Demetri Terzopoulos

Papers from this author

A Transformer-Based Network for Anisotropic 3D Medical Image Segmentation

Guo Danfeng, Demetri Terzopoulos

Responsive image

Auto-TLDR; A transformer-based model to tackle the anisotropy problem in 3D medical image analysis

Slides Poster Similar

A critical challenge of applying neural networks to 3D medical image analysis is to deal with the anisotropy problem. The inter-slice contextual information contained in medical images is important, especially when the structural information of lesions is needed. However, such information often varies with cases because of variable slice spacing. Image anisotropy downgrades model performance especially when slice spacing varies significantly among training and testing datasets. ExsiWe proposed a transformer-based model to tackle the anisotropy problem. It is adaptable to different levels of anisotropy and is computationally efficient. Experiments are conducted on 3D lung cancer segmentation task. Our model achieves an average Dice score of approximately 0.87, which generally outperforms baseline models.

Locally-Connected, Irregular Deep Neural Networks for Biomimetic Active Vision in a Simulated Human

Masaki Nakada, Honglin Chen, Arjun Lakshmipathy, Demetri Terzopoulos

Responsive image

Auto-TLDR; Local-connected, Irregular Deep Neural Networks for biomimetic active vision

Slides Poster Similar

An advanced simulation framework has recently been introduced for exploring human perception and visuomotor control. In this context, we investigate locally-connected, irregular deep neural networks (liNets) for biomimetic active vision. Like commonly used CNNs, liNets are locally-connected, forming receptive fields. Unlike CNNs, liNets are ideal for irregular photoreceptor distributions like those found in foveated biological retinas. Relative to fully-connected deep neural networks, liNets accommodate a dramatically greater number of retinal photoreceptors for significantly enhanced visual acuity, while avoiding prohibitive memory requirements. We demonstrate that our new networks can serve effectively in the biomimetic active vision system embodied in a simulated human that learns active visuomotor control and active appearance-based recognition.

Progressive Adversarial Semantic Segmentation

Abdullah-Al-Zubaer Imran, Demetri Terzopoulos

Responsive image

Auto-TLDR; Progressive Adversarial Semantic Segmentation for End-to-End Medical Image Segmenting

Slides Poster Similar

Medical image computing has advanced rapidly with the advent of deep learning techniques such as convolutional neural networks. Deep convolutional neural networks can perform exceedingly well given full supervision. However, the success of such fully-supervised models for various image analysis tasks (e.g., anatomy or lesion segmentation from medical images) is limited to the availability of massive amounts of labeled data. Given small sample sizes, such models are prohibitively data biased with large domain shift. To tackle this problem, we propose a novel end-to-end medical image segmentation model, namely Progressive Adversarial Semantic Segmentation (PASS), which can make improved segmentation predictions without requiring any domain-specific data during training time. Our extensive experimentation with 8 public diabetic retinopathy and chest X-ray datasets, confirms the effectiveness of PASS for accurate vascular and pulmonary segmentation, both for in-domain and cross-domain evaluations.