Semi-Supervised Generative Adversarial Networks with a Pair of Complementary Generators for Retinopathy Screening

Yingpeng Xie, Qiwei Wan, Hai Xie, En-Leng Tan, Yanwu Xu, Baiying Lei

Responsive image

Auto-TLDR; Generative Adversarial Networks for Retinopathy Diagnosis via Fundus Images

Slides Poster

Several typical types of retinopathy are major causes of blindness. However, early detection of retinopathy is quite not easy since few symptoms are observable in the early stage, attributing to the development of non-mydriatic retinal camera. These camera produces high-resolution retinal fundus images provide the possibility of Computer-Aided-Diagnosis (CAD) via deep learning to assist diagnosing retinopathy. Deep learning algorithms usually rely on a great number of labelled images which are expensive and time-consuming to obtain in the medical imaging area. Moreover, the random distribution of various lesions which often vary greatly in size also brings significant challenges to learn discriminative information from high-resolution fundus image. In this paper, we present generative adversarial networks simultaneously equipped with "good" generator and "bad" generator (GBGANs) to make up for the incomplete data distribution provided by limited fundus images. To improve the generative feasibility of generator, we introduce into pre-trained feature extractor to acquire condensed feature for each fundus image in advance. Experimental results on integrated three public iChallenge datasets show that the proposed GBGANs could fully utilize the available fundus images to identify retinopathy with little label cost.

Similar papers

Signal Generation Using 1d Deep Convolutional Generative Adversarial Networks for Fault Diagnosis of Electrical Machines

Russell Sabir, Daniele Rosato, Sven Hartmann, Clemens Gühmann

Responsive image

Auto-TLDR; Large Dataset Generation from Faulty AC Machines using Deep Convolutional GAN

Slides Poster Similar

AC machines may be subjected to different electrical or mechanical faults during their operation. Fault patterns can be detected in the DC current from the machine’s E-Drive system with the help of Deep or Machine Learning algorithms. However, Deep or Machine Learning algorithms require large amounts of dataset for training and without the availability of a large dataset the algorithms fail to generalize or give their optimal performance. Collecting large amounts of data from faulty machine can be a tedious task. It is expensive and not always possible. In some cases, the machine is completely damaged even before sufficient amount of data can be collected. Also, data collection from defected machine may cause permanent damage to the connected system. Therefore, in this paper the problem of small dataset is tackled by presenting a methodology for large dataset generation by using the well-known generative model, Generative Adversarial Networks (GAN). As an example, the stator open circuit fault in a synchronous machine is considered. DC currents from the machine’s E-Drive system are measured from different healthy and faulty machines and are used for training of two 1d DCGANs (Deep Convolutional GANs), one for the healthy and the other for the current signal from the faulty machine. Conventional GANs are difficult to train, however in this paper, training parameters of 1d DCGAN are tuned which results an improved training process. The performance of generator during the training of 1d DCGAN is evaluated by using the Fréchet Inception Distance (FID) metric. The proposed 1d DCGAN model is said to converge when FID score between the real and generated signal reaches below a certain threshold. The generated signals from the trained 1d DCGAN are further evaluated using the PDF (Probability Density Function), frequency domain analysis and other measures which check for duplication of the real data and their statistical diversity. The trained 1d DCGAN is able to generate DC current signals for building large datasets for the training of Deep or Machine learning models.

Local Clustering with Mean Teacher for Semi-Supervised Learning

Zexi Chen, Benjamin Dutton, Bharathkumar Ramachandra, Tianfu Wu, Ranga Raju Vatsavai

Responsive image

Auto-TLDR; Local Clustering for Semi-supervised Learning

Slides Similar

The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher model's weights as the exponential moving average of a student model's weights and minimizes the divergence between their probability predictions under diverse perturbations of the inputs. However, MT is known to suffer from confirmation bias, that is, reinforcing incorrect teacher model predictions. In this work, we propose a simple yet effective method called Local Clustering (LC) to mitigate the effect of confirmation bias. In MT, each data point is considered independent of other points during training; however, data points are likely to be close to each other in feature space if they share similar features. Motivated by this, we cluster data points locally by minimizing the pairwise distance between neighboring data points in feature space. Combined with a standard classification cross-entropy objective on labeled data points, the misclassified unlabeled data points are pulled towards high-density regions of their correct class with the help of their neighbors, thus improving model performance. We demonstrate on semi-supervised benchmark datasets SVHN and CIFAR-10 that adding our LC loss to MT yields significant improvements compared to MT and performance comparable to the state of the art in semi-supervised learning.

Revisiting ImprovedGAN with Metric Learning for Semi-Supervised Learning

Jaewoo Park, Yoon Gyo Jung, Andrew Teoh

Responsive image

Auto-TLDR; Improving ImprovedGAN with Metric Learning for Semi-supervised Learning

Slides Poster Similar

Semi-supervised Learning (SSL) is a classical problem where a model needs to solve classification as it is trained on a partially labeled train data. After the introduction of generative adversarial network (GAN) and its success, the model has been modified to be applicable to SSL. ImprovedGAN as a representative model for GAN-based SSL, it showed promising performance on the SSL problem. However, the inner mechanism of this model has been only partially revealed. In this work, we revisit ImprovedGAN with a fresh perspective based on metric learning. In particular, we interpret ImprovedGAN by general pair weighting, a recent framework in metric learning. Based on this interpretation, we derive two theoretical properties of ImprovedGAN: (i) its discriminator learns to make confident predictions over real samples, (ii) the adversarial interaction in ImprovedGAN along with semi-supervision results in cluster separation by reducing intra-class variance and increasing the inter-class variance, thereby improving the model generalization. These theoretical implications are experimentally supported. Motivated by the findings, we propose a variant of ImprovedGAN, called Intensified ImprovedGAN (I2GAN), where its cluster separation characteristic is enhanced by two proposed techniques: (a) the unsupervised discriminator loss is scaled up and (b) the generated batch size is enlarged. As a result, I2GAN produces better class-wise cluster separation and, hence, generalization. Extensive experiments on the widely known benchmark data sets verify the effectiveness of our proposed method, showing that its performance is better than or comparable to other GAN based SSL models.

Progressive Adversarial Semantic Segmentation

Abdullah-Al-Zubaer Imran, Demetri Terzopoulos

Responsive image

Auto-TLDR; Progressive Adversarial Semantic Segmentation for End-to-End Medical Image Segmenting

Slides Poster Similar

Medical image computing has advanced rapidly with the advent of deep learning techniques such as convolutional neural networks. Deep convolutional neural networks can perform exceedingly well given full supervision. However, the success of such fully-supervised models for various image analysis tasks (e.g., anatomy or lesion segmentation from medical images) is limited to the availability of massive amounts of labeled data. Given small sample sizes, such models are prohibitively data biased with large domain shift. To tackle this problem, we propose a novel end-to-end medical image segmentation model, namely Progressive Adversarial Semantic Segmentation (PASS), which can make improved segmentation predictions without requiring any domain-specific data during training time. Our extensive experimentation with 8 public diabetic retinopathy and chest X-ray datasets, confirms the effectiveness of PASS for accurate vascular and pulmonary segmentation, both for in-domain and cross-domain evaluations.

IDA-GAN: A Novel Imbalanced Data Augmentation GAN

Hao Yang, Yun Zhou

Responsive image

Auto-TLDR; IDA-GAN: Generative Adversarial Networks for Imbalanced Data Augmentation

Slides Poster Similar

Class imbalance is a widely existed and challenging problem in real-world applications such as disease diagnosis, fraud detection, network intrusion detection and so on. Due to the scarce of data, it could significantly deteriorate the accuracy of classification. To address this challenge, we propose a novel Imbalanced Data Augmentation Generative Adversarial Networks (GAN) named IDA-GAN as an augmentation tool to deal with the imbalanced dataset. This is a great challenge because it is hard to train a GAN model under this situation. We overcome this issue by coupling Variational autoencoder along with GAN training. Specifically, we introduce the Variational autoencoder to learn the majority and minority class distributions in the latent space, and use the generative model to utilize each class distribution for the subsequent GAN training. The generative model learns useful features to generate target minority-class samples. By comparing with the state-of-the-art GAN models, the experimental results demonstrate that our proposed IDA-GAN could generate more diverse minority samples with better qualities, and it consistently benefits the imbalanced classification task in terms of several widely-used evaluation metrics on five benchmark datasets: MNIST, Fashion-MNIST, SVHN, CIFAR-10 and GTRSB.

GAP: Quantifying the Generative Adversarial Set and Class Feature Applicability of Deep Neural Networks

Edward Collier, Supratik Mukhopadhyay

Responsive image

Auto-TLDR; Approximating Adversarial Learning in Deep Neural Networks Using Set and Class Adversaries

Slides Poster Similar

Recent work in deep neural networks has sought to characterize the nature in which a network learns features and how applicable learnt features are to various problem sets. Deep neural network applicability can be split into three sub-problems; set applicability, class applicability, and instance applicability. In this work we seek to quantify the applicability of features learned during adversarial training, focusing specifically on set and class applicability. We apply techniques for measuring applicability to both generators and discriminators trained on various data sets to quantify applicability and better observe how both a generator and a discriminator, and generative models as a whole, learn features during adversarial training.

Fine-Tuning Convolutional Neural Networks: A Comprehensive Guide and Benchmark Analysis for Glaucoma Screening

Amed Mvoulana, Rostom Kachouri, Mohamed Akil

Responsive image

Auto-TLDR; Fine-tuning Convolutional Neural Networks for Glaucoma Screening

Slides Poster Similar

This work aimed at giving a comprehensive and in-detailed guide on the route to fine-tuning Convolutional Neural Networks (CNNs) for glaucoma screening. Transfer learning consists in a promising alternative to train CNNs from stratch, to avoid the huge data and resources requirements. After a thorough study of five state-of-the-art CNNs architectures, a complete and well-explained strategy for fine-tuning these networks is proposed, using hyperparameter grid-searching and two-phase training approach. Excellent performance is reached on model evaluation, with a 0.9772 AUROC validation rate, giving arise to reliable glaucoma diagosis-help systems. Also, a benchmark analysis is conducted across all fine-tuned models, studying them according to performance indices such as model complexity and size, AUROC density and inference time. This in-depth analysis allows a rigorous comparison between model characteristics, and is useful for giving practioners important trademarks for prospective applications and deployments.

A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification

Shuwei Wang, Qiuyun Wang, Zhengwei Jiang, Xuren Wang, Rongqi Jing

Responsive image

Auto-TLDR; IMIR: An Improved Malware Image Rescaling Algorithm Using Semi-supervised Generative Adversarial Network

Slides Poster Similar

Malware classification helps to understand its purpose and is also an important part of attack detection. And it is also an important part of discovering attacks. Due to continuous innovation and development of artificial intelligence, it is a trend to combine deep learning with malware classification. In this paper, we propose an improved malware image rescaling algorithm (IMIR) based on local mean algorithm. Its main goal of IMIR is to reduce the loss of information from samples during the process of converting binary files to image files. Therefore, we construct a neural network structure based on VGG model, which is suitable for image classification. In the real world, a mass of malware family labels are inaccurate or lacking. To deal with this situation, we propose a novel method to train the deep neural network by Semi-supervised Generative Adversarial Network (SGAN), which only needs a small amount of malware that have accurate labels about families. By integrating SGAN with weak coupling, we can retain the weak links of supervised part and unsupervised part of SGAN. It improves the accuracy of malware classification by making classifiers more independent of discriminators. The results of experimental demonstrate that our model achieves exhibiting favorable performance. The recalls of each family in our data set are all higher than 93.75%.

Unsupervised Detection of Pulmonary Opacities for Computer-Aided Diagnosis of COVID-19 on CT Images

Rui Xu, Xiao Cao, Yufeng Wang, Yen-Wei Chen, Xinchen Ye, Lin Lin, Wenchao Zhu, Chao Chen, Fangyi Xu, Yong Zhou, Hongjie Hu, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; A computer-aided diagnosis of COVID-19 from CT images using unsupervised pulmonary opacity detection

Slides Poster Similar

COVID-19 emerged towards the end of 2019 which was identified as a global pandemic by the world heath organization (WHO). With the rapid spread of COVID-19, the number of infected and suspected patients has increased dramatically. Chest computed tomography (CT) has been recognized as an efficient tool for the diagnosis of COVID-19. However, the huge CT data make it difficult for radiologist to fully exploit them on the diagnosis. In this paper, we propose a computer-aided diagnosis system that can automatically analyze CT images to distinguish the COVID-19 against to community-acquired pneumonia (CAP). The proposed system is based on an unsupervised pulmonary opacity detection method that locates opacity regions by a detector unsupervisedly trained from CT images with normal lung tissues. Radiomics based features are extracted insides the opacity regions, and fed into classifiers for classification. We evaluate the proposed CAD system by using 200 CT images collected from different patients in several hospitals. The accuracy, precision, recall, f1-score and AUC achieved are 95.5%, 100%, 91%, 95.1% and 95.9% respectively, exhibiting the promising capacity on the differential diagnosis of COVID-19 from CT images.

Enlarging Discriminative Power by Adding an Extra Class in Unsupervised Domain Adaptation

Hai Tran, Sumyeong Ahn, Taeyoung Lee, Yung Yi

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation using Artificial Classes

Slides Poster Similar

We study the problem of unsupervised domain adaptation that aims at obtaining a prediction model for the target domain using labeled data from the source domain and unlabeled data from the target domain. There exists an array of recent research based on the idea of extracting features that are not only invariant for both domains but also provide high discriminative power for the target domain. In this paper, we propose an idea of improving the discriminativeness: Adding an extra artificial class and training the model on the given data together with the GAN-generated samples of the new class. The trained model based on the new class samples is capable of extracting the features that are more discriminative by repositioning data of current classes in the target domain and therefore increasing the distances among the target clusters in the feature space. Our idea is highly generic so that it is compatible with many existing methods such as DANN, VADA, and DIRT-T. We conduct various experiments for the standard data commonly used for the evaluation of unsupervised domain adaptations and demonstrate that our algorithm achieves the SOTA performance for many scenarios.

Robust Localization of Retinal Lesions Via Weakly-Supervised Learning

Ruohan Zhao, Qin Li, Jane You

Responsive image

Auto-TLDR; Weakly Learning of Lesions in Fundus Images Using Multi-level Feature Maps and Classification Score

Slides Poster Similar

Retinal fundus images reveal the condition of retina, blood vessels and optic nerve. Retinal imaging is becoming widely adopted in clinical work because any subtle changes to the structures at the back of the eyes can affect the eyes and indicate the overall health. Machine learning, in particular deep learning by convolutional neural network (CNN), has been increasingly adopted for computer-aided detection (CAD) of retinal lesions. However, a significant barrier to the high performance of CNN based CAD approach is caused by the lack of sufficient labeled ground-truth image samples for training. Unlike the fully-supervised learning which relies on pixel-level annotation of pathology in fundus images, this paper presents a new approach to discriminate the location of various lesions based on image-level labels via weakly learning. More specifically, our proposed method leverages multi-level feature maps and classification score to cope with both bright and red lesions in fundus images. To enhance capability of learning less discriminative parts of objects (e.g. small blobs of microaneurysms opposed to bulk of exudates), the classifier is regularized by refining images with corresponding labels. The experimental results of the performance evaluation and benchmarking at both image-level and pixel-level on the public DIARETDB1 dataset demonstrate the feasibility and excellent potentials of our method in practice.

Local Facial Attribute Transfer through Inpainting

Ricard Durall, Franz-Josef Pfreundt, Janis Keuper

Responsive image

Auto-TLDR; Attribute Transfer Inpainting Generative Adversarial Network

Slides Poster Similar

The term attribute transfer refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator. In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our Attribute Transfer Inpainting Generative Adversarial Network (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.

Combining GANs and AutoEncoders for Efficient Anomaly Detection

Fabio Carrara, Giuseppe Amato, Luca Brombin, Fabrizio Falchi, Claudio Gennaro

Responsive image

Auto-TLDR; CBIGAN: Anomaly Detection in Images with Consistency Constrained BiGAN

Slides Poster Similar

In this work, we propose CBiGAN --- a novel method for anomaly detection in images, where a consistency constraint is introduced as a regularization term in both the encoder and decoder of a BiGAN. Our model exhibits fairly good modeling power and reconstruction consistency capability. We evaluate the proposed method on MVTec AD --- a real-world benchmark for unsupervised anomaly detection on high-resolution images --- and compare against standard baselines and state-of-the-art approaches. Experiments show that the proposed method improves the performance of BiGAN formulations by a large margin and performs comparably to expensive state-of-the-art iterative methods while reducing the computational cost. We also observe that our model is particularly effective in texture-type anomaly detection, as it sets a new state of the art in this category. The code will be publicly released.

MTGAN: Mask and Texture-Driven Generative Adversarial Network for Lung Nodule Segmentation

Wei Chen, Qiuli Wang, Kun Wang, Dan Yang, Xiaohong Zhang, Chen Liu, Yucong Li

Responsive image

Auto-TLDR; Mask and Texture-driven Generative Adversarial Network for Lung Nodule Segmentation

Slides Poster Similar

Accurate segmentation for lung nodules in lung computed tomography (CT) scans plays a key role in the early diagnosis of lung cancer. Many existing methods, especially UNet, have made significant progress in lung nodule segmentation. However, due to the complex shapes of lung nodules and the similarity of visual characteristics between nodules and lung tissues, an accurate segmentation with few false positives of lung nodules is still a challenging problem. Considering the fact that both boundary and texture information of lung nodules are important for obtaining an accurate segmentation result, we propose a novel Mask and Texture-driven Generative Adversarial Network (MTGAN) with a joint multi-scale L1 loss for lung nodule segmentation, which takes full advantages of U-Net and adversarial training. The proposed MTGAN leverages adversarial learning strategy guided by the boundary and texture information of lung nodules to generate more accurate segmentation results with lesser false positives. We validate our model with the LIDC–IDRI dataset, and experimental results show that our method achieves excellent segmentation results for a variety of lung nodules, especially for juxtapleural nodules and low-dense nodules. Without any bells and whistles, the proposed MTGAN achieves significant segmentation performance with the Dice similarity coefficient (DSC) of 85.24% on the LIDC–IDRI dataset.

Attention2AngioGAN: Synthesizing Fluorescein Angiography from Retinal Fundus Images Using Generative Adversarial Networks

Sharif Amit Kamran, Khondker Fariha Hossain, Alireza Tavakkoli, Stewart Lee Zuckerbrod

Responsive image

Auto-TLDR; Fluorescein Angiography from Fundus Images using Attention-based Generative Networks

Slides Poster Similar

Fluorescein Angiography (FA) is a technique that employs the designated camera for Fundus photography incorporating excitation and barrier filters. FA also requires fluorescein dye that is injected intravenously, which might cause adverse effects ranging from nausea, vomiting to even fatal anaphylaxis. Currently, no other fast and non-invasive technique exists that can generate FA without coupling with Fundus photography. To eradicate the need for an invasive FA extraction procedure, we introduce an Attention-based Generative network that can synthesize Fluorescein Angiography from Fundus images. The proposed gan incorporates multiple attention based skip connections in generators and comprises novel residual blocks for both generators and discriminators. It utilizes reconstruction, feature-matching, and perceptual loss along with adversarial training to produces realistic Angiograms that is hard for experts to distinguish from real ones. Our experiments confirm that the proposed architecture surpasses recent state-of-the-art generative networks for fundus-to-angio translation task.

Learn to Segment Retinal Lesions and Beyond

Qijie Wei, Xirong Li, Weihong Yu, Xiao Zhang, Yongpeng Zhang, Bojie Hu, Bin Mo, Di Gong, Ning Chen, Dayong Ding, Youxin Chen

Responsive image

Auto-TLDR; Multi-task Lesion Segmentation and Disease Classification for Diabetic Retinopathy Grading

Poster Similar

Towards automated retinal screening, this paper makes an endeavor to simultaneously achieve pixel-level retinal lesion segmentation and image-level disease classification. Such a multi-task approach is crucial for accurate and clinically interpretable disease diagnosis. Prior art is insufficient due to three challenges, i.e., lesions lacking objective boundaries, clinical importance of lesions irrelevant to their size, and the lack of one-to-one correspondence between lesion and disease classes. This paper attacks the three challenges in the context of diabetic retinopathy (DR) grading. We propose Lesion-Net, a new variant of fully convolutional networks, with its expansive path re- designed to tackle the first challenge. A dual Dice loss that leverages both semantic segmentation and image classification losses is introduced to resolve the second challenge. Lastly, we build a multi-task network that employs Lesion-Net as a side- attention branch for both DR grading and result interpretation. A set of 12K fundus images is manually segmented by 45 ophthalmologists for 8 DR-related lesions, resulting in 290K manual segments in total. Extensive experiments on this large- scale dataset show that our proposed approach surpasses the prior art for multiple tasks including lesion segmentation, lesion classification and DR grading.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

SAGE: Sequential Attribute Generator for Analyzing Glioblastomas Using Limited Dataset

Padmaja Jonnalagedda, Brent Weinberg, Jason Allen, Taejin Min, Shiv Bhanu, Bir Bhanu

Responsive image

Auto-TLDR; SAGE: Generative Adversarial Networks for Imaging Biomarker Detection and Prediction

Slides Poster Similar

While deep learning approaches have shown remarkable performance in many imaging tasks, most of these methods rely on availability of large quantities of data. Medical image data, however, is scarce and fragmented. Generative Adversarial Networks (GANs) have recently been very effective in handling such datasets by generating more data. If the datasets are very small, however, GANs cannot learn the data distribution properly, resulting in less diverse or low-quality results. One such limited dataset is that for the concurrent gain of 19/20 chromosomes (19/20 co-gain), a mutation with positive prognostic value in Glioblastomas (GBM). In this paper, we detect imaging biomarkers for the mutation to streamline the extensive and invasive prognosis pipeline. Since this mutation is relatively rare, i.e. small dataset, we propose a novel generative framework – the Sequential Attribute GEnerator (SAGE), that generates detailed tumor imaging features while learning from a limited dataset. Experiments show that not only does SAGE generate high quality tumors when compared to standard Deep Convolutional GAN (DC-GAN) and Wasserstein GAN with Gradient Penalty (WGAN-GP), it also captures the imaging biomarkers accurately.

Data Augmentation Via Mixed Class Interpolation Using Cycle-Consistent Generative Adversarial Networks Applied to Cross-Domain Imagery

Hiroshi Sasaki, Chris G. Willcocks, Toby Breckon

Responsive image

Auto-TLDR; C2GMA: A Generative Domain Transfer Model for Non-visible Domain Classification

Slides Poster Similar

Machine learning driven object detection and classification within non-visible imagery has an important role in many fields such as night vision, all-weather surveillance and aviation security. However, such applications often suffer due to the limited quantity and variety of non-visible spectral domain imagery, in contrast to the high data availability of visible-band imagery that readily enables contemporary deep learning driven detection and classification approaches. To address this problem, this paper proposes and evaluates a novel data augmentation approach that leverages the more readily available visible-band imagery via a generative domain transfer model. The model can synthesise large volumes of non-visible domain imagery by image-to-image (I2I) translation from the visible image domain. Furthermore, we show that the generation of interpolated mixed class (non-visible domain) image examples via our novel Conditional CycleGAN Mixup Augmentation (C2GMA) methodology can lead to a significant improvement in the quality of non-visible domain classification tasks that otherwise suffer due to limited data availability. Focusing on classification within the Synthetic Aperture Radar (SAR) domain, our approach is evaluated on a variation of the Statoil/C-CORE Iceberg Classifier Challenge dataset and achieves 75.4% accuracy, demonstrating a significant improvement when compared against traditional data augmentation strategies (Rotation, Mixup, and MixCycleGAN).

Learning Disentangled Representations for Identity Preserving Surveillance Face Camouflage

Jingzhi Li, Lutong Han, Hua Zhang, Xiaoguang Han, Jingguo Ge, Xiaochu Cao

Responsive image

Auto-TLDR; Individual Face Privacy under Surveillance Scenario with Multi-task Loss Function

Poster Similar

In this paper, we focus on protecting the person face privacy under the surveillance scenarios, whose goal is to change the visual appearances of faces while keep them to be recognizable by current face recognition systems. This is a challenging problem as that we should retain the most important structures of captured facial images, while alter the salient facial regions to protect personal privacy. To address this problem, we introduce a novel individual face protection model, which can camouflage the face appearance from the perspective of human visual perception and preserve the identity features of faces used for face authentication. To that end, we develop an encoder-decoder network architecture that can separately disentangle the person feature representation into an appearance code and an identity code. Specifically, we first randomly divide the face image into two groups, the source set and the target set, where the source set is used to extract the identity code and the target set provides the appearance code. Then, we recombine the identity and appearance codes to synthesize a new face, which has the same identity with the source subject. Finally, the synthesized faces are used to replace the original face to protect the privacy of individual. Furthermore, our model is trained end-to-end with a multi-task loss function, which can better preserve the identity and stabilize the training loss. Experiments conducted on Cross-Age Celebrity dataset demonstrate the effectiveness of our model and validate our superiority in terms of visual quality and scalability.

Age Gap Reducer-GAN for Recognizing Age-Separated Faces

Daksha Yadav, Naman Kohli, Mayank Vatsa, Richa Singh, Afzel Noore

Responsive image

Auto-TLDR; Generative Adversarial Network for Age-separated Face Recognition

Slides Poster Similar

In this paper, we propose a novel algorithm for matching faces with temporal variations caused due to age progression. The proposed generative adversarial network algorithm is a unified framework which combines facial age estimation and age-separated face verification. The key idea of this approach is to learn the age variations across time by conditioning the input image on the subject's gender and the target age group to which the face needs to be progressed. The loss function accounts for reducing the age gap between the original image and generated face image as well as preserving the identity. Both visual fidelity and quantitative evaluations demonstrate the efficacy of the proposed architecture on different facial age databases for age-separated face recognition.

A Systematic Investigation on Deep Architectures for Automatic Skin Lesions Classification

Pierluigi Carcagni, Marco Leo, Andrea Cuna, Giuseppe Celeste, Cosimo Distante

Responsive image

Auto-TLDR; RegNet: Deep Investigation of Convolutional Neural Networks for Automatic Classification of Skin Lesions

Slides Poster Similar

Computer vision-based techniques are more and more employed in healthcare and medical fields nowadays in order, principally, to be as a support to the experienced medical staff to help them to make a quick and correct diagnosis. One of the hot topics in this arena concerns the automatic classification of skin lesions. Several promising works exist about it, mainly leveraging Convolutional Neural Networks (CNN), but proposed pipeline mainly rely on complex data preprocessing and there is no systematic investigation about how available deep models can actually reach the accuracy needed for real applications. In order to overcome these drawbacks, in this work, an end-to-end pipeline is introduced and some of the most recent Convolutional Neural Networks (CNNs) architectures are included in it and compared on the largest common benchmark dataset recently introduced. To this aim, for the first time in this application context, a new network design paradigm, namely RegNet, has been exploited to get the best models among a population of configurations. The paper introduces a threefold level of contribution and novelty with respect the previous literature: the deep investigation of several CNN architectures driving to a consistent improvement of the lesions recognition accuracy, the exploitation of a new network design paradigm able to study the behavior of populations of models and a deep discussion about pro and cons of each analyzed method paving the path towards new research lines.

Generative Latent Implicit Conditional Optimization When Learning from Small Sample

Idan Azuri, Daphna Weinshall

Responsive image

Auto-TLDR; GLICO: Generative Latent Implicit Conditional Optimization for Small Sample Learning

Slides Poster Similar

We revisit the long-standing problem of learning from small sample. The generation of new samples from a small training set of labeled points has attracted increased attention in recent years. In this paper, we propose a novel such method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent work, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes and no data from unknown classes. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation (slerp) and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

Galaxy Image Translation with Semi-Supervised Noise-Reconstructed Generative Adversarial Networks

Qiufan Lin, Dominique Fouchez, Jérôme Pasquet

Responsive image

Auto-TLDR; Semi-supervised Image Translation with Generative Adversarial Networks Using Paired and Unpaired Images

Slides Poster Similar

Image-to-image translation with Deep Learning neural networks, particularly with Generative Adversarial Networks (GANs), is one of the most powerful methods for simulating astronomical images. However, current work is limited to utilizing paired images with supervised translation, and there has been rare discussion on reconstructing noise background that encodes instrumental and observational effects. These limitations might be harmful for subsequent scientific applications in astrophysics. Therefore, we aim to develop methods for using unpaired images and preserving noise characteristics in image translation. In this work, we propose a two-way image translation model using GANs that exploits both paired and unpaired images in a semi-supervised manner, and introduce a noise emulating module that is able to learn and reconstruct noise characterized by high-frequency features. By experimenting on multi-band galaxy images from the Sloan Digital Sky Survey (SDSS) and the Canada France Hawaii Telescope Legacy Survey (CFHT), we show that our method recovers global and local properties effectively and outperforms benchmark image translation models. To our best knowledge, this work is the first attempt to apply semi-supervised methods and noise reconstruction techniques in astrophysical studies.

Dealing with Scarce Labelled Data: Semi-Supervised Deep Learning with Mix Match for Covid-19 Detection Using Chest X-Ray Images

Saúl Calderón Ramirez, Raghvendra Giri, Shengxiang Yang, Armaghan Moemeni, Mario Umaña, David Elizondo, Jordina Torrents-Barrena, Miguel A. Molina-Cabello

Responsive image

Auto-TLDR; Semi-supervised Deep Learning for Covid-19 Detection using Chest X-rays

Slides Poster Similar

Coronavirus (Covid-19) is spreading fast, infecting people through contact in various forms including droplets from sneezing and coughing. Therefore, the detection of infected subjects in an early, quick and cheap manner is urgent. Currently available tests are scarce and limited to people in danger of serious illness. The application of deep learning to chest X-ray images for Covid-19 detection is an attractive approach. However, this technology usually relies on the availability of large labelled datasets, a requirement hard to meet in the context of a virus outbreak. To overcome this challenge, a semi-supervised deep learning model using both labelled and unlabelled data is proposed. We developed and tested a semi-supervised deep learning framework based on the Mix Match architecture to classify chest X-rays into Covid-19, pneumonia and healthy cases. The presented approach was calibrated using two publicly available datasets. The results show an accuracy increase of around $15\%$ under low labelled / unlabelled data ratio. This indicates that our semi-supervised framework can help improve performance levels towards Covid-19 detection when the amount of high-quality labelled data is scarce. Also, we introduce a semi-supervised deep learning boost coefficient which is meant to ease the scalability of our approach and performance comparison.

Local-Global Interactive Network for Face Age Transformation

Jie Song, Ping Wei, Huan Li, Yongchi Zhang, Nanning Zheng

Responsive image

Auto-TLDR; A Novel Local-Global Interaction Framework for Long-span Face Age Transformation

Slides Poster Similar

Face age transformation, which aims to generate a face image in the past or future, has receiving increasing attention due to its significant application value in some special fields, such as looking for a lost child, tracking criminals and entertainment, etc. Currently, most existing methods mainly focus on unidirectional short-span face aging. In this paper, we propose a novel local-global interaction framework for long-span face age transformation. Firstly, we divide a face image into five independent parts and design a local generative network for each of them to learn the local structure changes of a face image, while we utilize a global generative network to learn the global structure changes. Then we introduce an interactive network and an age classification network, which are respectively used to integrate the local and global features and maintain the corresponding age features in different age groups. Given any face image at a certain age, our network can produce a clear and realistic image of face aging or rejuvenation. We test and evaluate the model on complex datasets, and extensive qualitative comparison experiments has proved the effectiveness and immense potential of our proposed method.

Augmentation of Small Training Data Using GANs for Enhancing the Performance of Image Classification

Shih-Kai Hung, John Q. Gan

Responsive image

Auto-TLDR; Generative Adversarial Network for Image Training Data Augmentation

Slides Poster Similar

It is difficult to achieve high performance without sufficient training data for deep convolutional neural networks (DCNNs) to learn. Data augmentation plays an important role in improving robustness and preventing overfitting in machine learning for many applications such as image classification. In this paper, a novel method for data augmentation is proposed to solve the problem of machine learning with small training datasets. The proposed method can synthesise similar images with rich diversity from only a single original training sample to increase the number of training data by using generative adversarial networks (GANs). It is expected that the synthesised images possess class-informative features, which may be in the validation or testing data but not in the training data due to that the training dataset is small, and thus they can be effective as augmented training data to improve classification accuracy of DCNNs. The experimental results have demonstrated that the proposed method with a novel GAN framework for image training data augmentation can significantly enhance the classification performance of DCNNs for applications where original training data is limited.

Semi-Supervised Outdoor Image Generation Conditioned on Weather Signals

Sota Kawakami, Kei Okada, Naoko Nitta, Kazuaki Nakamura, Noboru Babaguchi

Responsive image

Auto-TLDR; Semi-supervised Generative Adversarial Network for Prediction of Weather Signals from Outdoor Images

Slides Poster Similar

In recent years, various types of sensors observe the real world. Especially, weather sensors are densely installed all over the world to observe current weather situations at various places. However, weather signals such as the temperature or humidity obtained by weather sensors are intuitively difficult for humans to understand. On the other hand, images captured by typical RGB cameras can tell weather situations at the captured places in a more comprehensible way for humans; however, cameras are only installed at limited places and are not necessarily open to public due to privacy issues. In order to solve this problem, the goal of our work is to generate images which can tell weather situations at arbitrary time and locations. This can be realized by using a conditional generative adversarial network architecture that takes an image and a condition to transform the image accordingly to the condition. Training such network requires a large number of image and condition pairs as the training data. Although weather signals can be easily collected from weather sensors, collecting their spatially and temporally synchronized outdoor images is not easy. Thus, we propose a semi-supervised method for training the image transformer. A relatively small number of pairs of an outdoor image and weather signals is collected, each from different web services, by considering their semantic consistency. The collected pairs are used to train a predictor for predicting weather signals from a given outdoor image. Then, the image transformer is trained by using a large number of pairs of an outdoor image and pseudo weather signals predicted by the predictor as the training data.

A Self-Supervised GAN for Unsupervised Few-Shot Object Recognition

Khoi Nguyen, Sinisa Todorovic

Responsive image

Auto-TLDR; Self-supervised Few-Shot Object Recognition with a Triplet GAN

Slides Poster Similar

This paper addresses unsupervised few-shot object recognition, where all training images are unlabeled, and test images are divided into queries and a few labeled support images per object class of interest. The training and test images do not share object classes. We extend the vanilla GAN with two loss functions, both aimed at self-supervised learning. The first is a reconstruction loss that enforces the discriminator to reconstruct the probabilistically sampled latent code which has been used for generating the "fake" image. The second is a triplet loss that enforces the discriminator to output image encodings that are closer for more similar images. Evaluation, comparisons, and detailed ablation studies are done in the context of few-shot classification. Our approach significantly outperforms the state of the art on the Mini-Imagenet and Tiered-Imagenet datasets.

Detail-Revealing Deep Low-Dose CT Reconstruction

Xinchen Ye, Yuyao Xu, Rui Xu, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; A Dual-branch Aggregation Network for Low-Dose CT Reconstruction

Slides Poster Similar

Low-dose CT imaging emerges with low radiation risk due to the reduction of radiation dose, but brings negative impact on the imaging quality. This paper addresses the problem of low-dose CT reconstruction. Previous methods are unsatisfactory due to the inaccurate recovery of image details under the strong noise generated by the reduction of radiation dose, which directly affects the final diagnosis. To suppress the noise effectively while retain the structures well, we propose a detail-revealing dual-branch aggregation network to effectively reconstruct the degraded CT image. Specifically, the main reconstruction branch iteratively exploits and compensates the reconstruction errors to gradually refine the CT image, while the prior branch is to learn the structure details as prior knowledge to help recover the CT image. A sophisticated detail-revealing loss is designed to fuse the information from both branches and guide the learning to obtain better performance from pixel-wise and holistic perspectives respectively. Experimental results show that our method outperforms the state-of-art methods in both PSNR and SSIM metrics.

Teacher-Student Competition for Unsupervised Domain Adaptation

Ruixin Xiao, Zhilei Liu, Baoyuan Wu

Responsive image

Auto-TLDR; Unsupervised Domain Adaption with Teacher-Student Competition

Slides Poster Similar

With the supervision from source domain only in class-level, existing unsupervised domain adaption (UDA) methods mainly learn the domain-invariant representations from a shared feature extractor, which cause the source-bias problem. This paper proposes an unsupervised domain adaption approach with Teacher-Student Competition (TSC). In particular, a student network is introduced to learn the target-specific feature space, and we design a novel competition mechanism to select more credible pseudo-labels for the training of student network. We introduce a teacher network with the structure of existing conventional UDA method, and both teacher and student networks compete to provide target pseudo-labels to constrain every target sample's training in student network. Extensive experiments demonstrate that our proposed TSC framework significantly outperforms the state-of-the-art domain adaption methods on Office-31 and ImageCLEF-DA benchmarks.

On the Evaluation of Generative Adversarial Networks by Discriminative Models

Amirsina Torfi, Mohammadreza Beyki, Edward Alan Fox

Responsive image

Auto-TLDR; Domain-agnostic GAN Evaluation with Siamese Neural Networks

Slides Poster Similar

Generative Adversarial Networks (GANs) can accurately model complex multi-dimensional data and generate realistic samples. However, due to their implicit estimation of data distributions, their evaluation is a challenging task. The majority of research efforts associated with tackling this issue were validated by qualitative visual evaluation. Such approaches do not generalize well beyond the image domain. Since many of those evaluation metrics are proposed and bound to the vision domain, they are difficult to apply to other domains. Quantitative measures are necessary to better guide the training and comparison of different GANs models. In this work, we leverage Siamese neural networks to propose a domain-agnostic evaluation metric: (1) with a qualitative evaluation that is consistent with human evaluation, (2) that is robust relative to common GAN issues such as mode dropping and invention, and (3) does not require any pretrained classifier. The empirical results in this paper demonstrate the superiority of this method compared to the popular Inception Score and are competitive with the FID score.

Variational Deep Embedding Clustering by Augmented Mutual Information Maximization

Qiang Ji, Yanfeng Sun, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Clustering by Augmented Mutual Information maximization for Deep Embedding

Slides Poster Similar

Clustering is a crucial but challenging task in pattern analysis and machine learning. Recent many deep clustering methods combining representation learning with cluster techniques emerged. These deep clustering methods mainly focus on the correlation among samples and ignore the relationship between samples and their representations. In this paper, we propose a novel end-to-end clustering framework, namely variational deep embedding clustering by augmented mutual information maximization (VCAMI). From the perspective of VAE, we prove that minimizing reconstruction loss is equivalent to maximizing the mutual information of the input and its latent representation. This provides a theoretical guarantee for us to directly maximize the mutual information instead of minimizing reconstruction loss. Therefore we proposed the augmented mutual information which highlights the uniqueness of the representations while discovering invariant information among similar samples. Extensive experiments on several challenging image datasets show that the VCAMI achieves good performance. we achieve state-of-the-art results for clustering on MNIST (99.5%) and CIFAR-10 (65.4%) to the best of our knowledge.

Leveraging Synthetic Subject Invariant EEG Signals for Zero Calibration BCI

Nik Khadijah Nik Aznan, Amir Atapour-Abarghouei, Stephen Bonner, Jason Connolly, Toby Breckon

Responsive image

Auto-TLDR; SIS-GAN: Subject Invariant SSVEP Generative Adversarial Network for Brain-Computer Interface

Slides Similar

Recently, substantial progress has been made in the area of Brain-Computer Interface (BCI) using modern machine learning techniques to decode and interpret brain signals. While Electroencephalography (EEG) has provided a non-invasive method of interfacing with a human brain, the acquired data is often heavily subject and session dependent. This makes seamless incorporation of such data into real-world applications intractable as the subject and session data variance can lead to long and tedious calibration requirements and cross-subject generalisation issues. Focusing on a Steady State Visual Evoked Potential (SSVEP) classification systems, we propose a novel means of generating highly-realistic synthetic EEG data invariant to any subject, session or other environmental conditions. Our approach, entitled the Subject Invariant SSVEP Generative Adversarial Network (SIS-GAN), produces synthetic EEG data from multiple SSVEP classes using a single network. Additionally, by taking advantage of a fixed-weight pre-trained subject classification network, we ensure that our generative model remains agnostic to subject-specific features and thus produces subject-invariant data that can be applied to new previously unseen subjects. Our extensive experimental evaluation demonstrates the efficacy of our synthetic data, leading to superior performance, with improvements of up to 16% in zero-calibration classification tasks when trained using our subject-invariant synthetic EEG signals.

Confidence Calibration for Deep Renal Biopsy Immunofluorescence Image Classification

Federico Pollastri, Juan Maroñas, Federico Bolelli, Giulia Ligabue, Roberto Paredes, Riccardo Magistroni, Costantino Grana

Responsive image

Auto-TLDR; A Probabilistic Convolutional Neural Network for Immunofluorescence Classification in Renal Biopsy

Slides Poster Similar

With this work we tackle immunofluorescence classification in renal biopsy, employing state-of-the-art Convolutional Neural Networks. In this setting, the aim of the probabilistic model is to assist an expert practitioner towards identifying the location pattern of antibody deposits within a glomerulus. Since modern neural networks often provide overconfident outputs, we stress the importance of having a reliable prediction, demonstrating that Temperature Scaling, a recently introduced re-calibration technique, can be successfully applied to immunofluorescence classification in renal biopsy. Experimental results demonstrate that the designed model yields good accuracy on the specific task, and that Temperature Scaling is able to provide reliable probabilities, which are highly valuable for such a task given the low inter-rater agreement.

OCT Image Segmentation Using NeuralArchitecture Search and SRGAN

Saba Heidari, Omid Dehzangi, Nasser M. Nasarabadi, Ali Rezai

Responsive image

Auto-TLDR; Automatic Segmentation of Retinal Layers in Optical Coherence Tomography using Neural Architecture Search

Poster Similar

Alzheimer’s disease (AD) diagnosis is one of the major research areas in computational medicine. Optical coherence tomography (OCT) is a non-invasive, inexpensive, and timely efficient method that scans the human’s retina with depth. It has been hypothesized that the thickness of the retinal layers extracted from OCTs could be an efficient and effective biomarker for early diagnosis of AD. In this work, we aim to design a self-training model architecture for the task of segmenting the retinal layers in OCT scans. Neural architecture search (NAS) is a subfield of AutoML domain, which has a significant impact on improving the accuracy of machine vision tasks. We integrate the NAS algorithm with a Unet auto-encoder architecture as its backbone. Then, we employ our proposed model to segment the retinal nerve fiber layer in our preprocessed OCT images with the aim of AD diagnosis. In this work, we trained a super-resolution generative adversarial network on the raw OCT scans to improve the quality of the images before the modeling stage. In our architecture search strategy, different primitive operations suggested to find down- \& up-sampling Unet cell blocks and the binary gate method has been applied to make the search strategy more practical. Our architecture search method is empirically evaluated by training on the Unet and NAS-Unet from scratch. Specifically, the proposed NAS-Unet training significantly outperforms the baseline human-designed architecture by achieving 95.1\% in the mean Intersection over Union metric and 79.1\% in the Dice similarity coefficient.

Generating Private Data Surrogates for Vision Related Tasks

Ryan Webster, Julien Rabin, Loic Simon, Frederic Jurie

Responsive image

Auto-TLDR; Generative Adversarial Networks for Membership Inference Attacks

Slides Poster Similar

With the widespread application of deep networks in industry, membership inference attacks, i.e. the ability to discern training data from a model, become more and more problematic for data privacy. Recent work suggests that generative networks may be robust against membership attacks. In this work, we build on this observation, offering a general-purpose solution to the membership privacy problem. As the primary contribution, we demonstrate how to construct surrogate datasets, using images from GAN generators, labelled with a classifier trained on the private dataset. Next, we show this surrogate data can further be used for a variety of downstream tasks (here classification and regression), while being resistant to membership attacks. We study a variety of different GANs proposed in the literature, concluding that higher quality GANs result in better surrogate data with respect to the task at hand.

Identity-Preserved Face Beauty Transformation with Conditional Generative Adversarial Networks

Zhitong Huang, Ching Y Suen

Responsive image

Auto-TLDR; Identity-preserved face beauty transformation using conditional GANs

Slides Poster Similar

Identity-preserved face beauty transformation aims to change the beauty scale of a face image while preserving the identity of the original face. In our framework of conditional Generative Adversarial Networks (cGANs), the synthesized face produced by the generator would have the same beauty scale indicated by the input condition. Unlike the discrete class labels used in most cGANs, the condition of target beauty scale in our framework is given by a continuous real-valued beauty score in the range [1 to 5], which makes the work challenging. To tackle the problem, we have implemented a triple structure, in which the conditional discriminator is divided into a normal discriminator and a separate face beauty predictor. We have also developed another new structure called Conditioned Instance Normalization to replace the original concatenation used in cGANs, which makes the combination of the input image and condition more effective. Furthermore, Self-Consistency Loss is introduced as a new parameter to improve the stability of training and quality of the generated image. In the end, the objectives of beauty transformation and identity preservation are evaluated by the pretrained face beauty predictor and state-of-the-art face recognition network. The result is encouraging and it also shows that certain facial features could be synthesized by the generator according to the target beauty scale, while preserving the original identity.

CardioGAN: An Attention-Based Generative Adversarial Network for Generation of Electrocardiograms

Subhrajyoti Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; CardioGAN: Generative Adversarial Network for Synthetic Electrocardiogram Signals

Slides Poster Similar

Electrocardiogram (ECG) signal is studied to obtain crucial information about the condition of a patient's heart. Machine learning based automated medical diagnostic systems that may help to evaluate the condition of the heart from this signal are required to be trained using large volumes of labelled training samples and the same may increase the chance of compromising with the patients' privacy. To solve this issue, generation of synthetic electrocardiogram signals by learning only from the general distributions of the available real training samples have been attempted in the literature. However, these studies did not pay necessary attention to the specific vital details of these signals, such as the P wave, the QRS complex, and the T wave. This shortcoming often results in the generation of unrealistic synthetic signals, such as a signal which does not contain one or more of the above components. In the present study, a novel deep generative architecture, termed as CardioGAN, based on generative adversarial network and powered by the effective attention mechanism has been designed which is capable of learning the intricate inter-dependencies among the various parts of real samples leading to the generation of more realistic electrocardiogram signals. Also, it helps in reducing the risk of breaching the privacy of patients. Extensive experimentation performed by us establishes that the proposed method achieves a better performance in generating synthetic electrocardiogram signals in comparison to the existing methods. The source code will be made available on github.

A Joint Representation Learning and Feature Modeling Approach for One-Class Recognition

Pramuditha Perera, Vishal Patel

Responsive image

Auto-TLDR; Combining Generative Features and One-Class Classification for Effective One-class Recognition

Slides Poster Similar

One-class recognition is traditionally approached either as a representation learning problem or a feature modelling problem. In this work, we argue that both of these approaches have their own limitations; and a more effective solution can be obtained by combining the two. The proposed approach is based on the combination of a generative framework and a one-class classification method. First, we learn generative features using the one-class data with a generative framework. We augment the learned features with the corresponding reconstruction errors to obtain augmented features. Then, we qualitatively identify a suitable feature distribution that reduces the redundancy in the chosen classifier space. Finally, we force the augmented features to take the form of this distribution using an adversarial framework. We test the effectiveness of the proposed method on three one-class classification tasks and obtain state-of-the-art results.

Adversarially Constrained Interpolation for Unsupervised Domain Adaptation

Mohamed Azzam, Aurele Tohokantche Gnanha, Hau-San Wong, Si Wu

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation with Domain Mixup Strategy

Slides Poster Similar

We address the problem of unsupervised domain adaptation (UDA) which aims at adapting models trained on a labeled domain to a completely unlabeled domain. One way to achieve this goal is to learn a domain-invariant representation. However, this approach is subject to two challenges: samples from two domains are insufficient to guarantee domain-invariance at most part of the latent space, and neighboring samples from the target domain may not belong to the same class on the low-dimensional manifold. To mitigate these shortcomings, we propose two strategies. First, we incorporate a domain mixup strategy in domain adversarial learning model by linearly interpolating between the source and target domain samples. This allows the latent space to be continuous and yields an improvement of the domain matching. Second, the domain discriminator is regularized via judging the relative difference between both domains for the input mixup features, which speeds up the domain matching. Experiment results show that our proposed model achieves a superior performance on different tasks under various domain shifts and data complexity.

GAN-Based Gaussian Mixture Model Responsibility Learning

Wanming Huang, Yi Da Xu, Shuai Jiang, Xuan Liang, Ian Oppermann

Responsive image

Auto-TLDR; Posterior Consistency Module for Gaussian Mixture Model

Slides Poster Similar

Mixture Model (MM) is a probabilistic framework allows us to define dataset containing $K$ different modes. When each of the modes is associated with a Gaussian distribution, we refer to it as Gaussian MM or GMM. Given a data point $x$, a GMM may assume the existence of a random index $k \in \{1, \dots , K \}$ identifying which Gaussian the particular data is associated with. In a traditional GMM paradigm, it is straightforward to compute in closed-form, the conditional likelihood $p(x |k, \theta)$ as well as the responsibility probability $p(k|x, \theta)$ describing the distribution weights for each data. Computing the responsibility allows us to retrieve many important statistics of the overall dataset, including the weights of each of the modes/clusters. Modern large data-sets are often containing multiple unlabelled modes, such as paintings dataset may contain several styles; fashion images containing several unlabelled categories. In its raw representation, the Euclidean distances between the data (e.g., images) do not allow them to form mixtures naturally, nor it's feasible to compute responsibility distribution analytically, making GMM unable to apply. In this paper, we utilize the Generative Adversarial Network (GAN) framework to achieve a plausible alternative method to compute these probabilities. The key insight is that we compute them at the data's latent space $z$ instead of $x$. However, this process of $z \rightarrow x$ is irreversible under GAN which renders the computation of responsibility $p(k|x, \theta)$ infeasible. Our paper proposed a novel method to solve it by using a so-called Posterior Consistency Module (PCM). PCM acts like a GAN, except its Generator $C_{\text{PCM}}$ does not output the data, but instead it outputs a distribution to approximate $p(k|x, \theta)$. The entire network is trained in an ``end-to-end'' fashion. Trough these techniques, it allows us to model the dataset of very complex structure using GMM and subsequently to discover interesting properties of an unsupervised dataset, including its segments, as well as generating new ``out-distribution" data by smooth linear interpolation across any combinations of the modes in a completely unsupervised manner.

SATGAN: Augmenting Age Biased Dataset for Cross-Age Face Recognition

Wenshuang Liu, Wenting Chen, Yuanlue Zhu, Linlin Shen

Responsive image

Auto-TLDR; SATGAN: Stable Age Translation GAN for Cross-Age Face Recognition

Slides Poster Similar

In this paper, we propose a Stable Age Translation GAN (SATGAN) to generate fake face images at different ages to augment age biased face datasets for Cross-Age Face Recognition (CAFR) . The proposed SATGAN consists of both generator and discriminator. As a part of the generator, a novel Mask Attention Module (MAM) is introduced to make the generator focus on the face area. In addition, the generator employs a Uniform Distribution Discriminator (UDD) to supervise the learning of latent feature map and enforce the uniform distribution. Besides, the discriminator employs a Feature Separation Module (FSM) to disentangle identity information from the age information. The quantitative and qualitative evaluations on Morph dataset prove that SATGAN achieves much better performance than existing methods. The face recognition model trained using dataset (VGGFace2 and MS-Celeb-1M) augmented using our SATGAN achieves better accuracy on cross age dataset like Cross-Age LFW and AgeDB-30.

JUMPS: Joints Upsampling Method for Pose Sequences

Lucas Mourot, Francois Le Clerc, Cédric Thébault, Pierre Hellier

Responsive image

Auto-TLDR; JUMPS: Increasing the Number of Joints in 2D Pose Estimation and Recovering Occluded or Missing Joints

Slides Poster Similar

Human Pose Estimation is a low-level task useful for surveillance, human action recognition, and scene understanding at large. It also offers promising perspectives for the animation of synthetic characters. For all these applications, and especially the latter, estimating the positions of many joints is desirable for improved performance and realism. To this purpose, we propose a novel method called JUMPS for increasing the number of joints in 2D pose estimates and recovering occluded or missing joints. We believe this is the first attempt to address the issue. We build on a deep generative model that combines a GAN and an encoder. The GAN learns the distribution of high-resolution human pose sequences, the encoder maps the input low-resolution sequences to its latent space. Inpainting is obtained by computing the latent representation whose decoding by the GAN generator optimally matches the joints locations at the input. Post-processing a 2D pose sequence using our method provides a richer representation of the character motion. We show experimentally that the localization accuracy of the additional joints is on average on par with the original pose estimates.

Shape Consistent 2D Keypoint Estimation under Domain Shift

Levi Vasconcelos, Massimiliano Mancini, Davide Boscaini, Barbara Caputo, Elisa Ricci

Responsive image

Auto-TLDR; Deep Adaptation for Keypoint Prediction under Domain Shift

Slides Poster Similar

Recent unsupervised domain adaptation methods based on deep architectures have shown remarkable performance not only in traditional classification tasks but also in more complex problems involving structured predictions (e.g. semantic segmentation, depth estimation). Following this trend, in this paper we present a novel deep adaptation framework for estimating keypoints under \textit{domain shift}, i.e. when the training (\textit{source}) and the test (\textit{target}) images significantly differ in terms of visual appearance. Our method seamlessly combines three different components: feature alignment, adversarial training and self-supervision. Specifically, our deep architecture leverages from domain-specific distribution alignment layers to perform target adaptation at the feature level. Furthermore, a novel loss is proposed which combines an adversarial term for ensuring aligned predictions in the output space and a geometric consistency term which guarantees coherent predictions between a target sample and its perturbed version. Our extensive experimental evaluation conducted on three publicly available benchmarks shows that our approach outperforms state-of-the-art domain adaptation methods in the 2D keypoint prediction task.

UCCTGAN: Unsupervised Clothing Color Transformation Generative Adversarial Network

Shuming Sun, Xiaoqiang Li, Jide Li

Responsive image

Auto-TLDR; An Unsupervised Clothing Color Transformation Generative Adversarial Network

Slides Poster Similar

Clothing color transformation refers to changing the clothes color in an original image to the clothes color in a target image. In this paper, we propose an Unsupervised Clothing Color Transformation Generative Adversarial Network (UCCTGAN) for the task. UCCTGAN adopts the color histogram of a target clothes as color guidance and an improved U-net architecture called AntennaNet is put forward to fuse the extracted color information with the original image. Meanwhile, to accomplish unsupervised learning, the loss function is carefully designed according to color moment, which evaluates the chromatic aberration between the target clothing and the generated clothing. Experimental results show that our network has the ability to generate convincing color transformation results.

Pose Variation Adaptation for Person Re-Identification

Lei Zhang, Na Jiang, Qishuai Diao, Yue Xu, Zhong Zhou, Wei Wu

Responsive image

Auto-TLDR; Pose Transfer Generative Adversarial Network for Person Re-identification

Slides Poster Similar

Person re-identification (reid) plays an important role in surveillance video analysis, especially for criminal investigation and intelligent security. Although a large number of effective feature or distance metric learning approaches have been proposed, it still suffers from pedestrians appearance variations caused by pose changing. Most of the previous methods address this problem by learning a pose-invariant descriptor subspace. In this paper, we propose a pose variation adaptation method for person reid in the view of data augmentation. It can reduce the probability of deep learning network over-fitting. Specifically, we introduce a pose transfer generative adversarial network with a similarity measurement constraint. With the learned pose transfer model, training images can be pose-transferred to any given poses, and along with the original images, form a augmented training dataset. It increases data diversity against over-fitting. In contrast to previous GAN-based methods, we consider the influence of pose variations on similarity measure to generate more realistic and shaper samples for person reid. Besides, we optimize hard example mining to introduce a novel manner of samples (pose-transferred images) used with the learned pose transfer model. It focuses on the inferior samples which are caused by pose variations to increase the number of effective hard examples for learning discriminative features and improve the generalization ability. We extensively conduct comparative evaluations to demonstrate the advantages and superiority of our proposed method over the state-of-the-art approaches on Market-1501 and DukeMTMC-reID, the rank-1 accuracy is 96.1% for Market-1501 and 92.0% for DukeMTMC-reID.

Background Invariance by Adversarial Learning

Ricardo Cruz, Ricardo M. Prates, Eduardo F. Simas Filho, Joaquim F. Pinto Costa, Jaime S. Cardoso

Responsive image

Auto-TLDR; Improving Convolutional Neural Networks for Overhead Power Line Insulators Detection using a Drone

Slides Poster Similar

Convolutional neural networks are shown to be vulnerable to changes in the background. The proposed method is an end-to-end method that augments the training set by introducing new backgrounds during the training process. These backgrounds are created by a generative network that is trained as an adversary to the model. A case study is explored based on overhead power line insulators detection using a drone – a training set is prepared from photographs taken inside a laboratory and then evaluated using photographs that are harder to collect from outside the laboratory. The proposed method improves performance by over 20% for this case study.