Self-Paced Bottom-Up Clustering Network with Side Information for Person Re-Identification

Mingkun Li, Chun-Guang Li, Ruo-Pei Guo, Jun Guo

Responsive image

Auto-TLDR; Self-Paced Bottom-up Clustering Network with Side Information for Unsupervised Person Re-identification

Slides Poster Similar

Person re-identification (Re-ID) has attracted a lot of research attention in recent years. However, supervised methods demand an enormous amount of manually annotated data. In this paper, we propose a Self-Paced bottom-up Clustering Network with Side Information (SPCNet-SI) for unsupervised person Re-ID, where the side information comes from the serial number of the camera associated with each image. Specifically, our proposed SPCNet-SI exploits the camera side information to guide the feature learning and uses soft label in bottom-up clustering process, in which the camera association information is used in the repelled loss and the soft label based cluster information is used to select the candidate cluster pairs to merge. Moreover, a self-paced dynamic mechanism is developed to regularize the merging process such that the clustering is implemented in an easy-to-hard way with a slow-to-fast merging process. Experiments on two benchmark datasets Market-1501 and DukeMTMC-ReID demonstrate promising performance.

Defense Mechanism against Adversarial Attacks Using Density-Based Representation of Images

Yen-Ting Huang, Wen-Hung Liao, Chen-Wei Huang

Responsive image

Auto-TLDR; Adversarial Attacks Reduction Using Input Recharacterization

Slides Poster Similar

Adversarial examples are slightly modified inputs devised to cause erroneous inference of deep learning models. Protection against the intervention of adversarial examples is a fundamental issue that needs to be addressed before the wide adoption of deep-learning based intelligent systems. In this research, we utilize the method known as input recharacterization to effectively eliminate the perturbations found in the adversarial examples. By converting images from the intensity domain into density-based representation using halftoning operation, performance of the classifier can be properly maintained. With adversarial attacks generated using FGSM, I-FGSM, and PGD, the top-5 accuracy of the hybrid model can still achieve 80.97%, 78.77%, 81.56%, respectively. Although the accuracy has been slightly affected, the influence of adversarial examples is significantly discounted. The average improvement over existing input transform defense mechanisms is approximately 10%.

Optimal Transport As a Defense against Adversarial Attacks

Quentin Bouniot, Romaric Audigier, Angélique Loesch

Responsive image

Auto-TLDR; Sinkhorn Adversarial Training with Optimal Transport Theory

Slides Poster Similar

Deep learning classifiers are now known to have flaws in the representations of their class. Adversarial attacks can find a human-imperceptible perturbation for a given image that will mislead a trained model. The most effective methods to defend against such attacks trains on generated adversarial examples to learn their distribution. Previous work aimed to align original and adversarial image representations in the same way as domain adaptation to improve robustness. Yet, they partially align the representations using approaches that do not reflect the geometry of space and distribution. In addition, it is difficult to accurately compare robustness between defended models. Until now, they have been evaluated using a fixed perturbation size. However, defended models may react differently to variations of this perturbation size. In this paper, the analogy of domain adaptation is taken a step further by exploiting optimal transport theory. We propose to use a loss between distributions that faithfully reflect the ground distance. This leads to SAT (Sinkhorn Adversarial Training), a more robust defense against adversarial attacks. Then, we propose to quantify more precisely the robustness of a model to adversarial attacks over a wide range of perturbation sizes using a different metric, the Area Under the Accuracy Curve (AUAC). We perform extensive experiments on both CIFAR-10 and CIFAR-100 datasets and show that our defense is globally more robust than the state-of-the-art.

Pose Variation Adaptation for Person Re-Identification

Lei Zhang, Na Jiang, Qishuai Diao, Yue Xu, Zhong Zhou, Wei Wu

Responsive image

Auto-TLDR; Pose Transfer Generative Adversarial Network for Person Re-identification

Slides Poster Similar

Person re-identification (reid) plays an important role in surveillance video analysis, especially for criminal investigation and intelligent security. Although a large number of effective feature or distance metric learning approaches have been proposed, it still suffers from pedestrians appearance variations caused by pose changing. Most of the previous methods address this problem by learning a pose-invariant descriptor subspace. In this paper, we propose a pose variation adaptation method for person reid in the view of data augmentation. It can reduce the probability of deep learning network over-fitting. Specifically, we introduce a pose transfer generative adversarial network with a similarity measurement constraint. With the learned pose transfer model, training images can be pose-transferred to any given poses, and along with the original images, form a augmented training dataset. It increases data diversity against over-fitting. In contrast to previous GAN-based methods, we consider the influence of pose variations on similarity measure to generate more realistic and shaper samples for person reid. Besides, we optimize hard example mining to introduce a novel manner of samples (pose-transferred images) used with the learned pose transfer model. It focuses on the inferior samples which are caused by pose variations to increase the number of effective hard examples for learning discriminative features and improve the generalization ability. We extensively conduct comparative evaluations to demonstrate the advantages and superiority of our proposed method over the state-of-the-art approaches on Market-1501 and DukeMTMC-reID, the rank-1 accuracy is 96.1% for Market-1501 and 92.0% for DukeMTMC-reID.

Recurrent Deep Attention Network for Person Re-Identification

Changhao Wang, Jun Zhou, Xianfei Duan, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Recurrent Deep Attention Network for Person Re-identification

Slides Poster Similar

Person re-identification (re-id) is an important task in video surveillance. It is challenging due to the appearance of person varying a wide range acrossnon-overlapping camera views. Recent years, attention-based models are introduced to learn discriminative representation. In this paper, we consider the attention selection in a natural way as like human moving attention on different parts of the visual field for person re-id. In concrete, we propose a Recurrent Deep Attention Network (RDAN) with an attention selection mechanism based on reinforcement learning. The RDAN aims to adaptively observe the identity-sensitive regions to build up the representation of individuals step by step. Extensive experiments on three person re-id benchmarks Market-1501, DukeMTMC-reID and CUHK03-NP demonstrate the proposed method can achieve competitive performance.

Transferable Adversarial Attacks for Deep Scene Text Detection

Shudeng Wu, Tao Dai, Guanghao Meng, Bin Chen, Jian Lu, Shutao Xia

Responsive image

Auto-TLDR; Robustness of DNN-based STD methods against Adversarial Attacks

Slides Similar

Scene text detection (STD) aims to locate text in images and plays an important role in many computer vision tasks including automatic driving and text recognition systems. Recently, deep neural networks (DNNs) have been widely and successfully used in scene text detection, leading to plenty of DNN-based STD methods including regression-based and segmentation-based STD methods. However, recent studies have also shown that DNN is vulnerable to adversarial attacks, which can significantly degrade the performance of DNN models. In this paper, we investigate the robustness of DNN-based STD methods against adversarial attacks. To this end, we propose a generic and efficient attack method to generate adversarial examples, which are produced by adding small but imperceptible adversarial perturbation to the input images. Experiments on attacking four various models and a real-world STD engine of Google optical character recognition (OCR) show that the state-of-the-art DNN-based STD methods including regression-based and segmentation-based methods are vulnerable to adversarial attacks.

Top-DB-Net: Top DropBlock for Activation Enhancement in Person Re-Identification

Rodolfo Quispe, Helio Pedrini

Responsive image

Auto-TLDR; Top-DB-Net for Person Re-Identification using Top DropBlock

Slides Poster Similar

Person Re-Identification is a challenging task that aims to retrieve all instances of a query image across a system of non-overlapping cameras. Due to the various extreme changes of view, it is common that local regions that could be used to match people are suppressed, which leads to a scenario where approaches have to evaluate the similarity of images based on less informative regions. In this work, we introduce the Top-DB-Net, a method based on Top DropBlock that pushes the network to learn to focus on the scene foreground, with special emphasis on the most task-relevant regions and, at the same time, encodes low informative regions to provide high discriminability. The Top-DB-Net is composed of three streams: (i) a global stream encodes rich image information from a backbone, (ii) the Top DropBlock stream encourages the backbone to encode low informative regions with high discriminative features, and (iii) a regularization stream helps to deal with the noise created by the dropping process of the second stream, when testing the first two streams are used. Vast experiments on three challenging datasets show the capabilities of our approach against state-of-the-art methods. Qualitative results demonstrate that our method exhibits better activation maps focusing on reliable parts of the input images.

Accuracy-Perturbation Curves for Evaluation of Adversarial Attack and Defence Methods

Jaka Šircelj, Danijel Skocaj

Responsive image

Auto-TLDR; Accuracy-perturbation Curve for Robustness Evaluation of Adversarial Examples

Slides Poster Similar

With more research published on adversarial examples, we face a growing need for strong and insightful methods for evaluating the robustness of machine learning solutions against their adversarial threats. Previous work contains problematic and overly simplified evaluation methods, where different methods for generating adversarial examples are compared, even though they produce adversarial examples of differing perturbation magnitudes. This creates a biased evaluation environment, as higher perturbations yield naturally stronger adversarial examples. We propose a novel "accuracy-perturbation curve" that visualizes a classifiers classification accuracy response to adversarial examples of different perturbations. To demonstrate the utility of the curve we perform evaluation of responses of different image classifier architectures to four popular adversarial example methods. We also show how adversarial training improves the robustness of a classifier using the "accuracy-perturbation curve".

Multi-Level Deep Learning Vehicle Re-Identification Using Ranked-Based Loss Functions

Eleni Kamenou, Jesus Martinez-Del-Rincon, Paul Miller, Patricia Devlin - Hill

Responsive image

Auto-TLDR; Multi-Level Re-identification Network for Vehicle Re-Identification

Slides Poster Similar

Identifying vehicles across a network of cameras with non-overlapping fields of view remains a challenging research problem due to scene occlusions, significant inter-class similarity and intra-class variability. In this paper, we propose an end-to-end multi-level re-identification network that is capable of successfully projecting same identity vehicles closer to one another in the embedding space, compared to vehicles of different identities. Robust feature representations are obtained by combining features at multiple levels of the network. As for the learning process, we employ a recent state-of-the-art structured metric learning loss function previously applied to other retrieval problems and adjust it to the vehicle re-identification task. Furthermore, we explore the cases of image-to-image, image-to-video and video-to-video similarity metric. Finally, we evaluate our system and achieve great performance on two large-scale publicly available datasets, CityFlow-ReID and VeRi-776. Compared to most existing state-of-art approaches, our approach is simpler and more straightforward, utilizing only identity-level annotations, while avoiding post-processing the ranking results (re-ranking) at the testing phase.

How Important Are Faces for Person Re-Identification?

Julia Dietlmeier, Joseph Antony, Kevin Mcguinness, Noel E O'Connor

Responsive image

Auto-TLDR; Anonymization of Person Re-identification Datasets with Face Detection and Blurring

Slides Poster Similar

This paper investigates the dependence of existing state-of-the-art person re-identification models on the presence and visibility of human faces. We apply a face detection and blurring algorithm to create anonymized versions of several popular person re-identification datasets including Market1501, DukeMTMC-reID, CUHK03, Viper, and Airport. Using a cross-section of existing state-of-the-art models that range in accuracy and computational efficiency, we evaluate the effect of this anonymization on re-identification performance using standard metrics. Perhaps surprisingly, the effect on mAP is very small, and accuracy is recovered by simply training on the anonymized versions of the data rather than the original data. These findings are consistent across multiple models and datasets. These results indicate that datasets can be safely anonymized by blurring faces without significantly impacting the performance of person re-identification systems, and may allow for the release of new richer re-identification datasets where previously there were privacy or data protection concerns.

Self and Channel Attention Network for Person Re-Identification

Asad Munir, Niki Martinel, Christian Micheloni

Responsive image

Auto-TLDR; SCAN: Self and Channel Attention Network for Person Re-identification

Slides Poster Similar

Recent research has shown promising results for person re-identification by focusing on several trends. One is designing efficient metric learning loss functions such as triplet loss family to learn the most discriminative representations. The other is learning local features by designing part based architectures to form an informative descriptor from semantically coherent parts. Some efforts adjust distant outliers to their most similar positions by using soft attention and learn the relationship between distant similar features. However, only a few prior efforts focus on channel-wise dependencies and learn non-local sharp similar part features directly for the degraded data in the person re-identification task. In this paper, we propose a novel Self and Channel Attention Network (SCAN) to model long-range dependencies between channels and feature maps. We add multiple classifiers to learn discriminative global features by using classification loss. Self Attention (SA) module and Channel Attention (CA) module are introduced to model non-local and channel-wise dependencies in the learned features. Spectral normalization is applied to the whole network to stabilize the training process. Experimental results on the person re-identification benchmarks show the proposed components achieve significant improvement with respect to the baseline.

Task-based Focal Loss for Adversarially Robust Meta-Learning

Yufan Hou, Lixin Zou, Weidong Liu

Responsive image

Auto-TLDR; Task-based Adversarial Focal Loss for Few-shot Meta-Learner

Slides Poster Similar

Adversarial robustness of machine learning has been widely studied in recent years, and a series of effective methods are proposed to resist adversarial attacks. However, less attention is paid to few-shot meta-learners which are much more vulnerable due to the lack of training samples. In this paper, we propose Task-based Adversarial Focal Loss (TAFL) to handle this tough challenge on a typical meta-learner called MAML. More concretely, we regard few-shot classification tasks as normal samples in learning models and apply focal loss mechanism on them. Our proposed method focuses more on adversarially fragile tasks, leading to improvement on overall model robustness. Results of extensive experiments on several benchmarks demonstrate that TAFL can effectively promote the performance of the meta-learner on adversarial examples with elaborately designed perturbations.

CANU-ReID: A Conditional Adversarial Network for Unsupervised Person Re-IDentification

Guillaume Delorme, Yihong Xu, Stéphane Lathuiliere, Radu Horaud, Xavier Alameda-Pineda

Responsive image

Auto-TLDR; Unsupervised Person Re-Identification with Clustering and Adversarial Learning

Slides Similar

Unsupervised person re-ID is the task of identifying people on a target data set for which the ID labels are unavailable during training. In this paper, we propose to unify two trends in unsupervised person re-ID: clustering & fine-tuning and adversarial learning. On one side, clustering groups training images into pseudo-ID labels, and uses them to fine-tune the feature extractor. On the other side, adversarial learning is used, inspired by domain adaptation, to match distributions from different domains. Since target data is distributed across different camera viewpoints, we propose to model each camera as an independent domain, and aim to learn domain-independent features. Straightforward adversarial learning yields negative transfer, we thus introduce a conditioning vector to mitigate this undesirable effect. In our framework, the centroid of the cluster to which the visual sample belongs is used as conditioning vector of our conditional adversarial network, where the vector is permutation invariant (clusters ordering does not matter) and its size is independent of the number of clusters. To our knowledge, we are the first to propose the use of conditional adversarial networks for unsupervised person re-ID. We evaluate the proposed architecture on top of two state-of-the-art clustering-based unsupervised person re-identification (re-ID) methods on four different experimental settings with three different data sets and set the new state-of-the-art performance on all four of them. Our code and model will be made publicly available at https://team.inria.fr/perception/canu-reid/.

AdvHat: Real-World Adversarial Attack on ArcFace Face ID System

Stepan Komkov, Aleksandr Petiushko

Responsive image

Auto-TLDR; Adversarial Sticker Attack on ArcFace in Shooting Conditions

Slides Poster Similar

In this paper we propose a novel easily reproducible technique to attack the best public Face ID system ArcFace in different shooting conditions. To create an attack, we print the rectangular paper sticker on a common color printer and put it on the hat. The adversarial sticker is prepared with a novel algorithm for off-plane transformations of the image which imitates sticker location on the hat. Such an approach confuses the state-of-the-art public Face ID model LResNet100E-IR, ArcFace@ms1m-refine-v2 and is transferable to other Face ID models.

Not 3D Re-ID: Simple Single Stream 2D Convolution for Robust Video Re-Identification

Toby Breckon, Aishah Alsehaim

Responsive image

Auto-TLDR; ResNet50-IBN for Video-based Person Re-Identification using Single Stream 2D Convolution Network

Slides Poster Similar

Video-based person re-identification has received increasing attention recently, as it plays an important role within the surveillance video analysis. Video-based Re-ID is an expansion of earlier image-based re-identification methods by learning features from a video via multiple image frames for each person. Most contemporary video Re-ID methods utilise complex CNN-based network architectures using 3D convolution or multi-branch networks to extract spatial-temporal features from the video. By contrast, in this paper, we will illustrate superior performance from a simple single stream 2D convolution network leveraging the ResNet50-IBN architecture to extract frame-level features followed by temporal attention for clip level features. These clip level features can be generalised to extract video level features by averaging clip level features without any additional cost. Our model, uses best video Re-ID practice and transfer learning between datasets, outperforms existing state-of-the-art approaches on MARS, PRID2011 and iLIDSVID datasets with 89:62%, 97:75%, 97:33% rank-1 accuracy respectively and with 84:61% mAP for MARS, without reliance on complex and memory intensive 3D convolutions or multistream networks architectures as found in other contemporary work. Conversely, this work shows that global features extracted by the 2D convolution network are a sufficient representation for robust state of the art video Re-ID.

Attention-Based Model with Attribute Classification for Cross-Domain Person Re-Identification

Simin Xu, Lingkun Luo, Shiqiang Hu

Responsive image

Auto-TLDR; An attention-based model with attribute classification for cross-domain person re-identification

Poster Similar

Person re-identification (re-ID) which aims to recognize a pedestrian observed by non-overlapping cameras is a challenging task due to high variance between images from different viewpoints. Although remarkable progresses on research of re-ID had been obtained via leveraging the merits of deep learning framework through sufficient quantity training on a large amount of well labeled data, whereas, in real scenarios, re-ID generally suffers from lacking of well labeled training data. In this paper, we propose an attention-based model with attribute classification (AMAC) to facilitate a well trained model transferring across different data domains, which further enables an efficient cross-domain video-based person re-ID. Specifically, an attention-based sub-network is proposed for deep insight into the quality variations of local parts, hence, different local parts are cooperated with different weights to avoid the heavy occlusions or the cluttered background in datasets. Moreover, we introduce a transferred attribute classification sub-network to extract attribute-semantic features of any new target datasets without the requirement for new training attribute labels which are costly to annotate. Attribute-semantic features can be considered as valuable complementary information for person re-identification since they are robust to illumination varieties and different viewpoints across cameras. Due to the large gap between different datasets, we finetune each sub-network with pseudo labels on the target datasets respectively to strengthen the original model trained on other labeled datasets. Extensive comparable evaluations demonstrate the superiority of our AMAC in solving cross-domain person re-ID task on two benchmarks including PRID-2011 and iLIDS-VID.

Adversarially Training for Audio Classifiers

Raymel Alfonso Sallo, Mohammad Esmaeilpour, Patrick Cardinal

Responsive image

Auto-TLDR; Adversarially Training for Robust Neural Networks against Adversarial Attacks

Slides Poster Similar

In this paper, we investigate the potential effect of the adversarially training on the robustness of six advanced deep neural networks against a variety of targeted and non-targeted adversarial attacks. We firstly show that, the ResNet-56 model trained on the 2D representation of the discrete wavelet transform appended with the tonnetz chromagram outperforms other models in terms of recognition accuracy. Then we demonstrate the positive impact of adversarially training on this model as well as other deep architectures against six types of attack algorithms (white and black-box) with the cost of the reduced recognition accuracy and limited adversarial perturbation. We run our experiments on two benchmarking environmental sound datasets and show that without any imposed limitations on the budget allocations for the adversary, the fooling rate of the adversarially trained models can exceed 90%. In other words, adversarial attacks exist in any scales, but they might require higher adversarial perturbations compared to non-adversarially trained models.

Decoupled Self-Attention Module for Person Re-Identification

Chao Zhao, Zhenyu Zhang, Jian Yang, Yan Yan

Responsive image

Auto-TLDR; Decoupled Self-attention Module for Person Re-identification

Slides Poster Similar

Person re-identification aims to identifying the same person from different cameras, which needs to integrate whole-body information and capture global correlation. However, convolutional neural network is able to only capture short-distance information because of the size of filters. Self-attention is introduced to capture long-distance correlation, but inner-product similarity calculation in self-attention mingles semantic response and semantic difference together. Semantic difference is more important for person re-identification, because it is robust to illumination without the effect of semantic response. However, we find the scale of norms measuring semantic response is much larger than angle measuring semantic difference by decoupling inner-product similarity into norms and angle. To balance the importance of semantic response and semantic difference in self-attention, we propose the decoupled self-attention module for person re-identification to make the most of self-attention. Extensive experiments show that the decoupled self-attention module obtains significant performance with easier convergence and stronger robustness.

Rethinking ReID:Multi-Feature Fusion Person Re-Identification Based on Orientation Constraints

Mingjing Ai, Guozhi Shan, Bo Liu, Tianyang Liu

Responsive image

Auto-TLDR; Person Re-identification with Orientation Constrained Network

Slides Poster Similar

Person re-identification (ReID) aims to identify the specific pedestrian in a series of images or videos. Recently, ReID is receiving more and more attention in the fields of computer vision research and application like intelligent security. One major issue downgrading the ReID model performance lies in that various subjects in the same body orientations look too similar to distinguish by the model, while the same subject viewed in different orientations looks rather different. However, most of the current studies do not particularly differentiate pedestrians in orientation when designing the network, so we rethink this problem particularly from the perspective of person orientation and propose a new network structure by including two branches: one handling samples with the same body orientations and the other handling samples with different body orientations. Correspondingly, we also propose an orientation classifier that can accurately distinguish the orientation of each person. At the same time, the three-part loss functions are introduced for orientation constraint and combined to optimize the network simultaneously. Also, we use global and local features int the training stage in order to make use of multi-level information. Therefore, our network can derive its efficacy from orientation constraints and multiple features. Experiments show that our method not only has competitive performance on multiple datasets, but also can let retrieval results aligned with the orientation of the query sample rank higher, which may have great potential in the practical applications.

Sample-Dependent Distance for 1 : N Identification Via Discriminative Feature Selection

Naoki Kawamura, Susumu Kubota

Responsive image

Auto-TLDR; Feature Selection Mask for 1:N Identification Problems with Binary Features

Slides Poster Similar

We focus on 1:N identification problems with binary features. Most multiclass classification methods, including identification and verification methods, use a shared metric space in which distances between samples are measured regardless of their identities. This is because dedicated metric spaces learned for each identity in the training set are of little use for the test set. In 1:N identification problems, however, gallery samples contain rich information about the test domain. Given a sample and its neighbors in the gallery set, we propose a method for calculating a discriminative feature selection mask that is used as a sample-dependent distance metric. Experiments on several re-identification datasets show that the proposed method enhances the performance of state-of-the-art feature extractors.

F-Mixup: Attack CNNs from Fourier Perspective

Xiu-Chuan Li, Xu-Yao Zhang, Fei Yin, Cheng-Lin Liu

Responsive image

Auto-TLDR; F-Mixup: A novel black-box attack in frequency domain for deep neural networks

Slides Poster Similar

Recent research has revealed that deep neural networks are highly vulnerable to adversarial examples. In this paper, different from most adversarial attacks which directly modify pixels in spatial domain, we propose a novel black-box attack in frequency domain, named as f-mixup, based on the property of natural images and perception disparity between human-visual system (HVS) and convolutional neural networks (CNNs): First, natural images tend to have the bulk of their Fourier spectrums concentrated on the low frequency domain; Second, HVS is much less sensitive to high frequencies while CNNs can utilize both low and high frequency information to make predictions. Extensive experiments are conducted and show that deeper CNNs tend to concentrate more on the high frequency domain, which may explain the contradiction between robustness and accuracy. In addition, we compared f-mixup with existing attack methods and observed that our approach possesses great advantages. Finally, we show that f-mixup can be also incorporated in training to make deep CNNs defensible against a kind of perturbations effectively.

Online Domain Adaptation for Person Re-Identification with a Human in the Loop

Rita Delussu, Lorenzo Putzu, Giorgio Fumera, Fabio Roli

Responsive image

Auto-TLDR; Human-in-the-loop for Person Re-Identification in Infeasible Applications

Slides Poster Similar

Supervised deep learning methods have recently achieved remarkable performance in person re-identification. Unsupervised domain adaptation (UDA) approaches have also been proposed for application scenarios where only unlabelled data are available from target camera views. We consider a more challenging scenario when even collecting a suitable amount of representative, unlabelled target data for offline training or fine-tuning is infeasible. In this context we revisit the human-in-the-loop (HITL) approach, which exploits online the operator's feedback on a small amount of target data. We argue that HITL is a kind of online domain adaptation specifically suited to person re-identification. We then reconsider relevance feedback methods for content-based image retrieval that are computationally much cheaper than state-of-the-art HITL methods for person re-identification, and devise a specific feedback protocol for them. Experimental results show that HITL can achieve comparable or better performance than UDA, and is therefore a valid alternative when the lack of unlabelled target data makes UDA infeasible.

Adaptive Noise Injection for Training Stochastic Student Networks from Deterministic Teachers

Yi Xiang Marcus Tan, Yuval Elovici, Alexander Binder

Responsive image

Auto-TLDR; Adaptive Stochastic Networks for Adversarial Attacks

Slides Similar

Adversarial attacks have been a prevalent problem causing misclassification in machine learning models, with stochasticity being a promising direction towards greater robustness. However, stochastic networks frequently underperform compared to deterministic deep networks. In this work, we present a conceptually clear adaptive noise injection mechanism in combination with teacher-initialisation, which adjusts its degree of randomness dynamically through the computation of mini-batch statistics. This mechanism is embedded within a simple framework to obtain stochastic networks from existing deterministic networks. Our experiments show that our method is able to outperform prior baselines under white-box settings, exemplified through CIFAR-10 and CIFAR-100. Following which, we perform in-depth analysis on varying different components of training with our approach on the effects of robustness and accuracy, through the study of the evolution of decision boundary and trend curves of clean accuracy/attack success over differing degrees of stochasticity. We also shed light on the effects of adversarial training on a pre-trained network, through the lens of decision boundaries.

Variational Inference with Latent Space Quantization for Adversarial Resilience

Vinay Kyatham, Deepak Mishra, Prathosh A.P.

Responsive image

Auto-TLDR; A Generalized Defense Mechanism for Adversarial Attacks on Data Manifolds

Slides Poster Similar

Despite their tremendous success in modelling highdimensional data manifolds, deep neural networks suffer from the threat of adversarial attacks - Existence of perceptually valid input-like samples obtained through careful perturbation that lead to degradation in the performance of the underlying model. Major concerns with existing defense mechanisms include non-generalizability across different attacks, models and large inference time. In this paper, we propose a generalized defense mechanism capitalizing on the expressive power of regularized latent space based generative models. We design an adversarial filter, devoid of access to classifier and adversaries, which makes it usable in tandem with any classifier. The basic idea is to learn a Lipschitz constrained mapping from the data manifold, incorporating adversarial perturbations, to a quantized latent space and re-map it to the true data manifold. Specifically, we simultaneously auto-encode the data manifold and its perturbations implicitly through the perturbations of the regularized and quantized generative latent space, realized using variational inference. We demonstrate the efficacy of the proposed formulation in providing resilience against multiple attack types (black and white box) and methods, while being almost real-time. Our experiments show that the proposed method surpasses the stateof-the-art techniques in several cases.

Semi-Supervised Person Re-Identification by Attribute Similarity Guidance

Peixian Hong, Ancong Wu, Wei-Shi Zheng

Responsive image

Auto-TLDR; Attribute Similarity Guidance Guidance Loss for Semi-supervised Person Re-identification

Slides Poster Similar

Although supervised person re-identification (RE-ID) has achieved great progress with deep learning, it requires time-consuming annotation of a large number of pedestrian identities. To reduce labeling cost, we attempt to reduce cross-camera identity annotations and exploit pedestrian attribute annotations as auxiliary information instead. The pedestrian attributes, such as outfit styles, contain coarse semantic knowledge. Although pedestrian attributes are annotated without exhaustive searching in a camera network, which is much easier than cross-camera identity annotation, ambiguity exists in attributes when different persons have similar outfits. To solve this problem, we propose an Attribute Similarity Guidance loss (ASG) to guide appearance feature learning for RE-ID by selective attribute similarity preservation to avoid the impact of such ambiguity. Finally, we develop an attribute-guided self training framework to jointly utilize attribute annotations, unlabeled data and limited labeled data for semi-supervised learning. Extensive experiments on Market-1501 and DukeMTMC-ReID show the superiority of our method for semi-supervised RE-ID.

Learning with Multiplicative Perturbations

Xiulong Yang, Shihao Ji

Responsive image

Auto-TLDR; XAT and xVAT: A Multiplicative Adversarial Training Algorithm for Robust DNN Training

Slides Poster Similar

Adversarial Training (AT) and Virtual Adversarial Training (VAT) are the regularization techniques that train Deep Neural Networks (DNNs) with adversarial examples generated by adding small but worst-case perturbations to input examples. In this paper, we propose xAT and xVAT, new adversarial training algorithms that generate multiplicative perturbations to input examples for robust training of DNNs. Such perturbations are much more perceptible and interpretable than their additive counterparts exploited by AT and VAT. Furthermore, the multiplicative perturbations can be generated transductively or inductively, while the standard AT and VAT only support a transductive implementation. We conduct a series of experiments that analyze the behavior of the multiplicative perturbations and demonstrate that xAT and xVAT match or outperform state-of-the-art classification accuracies across multiple established benchmarks while being about 30% faster than their additive counterparts. Our source code can be found at https://github.com/sndnyang/xvat

Convolutional Feature Transfer via Camera-Specific Discriminative Pooling for Person Re-Identification

Tetsu Matsukawa, Einoshin Suzuki

Responsive image

Auto-TLDR; A small-scale CNN feature transfer method for person re-identification

Slides Poster Similar

Modern Convolutional Neural Networks~(CNNs) have been improving the accuracy of person re-identification (re-id) using a large number of training samples. Such a re-id system suffers from a lack of training samples for deployment to practical security applications. To address this problem, we focus on the approach that transfers CNN features pre-trained on a large-scale person re-id dataset to a small-scale dataset. Most of the ordinal CNN feature transfer methods use the features of fully connected layers that entangle locally pooled features of different spatial locations on an image. Unfortunately, due to the difference of view angles and the bias of walking directions of the persons, each camera view in a dataset has a unique spatial property in the person image, which reduces the generality of the local pooling for different cameras/datasets. To account for the camera- and dataset-specific spatial bias, we propose a method to learn camera and dataset-specific position weight maps for discriminative local pooling of convolutional features. Our experiments on four public datasets confirm the effectiveness of the proposed feature transfer with a small number of training samples in the target datasets.

On the Robustness of 3D Human Pose Estimation

Zerui Chen, Yan Huang, Liang Wang

Responsive image

Auto-TLDR; Robustness of 3D Human Pose Estimation Methods to Adversarial Attacks

Slides Similar

It is widely shown that Convolutional Neural Networks (CNNs) are vulnerable to adversarial examples on most recognition tasks, such as image classification and segmentation. However, few work studies the more complicated task -- 3D human pose estimation. This task often requires large-scale datasets, specialized network architectures, and it can be solved either from single-view RGB images or from multi-view RGB images. In this paper, we make the first attempt to investigate the robustness of current state-of-the-art 3D human pose estimation methods. To this end, we build four representative baseline models, where most of the current methods can be generally classified as one of them. Furthermore, we design targeted adversarial attacks to detect whether 3D pose estimators are robust to different camera parameters. For different types of methods, we present a comprehensive study of their robustness on the large-scale \emph{Human3.6M} benchmark. Our work shows that different methods vary significantly in their resistance to adversarial attacks. Through extensive experiments, we show that multi-view 3D pose estimators can be more vulnerable to adversarial examples. We believe that our efforts can shed light on future works to design more robust 3D human pose estimators.

Domain Generalized Person Re-Identification Via Cross-Domain Episodic Learning

Ci-Siang Lin, Yuan Chia Cheng, Yu-Chiang Frank Wang

Responsive image

Auto-TLDR; Domain-Invariant Person Re-identification with Episodic Learning

Slides Poster Similar

Aiming at recognizing images of the same person across distinct camera views, person re-identification (re-ID) has been among active research topics in computer vision. Most existing re-ID works require collection of a large amount of labeled image data from the scenes of interest. When the data to be recognized are different from the source-domain training ones, a number of domain adaptation approaches have been proposed. Nevertheless, one still needs to collect labeled or unlabelled target-domain data during training. In this paper, we tackle an even more challenging and practical setting, domain generalized (DG) person re-ID. That is, while a number of labeled source-domain datasets are available, we do not have access to any target-domain training data. In order to learn domain-invariant features without knowing the target domain of interest, we present an episodic learning scheme which advances meta learning strategies to exploit the observed source-domain labeled data. The learned features would exhibit sufficient domain-invariant properties while not overfitting the source-domain data or ID labels. Our experiments on four benchmark datasets confirm the superiority of our method over the state-of-the-arts.

Attack-Agnostic Adversarial Detection on Medical Data Using Explainable Machine Learning

Matthew Watson, Noura Al Moubayed

Responsive image

Auto-TLDR; Explainability-based Detection of Adversarial Samples on EHR and Chest X-Ray Data

Slides Poster Similar

Explainable machine learning has become increasingly prevalent, especially in healthcare where explainable models are vital for ethical and trusted automated decision making. Work on the susceptibility of deep learning models to adversarial attacks has shown the ease of designing samples to mislead a model into making incorrect predictions. In this work, we propose an explainability-based method for the accurate detection of adversarial samples on two datasets with different complexity and properties: Electronic Health Record (EHR) and chest X-ray (CXR) data. On the MIMIC-III and Henan-Renmin EHR datasets, we report a detection accuracy of 77% against the Longitudinal Adversarial Attack. On the MIMIC-CXR dataset, we achieve an accuracy of 88%; significantly improving on the state of the art of adversarial detection in both datasets by over 10% in all settings. We propose an anomaly detection based method using explainability techniques to detect adversarial samples which is able to generalise to different attack methods without a need for retraining.

A Delayed Elastic-Net Approach for Performing Adversarial Attacks

Brais Cancela, Veronica Bolon-Canedo, Amparo Alonso-Betanzos

Responsive image

Auto-TLDR; Robustness of ImageNet Pretrained Models against Adversarial Attacks

Slides Poster Similar

With the rise of the so-called Adversarial Attacks, there is an increased concern on model security. In this paper we present two different contributions: novel measures of robustness (based on adversarial attacks) and a novel adversarial attack. The key idea behind these metrics is to obtain a measure that could compare different architectures, with independence of how the input is preprocessed (robustness against different input sizes and value ranges). To do so, a novel adversarial attack is presented, performing a delayed elastic-net adversarial attack (constraints are only used whenever a successful adversarial attack is obtained). Experimental results show that our approach obtains state-of-the-art adversarial samples, in terms of minimal perturbation distance. Finally, a benchmark of ImageNet pretrained models is used to conduct experiments aiming to shed some light about which model should be selected whenever security is a role factor.

Open-World Group Retrieval with Ambiguity Removal: A Benchmark

Ling Mei, Jian-Huang Lai, Zhanxiang Feng, Xiaohua Xie

Responsive image

Auto-TLDR; P2GSM-AR: Re-identifying changing groups of people under the open-world and group-ambiguity scenarios

Slides Poster Similar

Group retrieval has attracted plenty of attention in artificial intelligence, traditional group retrieval researches assume that members in a group are unique and do not change under different cameras. However, the assumption may not be met for practical situations such as open-world and group-ambiguity scenarios. This paper tackles an important yet non-studied problem: re-identifying changing groups of people under the open-world and group-ambiguity scenarios in different camera fields. The open-world scenario considers that there are probably non-target people for the probe set appear in the searching gallery, while the group-ambiguity scenario means the group members may change. The open-world and group-ambiguity issue is very challenging for the existing methods because the changing of group members results in dramatic visual variations. Nevertheless, as far as we know, the existing literature lacks benchmarks which target on coping with this issue. In this paper, we propose a new group retrieval dataset named OWGA-Campus to consider these challenges. Moreover, we propose a person-to-group similarity matching based ambiguity removal (P2GSM-AR) method to solve these problems and realize the intention of group retrieval. Experimental results on OWGA-Campus dataset demonstrate the effectiveness and robustness of the proposed P2GSM-AR approach in improving the performance of the state-of-the-art feature extraction methods of person re-id towards the open-world and ambiguous group retrieval task.

Beyond Cross-Entropy: Learning Highly Separable Feature Distributions for Robust and Accurate Classification

Arslan Ali, Andrea Migliorati, Tiziano Bianchi, Enrico Magli

Responsive image

Auto-TLDR; Gaussian class-conditional simplex loss for adversarial robust multiclass classifiers

Slides Poster Similar

Deep learning has shown outstanding performance in several applications including image classification. However, deep classifiers are known to be highly vulnerable to adversarial attacks, in that a minor perturbation of the input can easily lead to an error. Providing robustness to adversarial attacks is a very challenging task especially in problems involving a large number of classes, as it typically comes at the expense of an accuracy decrease. In this work, we propose the Gaussian class-conditional simplex (GCCS) loss: a novel approach for training deep robust multiclass classifiers that provides adversarial robustness while at the same time achieving or even surpassing the classification accuracy of state-of-the-art methods. Differently from other frameworks, the proposed method learns a mapping of the input classes onto target distributions in a latent space such that the classes are linearly separable. Instead of maximizing the likelihood of target labels for individual samples, our objective function pushes the network to produce feature distributions yielding high inter-class separation. The mean values of the distributions are centered on the vertices of a simplex such that each class is at the same distance from every other class. We show that the regularization of the latent space based on our approach yields excellent classification accuracy and inherently provides robustness to multiple adversarial attacks, both targeted and untargeted, outperforming state-of-the-art approaches over challenging datasets.

Spatial-Aware GAN for Unsupervised Person Re-Identification

Fangneng Zhan, Changgong Zhang

Responsive image

Auto-TLDR; Unsupervised Unsupervised Domain Adaptation for Person Re-Identification

Similar

The recent person re-identification research has achieved great success by learning from a large number of labeled person images. On the other hand, the learned models often experience significant performance drops when applied to images collected in a different environment. Unsupervised domain adaptation (UDA) has been investigated to mitigate this constraint, but most existing systems adapt images at pixel level only and ignore obvious discrepancies at spatial level. This paper presents an innovative UDA-based person re-identification network that is capable of adapting images at both spatial and pixel levels simultaneously. A novel disentangled cycle-consistency loss is designed which guides the learning of spatial-level and pixel-level adaptation in a collaborative manner. In addition, a novel multi-modal mechanism is incorporated which is capable of generating images of different geometry views and augmenting training images effectively. Extensive experiments over a number of public datasets show that the proposed UDA network achieves superior person re-identification performance as compared with the state-of-the-art.

Towards Explaining Adversarial Examples Phenomenon in Artificial Neural Networks

Ramin Barati, Reza Safabakhsh, Mohammad Rahmati

Responsive image

Auto-TLDR; Convolutional Neural Networks and Adversarial Training from the Perspective of convergence

Slides Poster Similar

In this paper, we study the adversarial examples existence and adversarial training from the standpoint of convergence and provide evidence that pointwise convergence in ANNs can explain these observations. The main contribution of our proposal is that it relates the objective of the evasion attacks and adversarial training with concepts already defined in learning theory. Also, we extend and unify some of the other proposals in the literature and provide alternative explanations on the observations made in those proposals. Through different experiments, we demonstrate that the framework is valuable in the study of the phenomenon and is applicable to real-world problems.

Unsupervised Domain Adaptation for Person Re-Identification through Source-Guided Pseudo-Labeling

Fabian Dubourvieux, Romaric Audigier, Angélique Loesch, Ainouz-Zemouche Samia, Stéphane Canu

Responsive image

Auto-TLDR; Pseudo-labeling for Unsupervised Domain Adaptation for Person Re-Identification

Slides Poster Similar

Person Re-Identification (re-ID) aims at retrieving images of the same person taken by different cameras. A challenge for re-ID is the performance preservation when a model is used on data of interest (target data) which belong to a different domain from the training data domain (source data). Unsupervised Domain Adaptation (UDA) is an interesting research direction for this challenge as it avoids a costly annotation of the target data. Pseudo-labeling methods achieve the best results in UDA-based re-ID. They incrementally learn with identity pseudo-labels which are initialized by clustering features in the source re-ID encoder space. Surprisingly, labeled source data are discarded after this initialization step. However, we believe that pseudo-labeling could further leverage the labeled source data in order to improve the post-initialization training steps. In order to improve robustness against erroneous pseudo-labels, we advocate the exploitation of both labeled source data and pseudo-labeled target data during all training iterations. To support our guideline, we introduce a framework which relies on a two-branch architecture optimizing classification in source and target domains, respectively, in order to allow adaptability to the target domain while ensuring robustness to noisy pseudo-labels. Indeed, shared low and mid-level parameters benefit from the source classification signal while high-level parameters of the target branch learn domain-specific features. Our method is simple enough to be easily combined with existing pseudo-labeling UDA approaches. We show experimentally that it is efficient and improves performance when the base method has no mechanism to deal with pseudo-label noise. And it maintains performance when combined with base method that already manages pseudo-label noise. Our approach reaches state-of-the-art performance when evaluated on commonly used datasets, Market-1501 and DukeMTMC-reID, and outperforms the state of the art when targeting the bigger and more challenging dataset MSMT.

A Duplex Spatiotemporal Filtering Network for Video-Based Person Re-Identification

Chong Zheng, Ping Wei, Nanning Zheng

Responsive image

Auto-TLDR; Duplex Spatiotemporal Filtering Network for Person Re-identification in Videos

Slides Poster Similar

Video-based person re-identification plays important roles in surveillance video analysis. This paper proposes a novel Duplex Spatiotemporal Filtering Network (DSFN) to re-identify persons in videos. A video sequence is represented as a duplex spatiotemporal matrix. DSFN model containing a group of filters performs filtering at feature level in both temporal and spatial dimensions, by which the model focuses on feature-level semantic information rather than image-level information as in the traditional filters. We propose sparse-orthogonal constraints to enforce the model to extract more discriminative features. DSFN characterizes not only the appearance features but also dynamic information such as gaits embedded in video sequences and obtains a better performance as a result. Experiments show that the proposed method outperforms state-of-the-art approaches.