Local Clustering with Mean Teacher for Semi-Supervised Learning

Zexi Chen, Benjamin Dutton, Bharathkumar Ramachandra, Tianfu Wu, Ranga Raju Vatsavai

Responsive image

Auto-TLDR; Local Clustering for Semi-supervised Learning

Slides

The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher model's weights as the exponential moving average of a student model's weights and minimizes the divergence between their probability predictions under diverse perturbations of the inputs. However, MT is known to suffer from confirmation bias, that is, reinforcing incorrect teacher model predictions. In this work, we propose a simple yet effective method called Local Clustering (LC) to mitigate the effect of confirmation bias. In MT, each data point is considered independent of other points during training; however, data points are likely to be close to each other in feature space if they share similar features. Motivated by this, we cluster data points locally by minimizing the pairwise distance between neighboring data points in feature space. Combined with a standard classification cross-entropy objective on labeled data points, the misclassified unlabeled data points are pulled towards high-density regions of their correct class with the help of their neighbors, thus improving model performance. We demonstrate on semi-supervised benchmark datasets SVHN and CIFAR-10 that adding our LC loss to MT yields significant improvements compared to MT and performance comparable to the state of the art in semi-supervised learning.

Similar papers

Learning with Multiplicative Perturbations

Xiulong Yang, Shihao Ji

Responsive image

Auto-TLDR; XAT and xVAT: A Multiplicative Adversarial Training Algorithm for Robust DNN Training

Slides Poster Similar

Adversarial Training (AT) and Virtual Adversarial Training (VAT) are the regularization techniques that train Deep Neural Networks (DNNs) with adversarial examples generated by adding small but worst-case perturbations to input examples. In this paper, we propose xAT and xVAT, new adversarial training algorithms that generate multiplicative perturbations to input examples for robust training of DNNs. Such perturbations are much more perceptible and interpretable than their additive counterparts exploited by AT and VAT. Furthermore, the multiplicative perturbations can be generated transductively or inductively, while the standard AT and VAT only support a transductive implementation. We conduct a series of experiments that analyze the behavior of the multiplicative perturbations and demonstrate that xAT and xVAT match or outperform state-of-the-art classification accuracies across multiple established benchmarks while being about 30% faster than their additive counterparts. Our source code can be found at https://github.com/sndnyang/xvat

Revisiting ImprovedGAN with Metric Learning for Semi-Supervised Learning

Jaewoo Park, Yoon Gyo Jung, Andrew Teoh

Responsive image

Auto-TLDR; Improving ImprovedGAN with Metric Learning for Semi-supervised Learning

Slides Poster Similar

Semi-supervised Learning (SSL) is a classical problem where a model needs to solve classification as it is trained on a partially labeled train data. After the introduction of generative adversarial network (GAN) and its success, the model has been modified to be applicable to SSL. ImprovedGAN as a representative model for GAN-based SSL, it showed promising performance on the SSL problem. However, the inner mechanism of this model has been only partially revealed. In this work, we revisit ImprovedGAN with a fresh perspective based on metric learning. In particular, we interpret ImprovedGAN by general pair weighting, a recent framework in metric learning. Based on this interpretation, we derive two theoretical properties of ImprovedGAN: (i) its discriminator learns to make confident predictions over real samples, (ii) the adversarial interaction in ImprovedGAN along with semi-supervision results in cluster separation by reducing intra-class variance and increasing the inter-class variance, thereby improving the model generalization. These theoretical implications are experimentally supported. Motivated by the findings, we propose a variant of ImprovedGAN, called Intensified ImprovedGAN (I2GAN), where its cluster separation characteristic is enhanced by two proposed techniques: (a) the unsupervised discriminator loss is scaled up and (b) the generated batch size is enlarged. As a result, I2GAN produces better class-wise cluster separation and, hence, generalization. Extensive experiments on the widely known benchmark data sets verify the effectiveness of our proposed method, showing that its performance is better than or comparable to other GAN based SSL models.

Adversarially Constrained Interpolation for Unsupervised Domain Adaptation

Mohamed Azzam, Aurele Tohokantche Gnanha, Hau-San Wong, Si Wu

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation with Domain Mixup Strategy

Slides Poster Similar

We address the problem of unsupervised domain adaptation (UDA) which aims at adapting models trained on a labeled domain to a completely unlabeled domain. One way to achieve this goal is to learn a domain-invariant representation. However, this approach is subject to two challenges: samples from two domains are insufficient to guarantee domain-invariance at most part of the latent space, and neighboring samples from the target domain may not belong to the same class on the low-dimensional manifold. To mitigate these shortcomings, we propose two strategies. First, we incorporate a domain mixup strategy in domain adversarial learning model by linearly interpolating between the source and target domain samples. This allows the latent space to be continuous and yields an improvement of the domain matching. Second, the domain discriminator is regularized via judging the relative difference between both domains for the input mixup features, which speeds up the domain matching. Experiment results show that our proposed model achieves a superior performance on different tasks under various domain shifts and data complexity.

Enlarging Discriminative Power by Adding an Extra Class in Unsupervised Domain Adaptation

Hai Tran, Sumyeong Ahn, Taeyoung Lee, Yung Yi

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation using Artificial Classes

Slides Poster Similar

We study the problem of unsupervised domain adaptation that aims at obtaining a prediction model for the target domain using labeled data from the source domain and unlabeled data from the target domain. There exists an array of recent research based on the idea of extracting features that are not only invariant for both domains but also provide high discriminative power for the target domain. In this paper, we propose an idea of improving the discriminativeness: Adding an extra artificial class and training the model on the given data together with the GAN-generated samples of the new class. The trained model based on the new class samples is capable of extracting the features that are more discriminative by repositioning data of current classes in the target domain and therefore increasing the distances among the target clusters in the feature space. Our idea is highly generic so that it is compatible with many existing methods such as DANN, VADA, and DIRT-T. We conduct various experiments for the standard data commonly used for the evaluation of unsupervised domain adaptations and demonstrate that our algorithm achieves the SOTA performance for many scenarios.

Generative Latent Implicit Conditional Optimization When Learning from Small Sample

Idan Azuri, Daphna Weinshall

Responsive image

Auto-TLDR; GLICO: Generative Latent Implicit Conditional Optimization for Small Sample Learning

Slides Poster Similar

We revisit the long-standing problem of learning from small sample. The generation of new samples from a small training set of labeled points has attracted increased attention in recent years. In this paper, we propose a novel such method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent work, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes and no data from unknown classes. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation (slerp) and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

Constrained Spectral Clustering Network with Self-Training

Xinyue Liu, Shichong Yang, Linlin Zong

Responsive image

Auto-TLDR; Constrained Spectral Clustering Network: A Constrained Deep spectral clustering network

Slides Poster Similar

Deep spectral clustering networks have shown their superiorities due to the integration of feature learning and cluster assignment, and the ability to deal with non-convex clusters. Nevertheless, deep spectral clustering is still an ill-posed problem. Specifically, the affinity learned by the most remarkable SpectralNet is not guaranteed to be consistent with local invariance and thus hurts the final clustering performance. In this paper, we propose a novel framework of Constrained Spectral Clustering Network (CSCN) by incorporating pairwise constraints and clustering oriented fine-tuning to deal with the ill-posedness. To the best of our knowledge, this is the first constrained deep spectral clustering method. Another advantage of CSCN over existing constrained deep clustering networks is that it propagates pairwise constraints throughout the entire dataset. In addition, we design a clustering oriented loss by self-training to simultaneously finetune feature representations and perform cluster assignments, which further improve the quality of clustering. Extensive experiments on benchmark datasets demonstrate that our approach outperforms the state-of-the-art clustering methods.

Beyond Cross-Entropy: Learning Highly Separable Feature Distributions for Robust and Accurate Classification

Arslan Ali, Andrea Migliorati, Tiziano Bianchi, Enrico Magli

Responsive image

Auto-TLDR; Gaussian class-conditional simplex loss for adversarial robust multiclass classifiers

Slides Poster Similar

Deep learning has shown outstanding performance in several applications including image classification. However, deep classifiers are known to be highly vulnerable to adversarial attacks, in that a minor perturbation of the input can easily lead to an error. Providing robustness to adversarial attacks is a very challenging task especially in problems involving a large number of classes, as it typically comes at the expense of an accuracy decrease. In this work, we propose the Gaussian class-conditional simplex (GCCS) loss: a novel approach for training deep robust multiclass classifiers that provides adversarial robustness while at the same time achieving or even surpassing the classification accuracy of state-of-the-art methods. Differently from other frameworks, the proposed method learns a mapping of the input classes onto target distributions in a latent space such that the classes are linearly separable. Instead of maximizing the likelihood of target labels for individual samples, our objective function pushes the network to produce feature distributions yielding high inter-class separation. The mean values of the distributions are centered on the vertices of a simplex such that each class is at the same distance from every other class. We show that the regularization of the latent space based on our approach yields excellent classification accuracy and inherently provides robustness to multiple adversarial attacks, both targeted and untargeted, outperforming state-of-the-art approaches over challenging datasets.

Multi-Modal Deep Clustering: Unsupervised Partitioning of Images

Guy Shiran, Daphna Weinshall

Responsive image

Auto-TLDR; Multi-Modal Deep Clustering for Unlabeled Images

Slides Poster Similar

The clustering of unlabeled raw images is a daunting task, which has recently been approached with some success by deep learning methods. Here we propose an unsupervised clustering framework, which learns a deep neural network in an end-to-end fashion, providing direct cluster assignments of images without additional processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its image embeddings with target points sampled from a Gaussian Mixture Model distribution. The cluster assignments are then determined by mixture component association of image embeddings. Simultaneously, the same deep network is trained to solve an additional self-supervised task. This pushes the network to learn more meaningful image representations and stabilizes the training. Experimental results show that MMDC achieves or exceeds state-of-the-art performance on four challenging benchmarks. On natural image datasets we improve on previous results with significant margins of up to 11% absolute accuracy points, yielding an accuracy of 70% on CIFAR-10 and 61% on STL-10.

Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

Kalun Ho, Janis Keuper, Franz-Josef Pfreundt, Margret Keuper

Responsive image

Auto-TLDR; Clustering Objectives for K-means and Correlation Clustering Using Triplet Loss

Slides Poster Similar

In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.

Rethinking Deep Active Learning: Using Unlabeled Data at Model Training

Oriane Siméoni, Mateusz Budnik, Yannis Avrithis, Guillaume Gravier

Responsive image

Auto-TLDR; Unlabeled Data for Active Learning

Slides Poster Similar

Active learning typically focuses on training a model on few labeled examples alone, while unlabeled ones are only used for acquisition. In this work we depart from this setting by using both labeled and unlabeled data during model training across active learning cycles. We do so by using unsupervised feature learning at the beginning of the active learning pipeline and semi-supervised learning at every active learning cycle, on all available data. The former has not been investigated before in active learning, while the study of latter in the context of deep learning is scarce and recent findings are not conclusive with respect to its benefit. Our idea is orthogonal to acquisition strategies by using more data, much like ensemble methods use more models. By systematically evaluating on a number of popular acquisition strategies and datasets, we find that the use of unlabeled data during model training brings a spectacular accuracy improvement in image classification, compared to the differences between acquisition strategies. We thus explore smaller label budgets, even one label per class.

Semi-Supervised Generative Adversarial Networks with a Pair of Complementary Generators for Retinopathy Screening

Yingpeng Xie, Qiwei Wan, Hai Xie, En-Leng Tan, Yanwu Xu, Baiying Lei

Responsive image

Auto-TLDR; Generative Adversarial Networks for Retinopathy Diagnosis via Fundus Images

Slides Poster Similar

Several typical types of retinopathy are major causes of blindness. However, early detection of retinopathy is quite not easy since few symptoms are observable in the early stage, attributing to the development of non-mydriatic retinal camera. These camera produces high-resolution retinal fundus images provide the possibility of Computer-Aided-Diagnosis (CAD) via deep learning to assist diagnosing retinopathy. Deep learning algorithms usually rely on a great number of labelled images which are expensive and time-consuming to obtain in the medical imaging area. Moreover, the random distribution of various lesions which often vary greatly in size also brings significant challenges to learn discriminative information from high-resolution fundus image. In this paper, we present generative adversarial networks simultaneously equipped with "good" generator and "bad" generator (GBGANs) to make up for the incomplete data distribution provided by limited fundus images. To improve the generative feasibility of generator, we introduce into pre-trained feature extractor to acquire condensed feature for each fundus image in advance. Experimental results on integrated three public iChallenge datasets show that the proposed GBGANs could fully utilize the available fundus images to identify retinopathy with little label cost.

Knowledge Distillation Beyond Model Compression

Fahad Sarfraz, Elahe Arani, Bahram Zonooz

Responsive image

Auto-TLDR; Knowledge Distillation from Teacher to Student

Slides Poster Similar

Knowledge distillation (KD) is commonly deemed as an effective model compression technique in which a compact model (student) is trained under the supervision of a larger pretrained model or an ensemble of models (teacher). Various techniques have been proposed since the original formulation, which mimics different aspects of the teacher such as the representation space, decision boundary or intra-data relationship. Some methods replace the one way knowledge distillation from a static teacher with collaborative learning between a cohort of students. Despite the recent advances, a clear understanding of where knowledge resides in a deep neural network and optimal method for capturing knowledge from teacher and transferring it to student still remains an open question. In this study we provide an extensive study on 9 different knowledge distillation methods which covers a broad spectrum of approaches to capture and transfer knowledge. We demonstrate the versatility of the KD framework on different datasets and network architectures under varying capacity gaps between the teacher and student. The study provides intuition for the effects of mimicking different aspects of the teacher and derives insights from the performance of the different distillation approaches to guide the the design of more effective KD methods . Furthermore, our study shows the effectiveness of the KD framework in learning efficiently under varying severity levels of label noise and class imbalance, consistently providing significant generalization gains over standard training. We emphasize that the efficacy of KD goes much beyond a model compression technique and should be considered as a general purpose training paradigm which offers more robustness to common challenges in the real-world datasets compared to the standard training procedure.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Teacher-Student Competition for Unsupervised Domain Adaptation

Ruixin Xiao, Zhilei Liu, Baoyuan Wu

Responsive image

Auto-TLDR; Unsupervised Domain Adaption with Teacher-Student Competition

Slides Poster Similar

With the supervision from source domain only in class-level, existing unsupervised domain adaption (UDA) methods mainly learn the domain-invariant representations from a shared feature extractor, which cause the source-bias problem. This paper proposes an unsupervised domain adaption approach with Teacher-Student Competition (TSC). In particular, a student network is introduced to learn the target-specific feature space, and we design a novel competition mechanism to select more credible pseudo-labels for the training of student network. We introduce a teacher network with the structure of existing conventional UDA method, and both teacher and student networks compete to provide target pseudo-labels to constrain every target sample's training in student network. Extensive experiments demonstrate that our proposed TSC framework significantly outperforms the state-of-the-art domain adaption methods on Office-31 and ImageCLEF-DA benchmarks.

Knowledge Distillation with a Precise Teacher and Prediction with Abstention

Xu Yi, Jian Pu, Hui Zhao

Responsive image

Auto-TLDR; Knowledge Distillation using Deep gambler loss and selective classification framework

Slides Poster Similar

Knowledge distillation, which aims to train model under the supervision from another large model (teacher model) to the original model (student model), has achieved remarkable results in supervised learning. However, there are two major problems with existing knowledge distillation methods. One is the teacher's supervision is sometimes misleading, and the other is the student's prediction is not accurate enough. To address the first issue, instead of learning a combination of both teachers and ground truth, we apply knowledge adjustment to correct teachers' supervision using ground truth. For the second problem, we use the selective classification framework to train the student model. In particular, the deep gambler loss is adopted to predict with reservation by explicitly introducing the $(m+1)$-th class. We consider two settings of knowledge distillation: (1) distillation across different network structures ({\it AlexNet, ResNet}), and (2) distillation across networks with different depths ({\it ResNet18, ResNet50}) to evaluate the effectiveness of our method. The experimental results on benchmark datasets (i.e., {\it Fashion-MNIST, SVHN, CIFAR10, CIFAR100}) are reported with higher prediction accuracies and lower coverage errors.

Image Representation Learning by Transformation Regression

Xifeng Guo, Jiyuan Liu, Sihang Zhou, En Zhu, Shihao Dong

Responsive image

Auto-TLDR; Self-supervised Image Representation Learning using Continuous Parameter Prediction

Slides Poster Similar

Self-supervised learning is a thriving research direction since it can relieve the burden of human labeling for machine learning by seeking for supervision from data instead of human annotation. Although demonstrating promising performance in various applications, we observe that the existing methods usually model the auxiliary learning tasks as classification tasks with finite discrete labels, leading to insufficient supervisory signals, which in turn restricts the representation quality. In this paper, to solve the above problem and make full use of the supervision from data, we design a regression model to predict the continuous parameters of a group of transformations, i.e., image rotation, translation, and scaling. Surprisingly, this naive modification stimulates tremendous potential from data and the resulting supervisory signal has largely improved the performance of image representation learning. Extensive experiments on four image datasets, including CIFAR10, CIFAR100, STL10, and SVHN, indicate that our proposed algorithm outperforms the state-of-the-art unsupervised learning methods by a large margin in terms of classification accuracy. Crucially, we find that with our proposed training mechanism as an initialization, the performance of the existing state-of-the-art classification deep architectures can be preferably improved.

Adaptive Noise Injection for Training Stochastic Student Networks from Deterministic Teachers

Yi Xiang Marcus Tan, Yuval Elovici, Alexander Binder

Responsive image

Auto-TLDR; Adaptive Stochastic Networks for Adversarial Attacks

Slides Similar

Adversarial attacks have been a prevalent problem causing misclassification in machine learning models, with stochasticity being a promising direction towards greater robustness. However, stochastic networks frequently underperform compared to deterministic deep networks. In this work, we present a conceptually clear adaptive noise injection mechanism in combination with teacher-initialisation, which adjusts its degree of randomness dynamically through the computation of mini-batch statistics. This mechanism is embedded within a simple framework to obtain stochastic networks from existing deterministic networks. Our experiments show that our method is able to outperform prior baselines under white-box settings, exemplified through CIFAR-10 and CIFAR-100. Following which, we perform in-depth analysis on varying different components of training with our approach on the effects of robustness and accuracy, through the study of the evolution of decision boundary and trend curves of clean accuracy/attack success over differing degrees of stochasticity. We also shed light on the effects of adversarial training on a pre-trained network, through the lens of decision boundaries.

IDA-GAN: A Novel Imbalanced Data Augmentation GAN

Hao Yang, Yun Zhou

Responsive image

Auto-TLDR; IDA-GAN: Generative Adversarial Networks for Imbalanced Data Augmentation

Slides Poster Similar

Class imbalance is a widely existed and challenging problem in real-world applications such as disease diagnosis, fraud detection, network intrusion detection and so on. Due to the scarce of data, it could significantly deteriorate the accuracy of classification. To address this challenge, we propose a novel Imbalanced Data Augmentation Generative Adversarial Networks (GAN) named IDA-GAN as an augmentation tool to deal with the imbalanced dataset. This is a great challenge because it is hard to train a GAN model under this situation. We overcome this issue by coupling Variational autoencoder along with GAN training. Specifically, we introduce the Variational autoencoder to learn the majority and minority class distributions in the latent space, and use the generative model to utilize each class distribution for the subsequent GAN training. The generative model learns useful features to generate target minority-class samples. By comparing with the state-of-the-art GAN models, the experimental results demonstrate that our proposed IDA-GAN could generate more diverse minority samples with better qualities, and it consistently benefits the imbalanced classification task in terms of several widely-used evaluation metrics on five benchmark datasets: MNIST, Fashion-MNIST, SVHN, CIFAR-10 and GTRSB.

Towards Robust Learning with Different Label Noise Distributions

Diego Ortego, Eric Arazo, Paul Albert, Noel E O'Connor, Kevin Mcguinness

Responsive image

Auto-TLDR; Distribution Robust Pseudo-Labeling with Semi-supervised Learning

Slides Similar

Noisy labels are an unavoidable consequence of labeling processes and detecting them is an important step towards preventing performance degradations in Convolutional Neural Networks. Discarding noisy labels avoids a harmful memorization, while the associated image content can still be exploited in a semi-supervised learning (SSL) setup. Clean samples are usually identified using the small loss trick, i.e. they exhibit a low loss. However, we show that different noise distributions make the application of this trick less straightforward and propose to continuously relabel all images to reveal a discriminative loss against multiple distributions. SSL is then applied twice, once to improve the clean-noisy detection and again for training the final model. We design an experimental setup based on ImageNet32/64 for better understanding the consequences of representation learning with differing label noise distributions and find that non-uniform out-of-distribution noise better resembles real-world noise and that in most cases intermediate features are not affected by label noise corruption. Experiments in CIFAR-10/100, ImageNet32/64 and WebVision (real-world noise) demonstrate that the proposed label noise Distribution Robust Pseudo-Labeling (DRPL) approach gives substantial improvements over recent state-of-the-art. Code will be made available.

Graph-Based Interpolation of Feature Vectors for Accurate Few-Shot Classification

Yuqing Hu, Vincent Gripon, Stéphane Pateux

Responsive image

Auto-TLDR; Transductive Learning for Few-Shot Classification using Graph Neural Networks

Slides Poster Similar

In few-shot classification, the aim is to learn models able to discriminate classes using only a small number of labeled examples. In this context, works have proposed to introduce Graph Neural Networks (GNNs) aiming at exploiting the information contained in other samples treated concurrently, what is commonly referred to as the transductive setting in the literature. These GNNs are trained all together with a backbone feature extractor. In this paper, we propose a new method that relies on graphs only to interpolate feature vectors instead, resulting in a transductive learning setting with no additional parameters to train. Our proposed method thus exploits two levels of information: a) transfer features obtained on generic datasets, b) transductive information obtained from other samples to be classified. Using standard few-shot vision classification datasets, we demonstrate its ability to bring significant gains compared to other works.

Combining GANs and AutoEncoders for Efficient Anomaly Detection

Fabio Carrara, Giuseppe Amato, Luca Brombin, Fabrizio Falchi, Claudio Gennaro

Responsive image

Auto-TLDR; CBIGAN: Anomaly Detection in Images with Consistency Constrained BiGAN

Slides Poster Similar

In this work, we propose CBiGAN --- a novel method for anomaly detection in images, where a consistency constraint is introduced as a regularization term in both the encoder and decoder of a BiGAN. Our model exhibits fairly good modeling power and reconstruction consistency capability. We evaluate the proposed method on MVTec AD --- a real-world benchmark for unsupervised anomaly detection on high-resolution images --- and compare against standard baselines and state-of-the-art approaches. Experiments show that the proposed method improves the performance of BiGAN formulations by a large margin and performs comparably to expensive state-of-the-art iterative methods while reducing the computational cost. We also observe that our model is particularly effective in texture-type anomaly detection, as it sets a new state of the art in this category. The code will be publicly released.

Variational Deep Embedding Clustering by Augmented Mutual Information Maximization

Qiang Ji, Yanfeng Sun, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Clustering by Augmented Mutual Information maximization for Deep Embedding

Slides Poster Similar

Clustering is a crucial but challenging task in pattern analysis and machine learning. Recent many deep clustering methods combining representation learning with cluster techniques emerged. These deep clustering methods mainly focus on the correlation among samples and ignore the relationship between samples and their representations. In this paper, we propose a novel end-to-end clustering framework, namely variational deep embedding clustering by augmented mutual information maximization (VCAMI). From the perspective of VAE, we prove that minimizing reconstruction loss is equivalent to maximizing the mutual information of the input and its latent representation. This provides a theoretical guarantee for us to directly maximize the mutual information instead of minimizing reconstruction loss. Therefore we proposed the augmented mutual information which highlights the uniqueness of the representations while discovering invariant information among similar samples. Extensive experiments on several challenging image datasets show that the VCAMI achieves good performance. we achieve state-of-the-art results for clustering on MNIST (99.5%) and CIFAR-10 (65.4%) to the best of our knowledge.

On-Manifold Adversarial Data Augmentation Improves Uncertainty Calibration

Kanil Patel, William Beluch, Dan Zhang, Michael Pfeiffer, Bin Yang

Responsive image

Auto-TLDR; On-Manifold Adversarial Data Augmentation for Uncertainty Estimation

Slides Similar

Uncertainty estimates help to identify ambiguous, novel, or anomalous inputs, but the reliable quantification of uncertainty has proven to be challenging for modern deep networks. To improve uncertainty estimation, we propose On-Manifold Adversarial Data Augmentation or OMADA, which specifically attempts to generate challenging examples by following an on-manifold adversarial attack path in the latent space of an autoencoder that closely approximates the decision boundaries between classes. On a variety of datasets and for multiple network architectures, OMADA consistently yields more accurate and better calibrated classifiers than baseline models, and outperforms competing approaches such as Mixup, as well as achieving similar performance to (at times better than) post-processing calibration methods such as temperature scaling. Variants of OMADA can employ different sampling schemes for ambiguous on-manifold examples based on the entropy of their estimated soft labels, which exhibit specific strengths for generalization, calibration of predicted uncertainty, or detection of out-of-distribution inputs.

Meta Soft Label Generation for Noisy Labels

Görkem Algan, Ilkay Ulusoy

Responsive image

Auto-TLDR; MSLG: Meta-Learning for Noisy Label Generation

Slides Poster Similar

The existence of noisy labels in the dataset causes significant performance degradation for deep neural networks (DNNs). To address this problem, we propose a Meta Soft Label Generation algorithm called MSLG, which can jointly generate soft labels using meta-learning techniques and learn DNN parameters in an end-to-end fashion. Our approach adapts the meta-learning paradigm to estimate optimal label distribution by checking gradient directions on both noisy training data and noise-free meta-data. In order to iteratively update soft labels, meta-gradient descent step is performed on estimated labels, which would minimize the loss of noise-free meta samples. In each iteration, the base classifier is trained on estimated meta labels. MSLG is model-agnostic and can be added on top of any existing model at hand with ease. We performed extensive experiments on CIFAR10, Clothing1M and Food101N datasets. Results show that our approach outperforms other state-of-the-art methods by a large margin. Our code is available at \url{https://github.com/gorkemalgan/MSLG_noisy_label}.

Self-Supervised Domain Adaptation with Consistency Training

Liang Xiao, Jiaolong Xu, Dawei Zhao, Zhiyu Wang, Li Wang, Yiming Nie, Bin Dai

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation for Image Classification

Slides Poster Similar

We consider the problem of unsupervised domain adaptation for image classification. To learn target-domain-aware features from the unlabeled data, we create a self-supervised pretext task by augmenting the unlabeled data with a certain type of transformation (specifically, image rotation) and ask the learner to predict the properties of the transformation. However, the obtained feature representation may contain a large amount of irrelevant information with respect to the main task. To provide further guidance, we force the feature representation of the augmented data to be consistent with that of the original data. Intuitively, the consistency introduces additional constraints to representation learning, therefore, the learned representation is more likely to focus on the right information about the main task. Our experimental results validate the proposed method and demonstrate state-of-the-art performance on classical domain adaptation benchmarks.

A Close Look at Deep Learning with Small Data

Lorenzo Brigato, Luca Iocchi

Responsive image

Auto-TLDR; Low-Complex Neural Networks for Small Data Conditions

Slides Poster Similar

In this work, we perform a wide variety of experiments with different Deep Learning architectures in small data conditions. We show that model complexity is a critical factor when only a few samples per class are available. Differently from the literature, we improve the state of the art using low complexity models. We show that standard convolutional neural networks with relatively few parameters are effective in this scenario. In many of our experiments, low complexity models outperform state-of-the-art architectures. Moreover, we propose a novel network that uses an unsupervised loss to regularize its training. Such architecture either improves the results either performs comparably well to low capacity networks. Surprisingly, experiments show that the dynamic data augmentation pipeline is not beneficial in this particular domain. Statically augmenting the dataset might be a promising research direction while dropout maintains its role as a good regularizer.

Efficient Online Subclass Knowledge Distillation for Image Classification

Maria Tzelepi, Nikolaos Passalis, Anastasios Tefas

Responsive image

Auto-TLDR; OSKD: Online Subclass Knowledge Distillation

Slides Poster Similar

Deploying state-of-the-art deep learning models on embedded systems dictates certain storage and computation limitations. During the recent few years Knowledge Distillation (KD) has been recognized as a prominent approach to address this issue. That is, KD has been effectively proposed for training fast and compact deep learning models by transferring knowledge from more complex and powerful models. However, knowledge distillation, in its conventional form, involves multiple stages of training, rendering it a computationally and memory demanding procedure. In this paper, a novel single-stage self knowledge distillation method is proposed, namely Online Subclass Knowledge Distillation (OSKD), that aims at revealing the similarities inside classes, improving the performance of any deep neural model in an online manner. Hence, as opposed to existing online distillation methods, we are able to acquire further knowledge from the model itself, without building multiple identical models or using multiple models to teach each other, rendering the OSKD approach more efficient. The experimental evaluation on two datasets validates that the proposed method improves the classification performance.

A Joint Representation Learning and Feature Modeling Approach for One-Class Recognition

Pramuditha Perera, Vishal Patel

Responsive image

Auto-TLDR; Combining Generative Features and One-Class Classification for Effective One-class Recognition

Slides Poster Similar

One-class recognition is traditionally approached either as a representation learning problem or a feature modelling problem. In this work, we argue that both of these approaches have their own limitations; and a more effective solution can be obtained by combining the two. The proposed approach is based on the combination of a generative framework and a one-class classification method. First, we learn generative features using the one-class data with a generative framework. We augment the learned features with the corresponding reconstruction errors to obtain augmented features. Then, we qualitatively identify a suitable feature distribution that reduces the redundancy in the chosen classifier space. Finally, we force the augmented features to take the form of this distribution using an adversarial framework. We test the effectiveness of the proposed method on three one-class classification tasks and obtain state-of-the-art results.

Generalization Comparison of Deep Neural Networks Via Output Sensitivity

Mahsa Forouzesh, Farnood Salehi, Patrick Thiran

Responsive image

Auto-TLDR; Generalization of Deep Neural Networks using Sensitivity

Slides Similar

Although recent works have brought some insights into the performance improvement of techniques used in state-of-the-art deep-learning models, more work is needed to understand their generalization properties. We shed light on this matter by linking the loss function to the output's sensitivity to its input. We find a rather strong empirical relation between the output sensitivity and the variance in the bias-variance decomposition of the loss function, which hints on using sensitivity as a metric for comparing the generalization performance of networks, without requiring labeled data. We find that sensitivity is decreased by applying popular methods which improve the generalization performance of the model, such as (1) using a deep network rather than a wide one, (2) adding convolutional layers to baseline classifiers instead of adding fully-connected layers, (3) using batch normalization, dropout and max-pooling, and (4) applying parameter initialization techniques.

Pretraining Image Encoders without Reconstruction Via Feature Prediction Loss

Gustav Grund Pihlgren, Fredrik Sandin, Marcus Liwicki

Responsive image

Auto-TLDR; Feature Prediction Loss for Autoencoder-based Pretraining of Image Encoders

Similar

This work investigates three methods for calculating loss for autoencoder-based pretraining of image encoders: The commonly used reconstruction loss, the more recently introduced deep perceptual similarity loss, and a feature prediction loss proposed here; the latter turning out to be the most efficient choice. Standard auto-encoder pretraining for deep learning tasks is done by comparing the input image and the reconstructed image. Recent work shows that predictions based on embeddings generated by image autoencoders can be improved by training with perceptual loss, i.e., by adding a loss network after the decoding step. So far the autoencoders trained with loss networks implemented an explicit comparison of the original and reconstructed images using the loss network. However, given such a loss network we show that there is no need for the time-consuming task of decoding the entire image. Instead, we propose to decode the features of the loss network, hence the name ``feature prediction loss''. To evaluate this method we perform experiments on three standard publicly available datasets (LunarLander-v2, STL-10, and SVHN) and compare six different procedures for training image encoders (pixel-wise, perceptual similarity, and feature prediction losses; combined with two variations of image and feature encoding/decoding). The embedding-based prediction results show that encoders trained with feature prediction loss is as good or better than those trained with the other two losses. Additionally, the encoder is significantly faster to train using feature prediction loss in comparison to the other losses. The method implementation used in this work is available online: https://github.com/guspih/Perceptual-Autoencoders

Improved Deep Classwise Hashing with Centers Similarity Learning for Image Retrieval

Ming Zhang, Hong Yan

Responsive image

Auto-TLDR; Deep Classwise Hashing for Image Retrieval Using Center Similarity Learning

Slides Poster Similar

Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.

Verifying the Causes of Adversarial Examples

Honglin Li, Yifei Fan, Frieder Ganz, Tony Yezzi, Payam Barnaghi

Responsive image

Auto-TLDR; Exploring the Causes of Adversarial Examples in Neural Networks

Slides Poster Similar

The robustness of neural networks is challenged by adversarial examples that contain almost imperceptible perturbations to inputs which mislead a classifier to incorrect outputs in high confidence. Limited by the extreme difficulty in examining a high-dimensional image space thoroughly, research on explaining and justifying the causes of adversarial examples falls behind studies on attacks and defenses. In this paper, we present a collection of potential causes of adversarial examples and verify (or partially verify) them through carefully-designed controlled experiments. The major causes of adversarial examples include model linearity, one-sum constraint, and geometry of the categories. To control the effect of those causes, multiple techniques are applied such as $L_2$ normalization, replacement of loss functions, construction of reference datasets, and novel models using multi-layer perceptron probabilistic neural networks (MLP-PNN) and density estimation (DE). Our experiment results show that geometric factors tend to be more direct causes and statistical factors magnify the phenomenon, especially for assigning high prediction confidence. We hope this paper will inspire more studies to rigorously investigate the root causes of adversarial examples, which in turn provide useful guidance on designing more robust models.

A Self-Supervised GAN for Unsupervised Few-Shot Object Recognition

Khoi Nguyen, Sinisa Todorovic

Responsive image

Auto-TLDR; Self-supervised Few-Shot Object Recognition with a Triplet GAN

Slides Poster Similar

This paper addresses unsupervised few-shot object recognition, where all training images are unlabeled, and test images are divided into queries and a few labeled support images per object class of interest. The training and test images do not share object classes. We extend the vanilla GAN with two loss functions, both aimed at self-supervised learning. The first is a reconstruction loss that enforces the discriminator to reconstruct the probabilistically sampled latent code which has been used for generating the "fake" image. The second is a triplet loss that enforces the discriminator to output image encodings that are closer for more similar images. Evaluation, comparisons, and detailed ablation studies are done in the context of few-shot classification. Our approach significantly outperforms the state of the art on the Mini-Imagenet and Tiered-Imagenet datasets.

N2D: (Not Too) Deep Clustering Via Clustering the Local Manifold of an Autoencoded Embedding

Ryan Mcconville, Raul Santos-Rodriguez, Robert Piechocki, Ian Craddock

Responsive image

Auto-TLDR; Local Manifold Learning for Deep Clustering on Autoencoded Embeddings

Slides Similar

Deep clustering has increasingly been demonstrating superiority over conventional shallow clustering algorithms. Deep clustering algorithms usually combine representation learning with deep neural networks to achieve this performance, typically optimizing a clustering and non-clustering loss. In such cases, an autoencoder is typically connected with a clustering network, and the final clustering is jointly learned by both the autoencoder and clustering network. Instead, we propose to learn an autoencoded embedding and then search this further for the underlying manifold. For simplicity, we then cluster this with a shallow clustering algorithm, rather than a deeper network. We study a number of local and global manifold learning methods on both the raw data and autoencoded embedding, concluding that UMAP in our framework is able to find the best clusterable manifold of the embedding. This suggests that local manifold learning on an autoencoded embedding is effective for discovering higher quality clusters. We quantitatively show across a range of image and time-series datasets that our method has competitive performance against the latest deep clustering algorithms, including out-performing current state-of-the-art on several. We postulate that these results show a promising research direction for deep clustering. The code can be found at https://github.com/rymc/n2d.

Boundary Optimised Samples Training for Detecting Out-Of-Distribution Images

Luca Marson, Vladimir Li, Atsuto Maki

Responsive image

Auto-TLDR; Boundary Optimised Samples for Out-of-Distribution Input Detection in Deep Convolutional Networks

Slides Poster Similar

This paper presents a new approach to the problem of detecting out-of-distribution (OOD) inputs in image classifications with deep convolutional networks. We leverage so-called boundary samples to enforce low confidence (maximum softmax probabilities) for inputs far away from the training data. In particular, we propose the boundary optimised samples (named BoS) training algorithm for generating them. Unlike existing approaches, it does not require extra generative adversarial network, but achieves the goal by simply back propagating the gradient of an appropriately designed loss function to the input samples. At the end of the BoS training, all the boundary samples are in principle located on a specific level hypersurface with respect to the designed loss. Our contributions are i) the BoS training as an efficient alternative to generate boundary samples, ii) a robust algorithm therewith to enforce low confidence for OOD samples, and iii) experiments demonstrating improved OOD detection over the baseline. We show the performance using standard datasets for training and different test sets including Fashion MNIST, EMNIST, SVHN, and CIFAR-100, preceded by evaluations with a synthetic 2-dimensional dataset that provide an insight for the new procedure.

Stochastic Label Refinery: Toward Better Target Label Distribution

Xi Fang, Jiancheng Yang, Bingbing Ni

Responsive image

Auto-TLDR; Stochastic Label Refinery for Deep Supervised Learning

Slides Poster Similar

This paper proposes a simple yet effective strategy for improving deep supervised learning, named Stochastic Label Refinery (SLR), by refining training labels to more informative labels. When training a neural network, target distributions (or ground-truth) are typically "hard", which means the target label of each category consists of only 0 and 1. However, the fixed "hard" target distributions do not capture association between categories or that between objects. In this study, instead of using the hard target distributions, we iteratively generate "soft" target label distributions for training the neural networks, which leads to better performances. The soft target distributions are obtained via an Expectation-Maximization (EM) iteration, where the "true" target distributions and the learned models are regarded as hidden variables. In E step, the models are optimized to approximate the target distributions on stochastic splits of training data; In M step, the target distributions are updated with predicted pseudo-label on leave-out splits. Extensive experiments on classification and ordinal regression tasks, empirically prove that the refined target distribution consistently leads to considerable performance improvements even applied on competitive baselines. Notably, in DeepDR 2020 Diabetic Retinopathy Grading (DeepDRiD) challenge, our method improves the quadratic weighted kappa on official validation set from 0.8247 to 0.8348 and achieves a state-of-the-art score on online test set. The proposed SLR technique is easy to implement and practically applicable. The code will be open sourced soon.

TAAN: Task-Aware Attention Network for Few-Shot Classification

Zhe Wang, Li Liu, Fanzhang Li

Responsive image

Auto-TLDR; TAAN: Task-Aware Attention Network for Few-Shot Classification

Slides Poster Similar

Few-shot classification aims to recognize unlabeled samples from unseen classes given only a few labeled samples.Current approaches of few-shot learning usually employ a metriclearning framework to learn a feature similarity comparison between a query (test) example and the few support (training) examples. However, these approaches all extract features from samples independently without looking at the entire task as a whole, and so fail to provide an enough discrimination to features. Moreover, the existing approaches lack the ability to select the most relevant features for the task at hand. In this work, we propose a novel algorithm called Task-Aware Attention Network (TAAN) to address the above problems in few-shot classification. By inserting a Task-Relevant Channel Attention Module into metric-based few-shot learners, TAAN generates channel attentions for each sample by aggregating the context of the entire support set and identifies the most relevant features for similarity comparison. The experiment demonstrates that TAAN is competitive in overall performance comparing to the recent state-of-the-art systems and improves the performance considerably over baseline systems on both mini-ImageNet and tiered-ImageNet benchmarks.

Soft Label and Discriminant Embedding Estimation for Semi-Supervised Classification

Fadi Dornaika, Abdullah Baradaaji, Youssof El Traboulsi

Responsive image

Auto-TLDR; Semi-supervised Semi-Supervised Learning for Linear Feature Extraction and Label Propagation

Slides Poster Similar

In recent times, graph-based semi-supervised learning proved to be a powerful paradigm for processing and mining large datasets. The main advantage relies on the fact that these methods can be useful in propagating a small set of known labels to a large set of unlabeled data. The scarcity of labeled data may affect the performance of the semi-learning. This paper introduces a new semi-supervised framework for simultaneous linear feature extraction and label propagation. The proposed method simultaneously estimates a discriminant transformation and the unknown label by exploiting both labeled and unlabeled data. In addition, the unknowns of the learning model are estimated by integrating two types of graph-based smoothness constraints. The resulting semi-supervised model is expected to learn more discriminative information. Experiments are conducted on six public image datasets. These experimental results show that the performance of the proposed method can be better than that of many state-of-the-art graph-based semi-supervised algorithms.

Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks

Denis Huseljic, Bernhard Sick, Marek Herde, Daniel Kottke

Responsive image

Auto-TLDR; AE-DNN: Modeling Uncertainty in Deep Neural Networks

Slides Poster Similar

Despite the success of deep neural networks (DNN) in many applications, their ability to model uncertainty is still significantly limited. For example, in safety-critical applications such as autonomous driving, it is crucial to obtain a prediction that reflects different types of uncertainty to address life-threatening situations appropriately. In such cases, it is essential to be aware of the risk (i.e., aleatoric uncertainty) and the reliability (i.e., epistemic uncertainty) that comes with a prediction. We present AE-DNN, a model allowing the separation of aleatoric and epistemic uncertainty while maintaining a proper generalization capability. AE-DNN is based on deterministic DNN, which can determine the respective uncertainty measures in a single forward pass. In analyses with synthetic and image data, we show that our method improves the modeling of epistemic uncertainty while providing an intuitively understandable separation of risk and reliability.

Supervised Domain Adaptation Using Graph Embedding

Lukas Hedegaard, Omar Ali Sheikh-Omar, Alexandros Iosifidis

Responsive image

Auto-TLDR; Domain Adaptation from the Perspective of Multi-view Graph Embedding and Dimensionality Reduction

Slides Poster Similar

Getting deep convolutional neural networks to perform well requires a large amount of training data. When the available labelled data is small, it is often beneficial to use transfer learning to leverage a related larger dataset (source) in order to improve the performance on the small dataset (target). Among the transfer learning approaches, domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them. In this paper, we consider the domain adaptation problem from the perspective of multi-view graph embedding and dimensionality reduction. Instead of solving the generalised eigenvalue problem to perform the embedding, we formulate the graph-preserving criterion as loss in the neural network and learn a domain-invariant feature transformation in an end-to-end fashion. We show that the proposed approach leads to a powerful Domain Adaptation framework which generalises the prior methods CCSA and d-SNE, and enables simple and effective loss designs; an LDA-inspired instantiation of the framework leads to performance on par with the state-of-the-art on the most widely used Domain Adaptation benchmarks, Office31 and MNIST to USPS datasets.

Is the Meta-Learning Idea Able to Improve the Generalization of Deep Neural Networks on the Standard Supervised Learning?

Xiang Deng, Zhongfei Zhang

Responsive image

Auto-TLDR; Meta-learning Based Training of Deep Neural Networks for Few-Shot Learning

Slides Poster Similar

Substantial efforts have been made on improving the generalization abilities of deep neural networks (DNNs) in order to obtain better performances without introducing more parameters. On the other hand, meta-learning approaches exhibit powerful generalization on new tasks in few-shot learning. Intuitively, few-shot learning is more challenging than the standard supervised learning as each target class only has a very few or no training samples. The natural question that arises is whether the meta-learning idea can be used for improving the generalization of DNNs on the standard supervised learning. In this paper, we propose a novel meta-learning based training procedure (MLTP) for DNNs and demonstrate that the meta-learning idea can indeed improve the generalization abilities of DNNs. MLTP simulates the meta-training process by considering a batch of training samples as a task. The key idea is that the gradient descent step for improving the current task performance should also improve a new task performance, which is ignored by the current standard procedure for training neural networks. MLTP also benefits from all the existing training techniques such as dropout, weight decay, and batch normalization. We evaluate MLTP by training a variety of small and large neural networks on three benchmark datasets, i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet. The experimental results show a consistently improved generalization performance on all the DNNs with different sizes, which verifies the promise of MLTP and demonstrates that the meta-learning idea is indeed able to improve the generalization of DNNs on the standard supervised learning.

AVAE: Adversarial Variational Auto Encoder

Antoine Plumerault, Hervé Le Borgne, Celine Hudelot

Responsive image

Auto-TLDR; Combining VAE and GAN for Realistic Image Generation

Slides Poster Similar

Among the wide variety of image generative models, two models stand out: Variational Auto Encoders (VAE) and Generative Adversarial Networks (GAN). GANs can produce realistic images, but they suffer from mode collapse and do not provide simple ways to get the latent representation of an image. On the other hand, VAEs do not have these problems, but they often generate images less realistic than GANs. In this article, we explain that this lack of realism is partially due to a common underestimation of the natural image manifold dimensionality. To solve this issue we introduce a new framework that combines VAE and GAN in a novel and complementary way to produce an auto-encoding model that keeps VAEs properties while generating images of GAN-quality. We evaluate our approach both qualitatively and quantitatively on five image datasets.

Class-Incremental Learning with Topological Schemas of Memory Spaces

Xinyuan Chang, Xiaoyu Tao, Xiaopeng Hong, Xing Wei, Wei Ke, Yihong Gong

Responsive image

Auto-TLDR; Class-incremental Learning with Topological Schematic Model

Slides Poster Similar

Class-incremental learning (CIL) aims to incrementally learn a unified classifier for new classes emerging, which suffers from the catastrophic forgetting problem. To alleviate forgetting and improve the recognition performance, we propose a novel CIL framework, named the topological schemas model (TSM). TSM consists of a Gaussian mixture model arranged on 2D grids (2D-GMM) as the memory of the learned knowledge. To train the 2D-GMM model, we develop a novel competitive expectation-maximization (CEM) method, which contains a global topology embedding step and a local expectation-maximization finetuning step. Meanwhile, we choose the image samples of old classes that have the maximum posterior probability with respect to each Gaussian distribution as the episodic points. When finetuning for new classes, we propose the memory preservation loss (MPL) term to ensure episodic points still have maximum probabilities with respect to the corresponding Gaussian distribution. MPL preserves the distribution of 2D-GMM for old knowledge during incremental learning and alleviates catastrophic forgetting. Comprehensive experimental evaluations on two popular CIL benchmarks CIFAR100 and subImageNet demonstrate the superiority of our TSM.

Deep Convolutional Embedding for Digitized Painting Clustering

Giovanna Castellano, Gennaro Vessio

Responsive image

Auto-TLDR; A Deep Convolutional Embedding Model for Clustering Artworks

Slides Poster Similar

Clustering artworks is difficult because of several reasons. On one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely hard. On the other hand, the application of traditional clustering and feature reduction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the input raw data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also able to outperform other state-of-the-art deep clustering approaches to the same problem. The proposed method may be beneficial to several art-related tasks, particularly visual link retrieval and historical knowledge discovery in painting datasets.

Unsupervised Multi-Task Domain Adaptation

Shih-Min Yang, Mei-Chen Yeh

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation with Multi-task Learning for Image Recognition

Slides Poster Similar

With abundant labeled data, deep convolutional neural networks have shown great success in various image recognition tasks. However, these models are often less powerful when applied to novel datasets due to a phenomenon known as domain shift. Unsupervised domain adaptation methods aim to address this problem, allowing deep models trained on the labeled source domain to be used on a different target domain (without labels). In this paper, we investigate whether the generalization ability of an unsupervised domain adaptation method can be improved through multi-task learning, with learned features required to be both domain invariant and discriminative for multiple different but relevant tasks. Experiments evaluating two fundamental recognition tasks---including image recognition and segmentation--- show that the generalization ability empowered by multi-task learning may not benefit recognition when the model is directly applied on the target domain, but the multi-task setting can boost the performance of state-of-the-art unsupervised domain adaptation methods by a non-negligible margin.

On the Evaluation of Generative Adversarial Networks by Discriminative Models

Amirsina Torfi, Mohammadreza Beyki, Edward Alan Fox

Responsive image

Auto-TLDR; Domain-agnostic GAN Evaluation with Siamese Neural Networks

Slides Poster Similar

Generative Adversarial Networks (GANs) can accurately model complex multi-dimensional data and generate realistic samples. However, due to their implicit estimation of data distributions, their evaluation is a challenging task. The majority of research efforts associated with tackling this issue were validated by qualitative visual evaluation. Such approaches do not generalize well beyond the image domain. Since many of those evaluation metrics are proposed and bound to the vision domain, they are difficult to apply to other domains. Quantitative measures are necessary to better guide the training and comparison of different GANs models. In this work, we leverage Siamese neural networks to propose a domain-agnostic evaluation metric: (1) with a qualitative evaluation that is consistent with human evaluation, (2) that is robust relative to common GAN issues such as mode dropping and invention, and (3) does not require any pretrained classifier. The empirical results in this paper demonstrate the superiority of this method compared to the popular Inception Score and are competitive with the FID score.

MaxDropout: Deep Neural Network Regularization Based on Maximum Output Values

Claudio Filipi Gonçalves Santos, Danilo Colombo, Mateus Roder, Joao Paulo Papa

Responsive image

Auto-TLDR; MaxDropout: A Regularizer for Deep Neural Networks

Slides Poster Similar

Different techniques have emerged in the deep learning scenario, such as Convolutional Neural Networks, Deep Belief Networks, and Long Short-Term Memory Networks, to cite a few. In lockstep, regularization methods, which aim to prevent overfitting by penalizing the weight connections, or turning off some units, have been widely studied either. In this paper, we present a novel approach called MaxDropout, a regularizer for deep neural network models that works in a supervised fashion by removing (shutting off) the prominent neurons (i.e., most active) in each hidden layer. The model forces fewer activated units to learn more representative information, thus providing sparsity. Regarding the experiments, we show that it is possible to improve existing neural networks and provide better results in neural networks when Dropout is replaced by MaxDropout. The proposed method was evaluated in image classification, achieving comparable results to existing regularizers, such as Cutout and RandomErasing, also improving the accuracy of neural networks that uses Dropout by replacing the existing layer by MaxDropout.

Semi-Supervised Class Incremental Learning

Alexis Lechat, Stéphane Herbin, Frederic Jurie

Responsive image

Auto-TLDR; incremental class learning with non-annotated batches

Slides Poster Similar

This paper makes a contribution to the problem of incremental class learning, the principle of which is to sequentially introduce batches of samples annotated with new classes during the learning phase. The main objective is to reduce the drop in classification performance on old classes, a phenomenon commonly called catastrophic forgetting. We propose in this paper a new method which exploits the availability of a large quantity of non-annotated images in addition to the annotated batches. These images are used to regularize the classifier and give the feature space a more stable structure. We demonstrate on several image data sets that our approach is able to improve the global performance of classifiers learned using an incremental learning protocol, even with annotated batches of small size.