Yihong Gong

Papers from this author

Class-Incremental Learning with Topological Schemas of Memory Spaces

Xinyuan Chang, Xiaoyu Tao, Xiaopeng Hong, Xing Wei, Wei Ke, Yihong Gong

Responsive image

Auto-TLDR; Class-incremental Learning with Topological Schematic Model

Slides Poster Similar

Class-incremental learning (CIL) aims to incrementally learn a unified classifier for new classes emerging, which suffers from the catastrophic forgetting problem. To alleviate forgetting and improve the recognition performance, we propose a novel CIL framework, named the topological schemas model (TSM). TSM consists of a Gaussian mixture model arranged on 2D grids (2D-GMM) as the memory of the learned knowledge. To train the 2D-GMM model, we develop a novel competitive expectation-maximization (CEM) method, which contains a global topology embedding step and a local expectation-maximization finetuning step. Meanwhile, we choose the image samples of old classes that have the maximum posterior probability with respect to each Gaussian distribution as the episodic points. When finetuning for new classes, we propose the memory preservation loss (MPL) term to ensure episodic points still have maximum probabilities with respect to the corresponding Gaussian distribution. MPL preserves the distribution of 2D-GMM for old knowledge during incremental learning and alleviates catastrophic forgetting. Comprehensive experimental evaluations on two popular CIL benchmarks CIFAR100 and subImageNet demonstrate the superiority of our TSM.

Polynomial Universal Adversarial Perturbations for Person Re-Identification

Wenjie Ding, Xing Wei, Rongrong Ji, Xiaopeng Hong, Yihong Gong

Responsive image

Auto-TLDR; Polynomial Universal Adversarial Perturbation for Re-identification Methods

Slides Poster Similar

In this paper, we focus on Universal Adversarial Perturbations (UAP) attack on state-of-the-art person re-identification (Re-ID) methods. Existing UAP methods usually compute a perturbation image and add it to the images of interest. Such a simple constant form greatly limits the attack power. To address this problem, we extend the formulation of UAP to a polynomial form and propose the Polynomial Universal Adversarial Perturbation (PUAP). Unlike traditional UAP methods which only rely on the additive perturbation signal, the proposed PUAP consists of both an additive perturbation and a multiplicative modulation factor. The additive perturbation produces the fundamental component of the signal, while the multiplicative factor modulates the perturbation signal in line with the unit impulse pattern of the input image. Moreover, we design a Pearson correlation coefficient loss to generate universal perturbations, for disrupting the outputs of person Re-ID methods. Extensive experiments on DukeMTMC-ReID, Market-1501, and MARS show that the proposed method can efficiently improve the attack performance, especially when the magnitude of UAP is constrained to a small value.