Danijel Skocaj

Papers from this author

Accuracy-Perturbation Curves for Evaluation of Adversarial Attack and Defence Methods

Jaka Šircelj, Danijel Skocaj
Track 1: Artificial Intelligence, Machine Learning for Pattern Analysis
Fri 15 Jan 2021 at 16:00 in session PS T1.15

Responsive image

Auto-TLDR; Accuracy-perturbation Curve for Robustness Evaluation of Adversarial Examples

Underline Similar papers

With more research published on adversarial examples, we face a growing need for strong and insightful methods for evaluating the robustness of machine learning solutions against their adversarial threats. Previous work contains problematic and overly simplified evaluation methods, where different methods for generating adversarial examples are compared, even though they produce adversarial examples of differing perturbation magnitudes. This creates a biased evaluation environment, as higher perturbations yield naturally stronger adversarial examples. We propose a novel "accuracy-perturbation curve" that visualizes a classifiers classification accuracy response to adversarial examples of different perturbations. To demonstrate the utility of the curve we perform evaluation of responses of different image classifier architectures to four popular adversarial example methods. We also show how adversarial training improves the robustness of a classifier using the "accuracy-perturbation curve".

End-To-End Training of a Two-Stage Neural Network for Defect Detection

Jakob Božič, Domen Tabernik, Danijel Skocaj
Track 1: Artificial Intelligence, Machine Learning for Pattern Analysis
Wed 13 Jan 2021 at 16:30 in session PS T1.7

Responsive image

Auto-TLDR; End-to-End Training of Segmentation-based Neural Network for Surface Defect Detection

Underline Similar papers

Segmentation-based, two-stage neural network has shown excellent results in the surface defect detection, enabling the network to learn from a relatively small number of samples. In this work, we introduce end-to-end training of the two-stage network together with several extensions to the training process, which reduce the amount of training time and improve results on surface defect detection tasks. To enable end-to-end training we carefully balance the contributions of both the segmentation and the classification loss throughout the learning. We adjust the gradient flow from the classification into the segmentation network in order to prevent the unstable features from corrupting the learning. As additional extension to the learning, we propose frequency-of-use sampling scheme of negative samples to address the issue of over- and under-sampling of images during the training, while we employ the distance transform algorithm on the region-based segmentation masks as weights for positive pixels, giving greater importance to areas with higher probability of presence of defect without requiring a detailed annotation. We demonstrate the performance of the end-to-end training scheme and the proposed extensions on three defect detection datasets---DAGM, KolektorSDD and Severstal Steel defect dataset--- where we show state-of-the-art results. On the DAGM and the KolektorSDD we demonstrate 100\% detection rate, therefore completely solving the datasets. Additional ablation study performed on all three datasets quantitatively demonstrates the contribution to the overall result improvements for each of the proposed extensions.

Evaluation of Anomaly Detection Algorithms for the Real-World Applications

Marija Ivanovska, Domen Tabernik, Danijel Skocaj, Janez Pers
Track 1: Artificial Intelligence, Machine Learning for Pattern Analysis
Thu 14 Jan 2021 at 14:00 in session PS T1.11

Responsive image

Auto-TLDR; Evaluating Anomaly Detection Algorithms for Practical Applications

Underline Similar papers

Anomaly detection in complex data structures is oneof the most challenging problems in computer vision. In manyreal-world problems, for example in the quality control in modernmanufacturing, the anomalous samples are usually rare, resultingin (highly) imbalanced datasets. However, in current researchpractice, these scenarios are rarely modeled, and as a conse-quence, evaluation of anomaly detection algorithms often do notreproduce results that are useful for practical applications. First,even in case of highly unbalanced input data, anomaly detectionalgorithms are expected to significantly reduce the proportionof anomalous samples, detecting ”almost all” anomalous samples(with exact specifications depending on the target customer). Thisplaces high importance on only the small part of the ROC curve,possibly rendering the standard metrics such as AUC (AreaUnder Curve) and AP (Average Precision) useless. Second, thetarget of automatic anomaly detection in practical applicationsis significant reduction in manual work required, and standardmetrics are poor predictor of this feature. Finally, the evaluationmay produce erratic results for different randomly initializedtraining runs of the neural network, producing evaluation resultsthat may not reproduce well in practice. In this paper, we presentan evaluation methodology that avoids these pitfalls.