Augmentation of Small Training Data Using GANs for Enhancing the Performance of Image Classification

Shih-Kai Hung, John Q. Gan

Responsive image

Auto-TLDR; Generative Adversarial Network for Image Training Data Augmentation

Slides Poster

It is difficult to achieve high performance without sufficient training data for deep convolutional neural networks (DCNNs) to learn. Data augmentation plays an important role in improving robustness and preventing overfitting in machine learning for many applications such as image classification. In this paper, a novel method for data augmentation is proposed to solve the problem of machine learning with small training datasets. The proposed method can synthesise similar images with rich diversity from only a single original training sample to increase the number of training data by using generative adversarial networks (GANs). It is expected that the synthesised images possess class-informative features, which may be in the validation or testing data but not in the training data due to that the training dataset is small, and thus they can be effective as augmented training data to improve classification accuracy of DCNNs. The experimental results have demonstrated that the proposed method with a novel GAN framework for image training data augmentation can significantly enhance the classification performance of DCNNs for applications where original training data is limited.

Similar papers

IDA-GAN: A Novel Imbalanced Data Augmentation GAN

Hao Yang, Yun Zhou

Responsive image

Auto-TLDR; IDA-GAN: Generative Adversarial Networks for Imbalanced Data Augmentation

Slides Poster Similar

Class imbalance is a widely existed and challenging problem in real-world applications such as disease diagnosis, fraud detection, network intrusion detection and so on. Due to the scarce of data, it could significantly deteriorate the accuracy of classification. To address this challenge, we propose a novel Imbalanced Data Augmentation Generative Adversarial Networks (GAN) named IDA-GAN as an augmentation tool to deal with the imbalanced dataset. This is a great challenge because it is hard to train a GAN model under this situation. We overcome this issue by coupling Variational autoencoder along with GAN training. Specifically, we introduce the Variational autoencoder to learn the majority and minority class distributions in the latent space, and use the generative model to utilize each class distribution for the subsequent GAN training. The generative model learns useful features to generate target minority-class samples. By comparing with the state-of-the-art GAN models, the experimental results demonstrate that our proposed IDA-GAN could generate more diverse minority samples with better qualities, and it consistently benefits the imbalanced classification task in terms of several widely-used evaluation metrics on five benchmark datasets: MNIST, Fashion-MNIST, SVHN, CIFAR-10 and GTRSB.

Uncertainty-Aware Data Augmentation for Food Recognition

Eduardo Aguilar, Bhalaji Nagarajan, Rupali Khatun, Marc Bolaños, Petia Radeva

Responsive image

Auto-TLDR; Data Augmentation for Food Recognition Using Epistemic Uncertainty

Slides Poster Similar

Food recognition has recently attracted attention of many researchers. However, high food ambiguity, inter-class variability and intra-class similarity define a real challenge for the Deep learning and Computer Vision algorithms. In order to improve their performance, it is necessary to better understand what the model learns and, from this, to determine the type of data that should be additionally included for being the most beneficial to the training procedure. In this paper, we propose a new data augmentation strategy that estimates and uses the epistemic uncertainty to guide the model training. The method follows an active learning framework, where the new synthetic images are generated from the hard to classify real ones present in the training data based on the epistemic uncertainty. Hence, it allows the food recognition algorithm to focus on difficult images in order to learn their discriminatives features. On the other hand, avoiding data generation from images that do not contribute to the recognition makes it faster and more efficient. We show that the proposed method allows to improve food recognition and provides a better trade-off between micro- and macro-recall measures.

Data Augmentation Via Mixed Class Interpolation Using Cycle-Consistent Generative Adversarial Networks Applied to Cross-Domain Imagery

Hiroshi Sasaki, Chris G. Willcocks, Toby Breckon

Responsive image

Auto-TLDR; C2GMA: A Generative Domain Transfer Model for Non-visible Domain Classification

Slides Poster Similar

Machine learning driven object detection and classification within non-visible imagery has an important role in many fields such as night vision, all-weather surveillance and aviation security. However, such applications often suffer due to the limited quantity and variety of non-visible spectral domain imagery, in contrast to the high data availability of visible-band imagery that readily enables contemporary deep learning driven detection and classification approaches. To address this problem, this paper proposes and evaluates a novel data augmentation approach that leverages the more readily available visible-band imagery via a generative domain transfer model. The model can synthesise large volumes of non-visible domain imagery by image-to-image (I2I) translation from the visible image domain. Furthermore, we show that the generation of interpolated mixed class (non-visible domain) image examples via our novel Conditional CycleGAN Mixup Augmentation (C2GMA) methodology can lead to a significant improvement in the quality of non-visible domain classification tasks that otherwise suffer due to limited data availability. Focusing on classification within the Synthetic Aperture Radar (SAR) domain, our approach is evaluated on a variation of the Statoil/C-CORE Iceberg Classifier Challenge dataset and achieves 75.4% accuracy, demonstrating a significant improvement when compared against traditional data augmentation strategies (Rotation, Mixup, and MixCycleGAN).

Signal Generation Using 1d Deep Convolutional Generative Adversarial Networks for Fault Diagnosis of Electrical Machines

Russell Sabir, Daniele Rosato, Sven Hartmann, Clemens Gühmann

Responsive image

Auto-TLDR; Large Dataset Generation from Faulty AC Machines using Deep Convolutional GAN

Slides Poster Similar

AC machines may be subjected to different electrical or mechanical faults during their operation. Fault patterns can be detected in the DC current from the machine’s E-Drive system with the help of Deep or Machine Learning algorithms. However, Deep or Machine Learning algorithms require large amounts of dataset for training and without the availability of a large dataset the algorithms fail to generalize or give their optimal performance. Collecting large amounts of data from faulty machine can be a tedious task. It is expensive and not always possible. In some cases, the machine is completely damaged even before sufficient amount of data can be collected. Also, data collection from defected machine may cause permanent damage to the connected system. Therefore, in this paper the problem of small dataset is tackled by presenting a methodology for large dataset generation by using the well-known generative model, Generative Adversarial Networks (GAN). As an example, the stator open circuit fault in a synchronous machine is considered. DC currents from the machine’s E-Drive system are measured from different healthy and faulty machines and are used for training of two 1d DCGANs (Deep Convolutional GANs), one for the healthy and the other for the current signal from the faulty machine. Conventional GANs are difficult to train, however in this paper, training parameters of 1d DCGAN are tuned which results an improved training process. The performance of generator during the training of 1d DCGAN is evaluated by using the Fréchet Inception Distance (FID) metric. The proposed 1d DCGAN model is said to converge when FID score between the real and generated signal reaches below a certain threshold. The generated signals from the trained 1d DCGAN are further evaluated using the PDF (Probability Density Function), frequency domain analysis and other measures which check for duplication of the real data and their statistical diversity. The trained 1d DCGAN is able to generate DC current signals for building large datasets for the training of Deep or Machine learning models.

Ω-GAN: Object Manifold Embedding GAN for Image Generation by Disentangling Parameters into Pose and Shape Manifolds

Yasutomo Kawanishi, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase

Responsive image

Auto-TLDR; Object Manifold Embedding GAN with Parametric Sampling and Object Identity Loss

Slides Poster Similar

In this paper, we propose Object Manifold Embedding GAN (Ω-GAN) to generate images of variously shaped and arbitrarily posed objects from a noise variable sampled from a distribution defined over the pose and the shape manifolds in a vector space. We introduce Parametric Manifold Sampling to sample noise variables from a distribution over the pose manifold to conditionally generate object images in arbitrary poses by tuning the pose parameter. We also introduce Object Identity Loss for clearly disentangling the pose and shape parameters, which allows us to maintain the shape of the object instance when only the pose parameter is changed. Through evaluation, we confirmed that the proposed Ω-GAN could generate variously shaped object images in arbitrary poses by changing the pose and shape parameters independently. We also introduce an application of the proposed method for object pose estimation, through which we confirmed that the object poses in the generated images are accurate.

Leveraging Synthetic Subject Invariant EEG Signals for Zero Calibration BCI

Nik Khadijah Nik Aznan, Amir Atapour-Abarghouei, Stephen Bonner, Jason Connolly, Toby Breckon

Responsive image

Auto-TLDR; SIS-GAN: Subject Invariant SSVEP Generative Adversarial Network for Brain-Computer Interface

Slides Similar

Recently, substantial progress has been made in the area of Brain-Computer Interface (BCI) using modern machine learning techniques to decode and interpret brain signals. While Electroencephalography (EEG) has provided a non-invasive method of interfacing with a human brain, the acquired data is often heavily subject and session dependent. This makes seamless incorporation of such data into real-world applications intractable as the subject and session data variance can lead to long and tedious calibration requirements and cross-subject generalisation issues. Focusing on a Steady State Visual Evoked Potential (SSVEP) classification systems, we propose a novel means of generating highly-realistic synthetic EEG data invariant to any subject, session or other environmental conditions. Our approach, entitled the Subject Invariant SSVEP Generative Adversarial Network (SIS-GAN), produces synthetic EEG data from multiple SSVEP classes using a single network. Additionally, by taking advantage of a fixed-weight pre-trained subject classification network, we ensure that our generative model remains agnostic to subject-specific features and thus produces subject-invariant data that can be applied to new previously unseen subjects. Our extensive experimental evaluation demonstrates the efficacy of our synthetic data, leading to superior performance, with improvements of up to 16% in zero-calibration classification tasks when trained using our subject-invariant synthetic EEG signals.

Generative Latent Implicit Conditional Optimization When Learning from Small Sample

Idan Azuri, Daphna Weinshall

Responsive image

Auto-TLDR; GLICO: Generative Latent Implicit Conditional Optimization for Small Sample Learning

Slides Poster Similar

We revisit the long-standing problem of learning from small sample. The generation of new samples from a small training set of labeled points has attracted increased attention in recent years. In this paper, we propose a novel such method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent work, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes and no data from unknown classes. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation (slerp) and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

SAGE: Sequential Attribute Generator for Analyzing Glioblastomas Using Limited Dataset

Padmaja Jonnalagedda, Brent Weinberg, Jason Allen, Taejin Min, Shiv Bhanu, Bir Bhanu

Responsive image

Auto-TLDR; SAGE: Generative Adversarial Networks for Imaging Biomarker Detection and Prediction

Slides Poster Similar

While deep learning approaches have shown remarkable performance in many imaging tasks, most of these methods rely on availability of large quantities of data. Medical image data, however, is scarce and fragmented. Generative Adversarial Networks (GANs) have recently been very effective in handling such datasets by generating more data. If the datasets are very small, however, GANs cannot learn the data distribution properly, resulting in less diverse or low-quality results. One such limited dataset is that for the concurrent gain of 19/20 chromosomes (19/20 co-gain), a mutation with positive prognostic value in Glioblastomas (GBM). In this paper, we detect imaging biomarkers for the mutation to streamline the extensive and invasive prognosis pipeline. Since this mutation is relatively rare, i.e. small dataset, we propose a novel generative framework – the Sequential Attribute GEnerator (SAGE), that generates detailed tumor imaging features while learning from a limited dataset. Experiments show that not only does SAGE generate high quality tumors when compared to standard Deep Convolutional GAN (DC-GAN) and Wasserstein GAN with Gradient Penalty (WGAN-GP), it also captures the imaging biomarkers accurately.

S2I-Bird: Sound-To-Image Generation of Bird Species Using Generative Adversarial Networks

Joo Yong Shim, Joongheon Kim, Jong-Kook Kim

Responsive image

Auto-TLDR; Generating bird images from sound using conditional generative adversarial networks

Slides Poster Similar

Generating images from sound is a challenging task. This paper proposes a novel deep learning model that generates bird images from their corresponding sound information. Our proposed model includes a sound encoder in order to extract suitable feature representations from audio recordings, and then it generates bird images that corresponds to its calls using conditional generative adversarial networks (GANs) with auxiliary classifiers. We demonstrate that our model produces better image generation results which outperforms other state-of-the-art methods in a similar context.

Pseudo Rehearsal Using Non Photo-Realistic Images

Bhasker Sri Harsha Suri, Kalidas Yeturu

Responsive image

Auto-TLDR; Pseudo-Rehearsing for Catastrophic Forgetting

Slides Poster Similar

Deep Neural networks forget previously learnt tasks when they are faced with learning new tasks. This is called catastrophic forgetting. Rehearsing the neural network with the training data of the previous task can protect the network from catastrophic forgetting.Since rehearsing requires the storage of entire previous data, Pseudo rehearsal was proposed, where samples belonging to the previous data are generated synthetically for rehearsal. In an image classification setting, while current techniques try to generate synthetic data that is photo-realistic, we demonstrated that Neural networks can be rehearsed on data that is not photo-realistic and still achieve good retention of the previous task. We also demonstrated that forgoing the constraint of having photo realism in the generated data can result in a significant reduction in the consumption of computational and memory resources for pseudo rehearsal.

Semi-Supervised Outdoor Image Generation Conditioned on Weather Signals

Sota Kawakami, Kei Okada, Naoko Nitta, Kazuaki Nakamura, Noboru Babaguchi

Responsive image

Auto-TLDR; Semi-supervised Generative Adversarial Network for Prediction of Weather Signals from Outdoor Images

Slides Poster Similar

In recent years, various types of sensors observe the real world. Especially, weather sensors are densely installed all over the world to observe current weather situations at various places. However, weather signals such as the temperature or humidity obtained by weather sensors are intuitively difficult for humans to understand. On the other hand, images captured by typical RGB cameras can tell weather situations at the captured places in a more comprehensible way for humans; however, cameras are only installed at limited places and are not necessarily open to public due to privacy issues. In order to solve this problem, the goal of our work is to generate images which can tell weather situations at arbitrary time and locations. This can be realized by using a conditional generative adversarial network architecture that takes an image and a condition to transform the image accordingly to the condition. Training such network requires a large number of image and condition pairs as the training data. Although weather signals can be easily collected from weather sensors, collecting their spatially and temporally synchronized outdoor images is not easy. Thus, we propose a semi-supervised method for training the image transformer. A relatively small number of pairs of an outdoor image and weather signals is collected, each from different web services, by considering their semantic consistency. The collected pairs are used to train a predictor for predicting weather signals from a given outdoor image. Then, the image transformer is trained by using a large number of pairs of an outdoor image and pseudo weather signals predicted by the predictor as the training data.

A Joint Representation Learning and Feature Modeling Approach for One-Class Recognition

Pramuditha Perera, Vishal Patel

Responsive image

Auto-TLDR; Combining Generative Features and One-Class Classification for Effective One-class Recognition

Slides Poster Similar

One-class recognition is traditionally approached either as a representation learning problem or a feature modelling problem. In this work, we argue that both of these approaches have their own limitations; and a more effective solution can be obtained by combining the two. The proposed approach is based on the combination of a generative framework and a one-class classification method. First, we learn generative features using the one-class data with a generative framework. We augment the learned features with the corresponding reconstruction errors to obtain augmented features. Then, we qualitatively identify a suitable feature distribution that reduces the redundancy in the chosen classifier space. Finally, we force the augmented features to take the form of this distribution using an adversarial framework. We test the effectiveness of the proposed method on three one-class classification tasks and obtain state-of-the-art results.

Image Representation Learning by Transformation Regression

Xifeng Guo, Jiyuan Liu, Sihang Zhou, En Zhu, Shihao Dong

Responsive image

Auto-TLDR; Self-supervised Image Representation Learning using Continuous Parameter Prediction

Slides Poster Similar

Self-supervised learning is a thriving research direction since it can relieve the burden of human labeling for machine learning by seeking for supervision from data instead of human annotation. Although demonstrating promising performance in various applications, we observe that the existing methods usually model the auxiliary learning tasks as classification tasks with finite discrete labels, leading to insufficient supervisory signals, which in turn restricts the representation quality. In this paper, to solve the above problem and make full use of the supervision from data, we design a regression model to predict the continuous parameters of a group of transformations, i.e., image rotation, translation, and scaling. Surprisingly, this naive modification stimulates tremendous potential from data and the resulting supervisory signal has largely improved the performance of image representation learning. Extensive experiments on four image datasets, including CIFAR10, CIFAR100, STL10, and SVHN, indicate that our proposed algorithm outperforms the state-of-the-art unsupervised learning methods by a large margin in terms of classification accuracy. Crucially, we find that with our proposed training mechanism as an initialization, the performance of the existing state-of-the-art classification deep architectures can be preferably improved.

Semi-Supervised Generative Adversarial Networks with a Pair of Complementary Generators for Retinopathy Screening

Yingpeng Xie, Qiwei Wan, Hai Xie, En-Leng Tan, Yanwu Xu, Baiying Lei

Responsive image

Auto-TLDR; Generative Adversarial Networks for Retinopathy Diagnosis via Fundus Images

Slides Poster Similar

Several typical types of retinopathy are major causes of blindness. However, early detection of retinopathy is quite not easy since few symptoms are observable in the early stage, attributing to the development of non-mydriatic retinal camera. These camera produces high-resolution retinal fundus images provide the possibility of Computer-Aided-Diagnosis (CAD) via deep learning to assist diagnosing retinopathy. Deep learning algorithms usually rely on a great number of labelled images which are expensive and time-consuming to obtain in the medical imaging area. Moreover, the random distribution of various lesions which often vary greatly in size also brings significant challenges to learn discriminative information from high-resolution fundus image. In this paper, we present generative adversarial networks simultaneously equipped with "good" generator and "bad" generator (GBGANs) to make up for the incomplete data distribution provided by limited fundus images. To improve the generative feasibility of generator, we introduce into pre-trained feature extractor to acquire condensed feature for each fundus image in advance. Experimental results on integrated three public iChallenge datasets show that the proposed GBGANs could fully utilize the available fundus images to identify retinopathy with little label cost.

Pose Variation Adaptation for Person Re-Identification

Lei Zhang, Na Jiang, Qishuai Diao, Yue Xu, Zhong Zhou, Wei Wu

Responsive image

Auto-TLDR; Pose Transfer Generative Adversarial Network for Person Re-identification

Slides Poster Similar

Person re-identification (reid) plays an important role in surveillance video analysis, especially for criminal investigation and intelligent security. Although a large number of effective feature or distance metric learning approaches have been proposed, it still suffers from pedestrians appearance variations caused by pose changing. Most of the previous methods address this problem by learning a pose-invariant descriptor subspace. In this paper, we propose a pose variation adaptation method for person reid in the view of data augmentation. It can reduce the probability of deep learning network over-fitting. Specifically, we introduce a pose transfer generative adversarial network with a similarity measurement constraint. With the learned pose transfer model, training images can be pose-transferred to any given poses, and along with the original images, form a augmented training dataset. It increases data diversity against over-fitting. In contrast to previous GAN-based methods, we consider the influence of pose variations on similarity measure to generate more realistic and shaper samples for person reid. Besides, we optimize hard example mining to introduce a novel manner of samples (pose-transferred images) used with the learned pose transfer model. It focuses on the inferior samples which are caused by pose variations to increase the number of effective hard examples for learning discriminative features and improve the generalization ability. We extensively conduct comparative evaluations to demonstrate the advantages and superiority of our proposed method over the state-of-the-art approaches on Market-1501 and DukeMTMC-reID, the rank-1 accuracy is 96.1% for Market-1501 and 92.0% for DukeMTMC-reID.

Augmented Cyclic Consistency Regularization for Unpaired Image-To-Image Translation

Takehiko Ohkawa, Naoto Inoue, Hirokatsu Kataoka, Nakamasa Inoue

Responsive image

Auto-TLDR; Augmented Cyclic Consistency Regularization for Unpaired Image-to-Image Translation

Slides Poster Similar

Unpaired image-to-image (I2I) translation has received considerable attention in pattern recognition and computer vision because of recent advancements in generative adversarial networks (GANs). However, due to the lack of explicit supervision, unpaired I2I models often fail to generate realistic images, especially in challenging datasets with different backgrounds and poses. Hence, stabilization is indispensable for real-world applications and GANs. Herein, we propose Augmented Cyclic Consistency Regularization (ACCR), a novel regularization method for unpaired I2I translation. Our main idea is to enforce consistency regularization originating from semi-supervised learning on the discriminators leveraging real, fake, reconstructed, and augmented samples. We regularize the discriminators to output similar predictions when fed pairs of original and perturbed images. We qualitatively clarify the generation property between unpaired I2I models and standard GANs, and explain why consistency regularization on fake and reconstructed samples works well. Quantitatively, our method outperforms the consistency regularized GAN (CR-GAN) in real-world translations and demonstrates efficacy against several data augmentation variants and cycle-consistent constraints.

GAN-Based Gaussian Mixture Model Responsibility Learning

Wanming Huang, Yi Da Xu, Shuai Jiang, Xuan Liang, Ian Oppermann

Responsive image

Auto-TLDR; Posterior Consistency Module for Gaussian Mixture Model

Slides Poster Similar

Mixture Model (MM) is a probabilistic framework allows us to define dataset containing $K$ different modes. When each of the modes is associated with a Gaussian distribution, we refer to it as Gaussian MM or GMM. Given a data point $x$, a GMM may assume the existence of a random index $k \in \{1, \dots , K \}$ identifying which Gaussian the particular data is associated with. In a traditional GMM paradigm, it is straightforward to compute in closed-form, the conditional likelihood $p(x |k, \theta)$ as well as the responsibility probability $p(k|x, \theta)$ describing the distribution weights for each data. Computing the responsibility allows us to retrieve many important statistics of the overall dataset, including the weights of each of the modes/clusters. Modern large data-sets are often containing multiple unlabelled modes, such as paintings dataset may contain several styles; fashion images containing several unlabelled categories. In its raw representation, the Euclidean distances between the data (e.g., images) do not allow them to form mixtures naturally, nor it's feasible to compute responsibility distribution analytically, making GMM unable to apply. In this paper, we utilize the Generative Adversarial Network (GAN) framework to achieve a plausible alternative method to compute these probabilities. The key insight is that we compute them at the data's latent space $z$ instead of $x$. However, this process of $z \rightarrow x$ is irreversible under GAN which renders the computation of responsibility $p(k|x, \theta)$ infeasible. Our paper proposed a novel method to solve it by using a so-called Posterior Consistency Module (PCM). PCM acts like a GAN, except its Generator $C_{\text{PCM}}$ does not output the data, but instead it outputs a distribution to approximate $p(k|x, \theta)$. The entire network is trained in an ``end-to-end'' fashion. Trough these techniques, it allows us to model the dataset of very complex structure using GMM and subsequently to discover interesting properties of an unsupervised dataset, including its segments, as well as generating new ``out-distribution" data by smooth linear interpolation across any combinations of the modes in a completely unsupervised manner.

Local Facial Attribute Transfer through Inpainting

Ricard Durall, Franz-Josef Pfreundt, Janis Keuper

Responsive image

Auto-TLDR; Attribute Transfer Inpainting Generative Adversarial Network

Slides Poster Similar

The term attribute transfer refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator. In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our Attribute Transfer Inpainting Generative Adversarial Network (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.

GAP: Quantifying the Generative Adversarial Set and Class Feature Applicability of Deep Neural Networks

Edward Collier, Supratik Mukhopadhyay

Responsive image

Auto-TLDR; Approximating Adversarial Learning in Deep Neural Networks Using Set and Class Adversaries

Slides Poster Similar

Recent work in deep neural networks has sought to characterize the nature in which a network learns features and how applicable learnt features are to various problem sets. Deep neural network applicability can be split into three sub-problems; set applicability, class applicability, and instance applicability. In this work we seek to quantify the applicability of features learned during adversarial training, focusing specifically on set and class applicability. We apply techniques for measuring applicability to both generators and discriminators trained on various data sets to quantify applicability and better observe how both a generator and a discriminator, and generative models as a whole, learn features during adversarial training.

Novel View Synthesis from a 6-DoF Pose by Two-Stage Networks

Xiang Guo, Bo Li, Yuchao Dai, Tongxin Zhang, Hui Deng

Responsive image

Auto-TLDR; Novel View Synthesis from a 6-DoF Pose Using Generative Adversarial Network

Slides Poster Similar

Novel view synthesis is a challenging problem in 3D vision and robotics. Different from the existing works, which need the reference images or 3D model, we propose a novel paradigm to this problem. That is, we synthesize the novel view from a 6-DoF pose directly. Although this setting is the most straightforward way, there are few works addressing it. While, our experiments demonstrate that, with a concise CNN, we could get a meaningful parametric model which could reconstruct the correct scenery images only from the 6-DoF pose. To this end, we propose a two-stage learning strategy, which consists of two consecutive CNNs: GenNet and RefineNet. The GenNet generates a coarse image from a camera pose. The RefineNet is a generative adversarial network that could refine the coarse image. In this way, we decouple the geometric relationship mapping and texture detail rendering. Extensive experiments conducted on the public datasets prove the effectiveness of our method. We believe this paradigm is of high research and application value and could be an important direction in novel view synthesis. We will share our code after the acceptance of this work.

Time Series Data Augmentation for Neural Networks by Time Warping with a Discriminative Teacher

Brian Kenji Iwana, Seiichi Uchida

Responsive image

Auto-TLDR; Guided Warping for Time Series Data Augmentation

Slides Poster Similar

Neural networks have become a powerful tool in pattern recognition and part of their success is due to generalization from using large datasets. However, unlike other domains, time series classification datasets are often small. In order to address this problem, we propose a novel time series data augmentation called guided warping. While many data augmentation methods are based on random transformations, guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW, a high-level DTW method based on shape descriptors, to deterministically warp sample patterns. In this way, the time series are mixed by warping the features of a sample pattern to match the time steps of a reference pattern. Furthermore, we introduce a discriminative teacher in order to serve as a directed reference for the guided warping. We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN). The code with an easy to use implementation can be found at https://github.com/uchidalab/time_series_augmentation.

Phase Retrieval Using Conditional Generative Adversarial Networks

Tobias Uelwer, Alexander Oberstraß, Stefan Harmeling

Responsive image

Auto-TLDR; Conditional Generative Adversarial Networks for Phase Retrieval

Slides Poster Similar

In this paper, we propose the application of conditional generative adversarial networks to solve various phase retrieval problems. We show that including knowledge of the measurement process at training time leads to an optimization at test time that is more robust to initialization than existing approaches involving generative models. In addition, conditioning the generator network on the measurements enables us to achieve much more detailed results. We empirically demonstrate that these advantages provide meaningful solutions to the Fourier and the compressive phase retrieval problem and that our method outperforms well-established projection-based methods as well as existing methods that are based on neural networks. Like other deep learning methods, our approach is very robust to noise and can therefore be very useful for real-world applications.

A Close Look at Deep Learning with Small Data

Lorenzo Brigato, Luca Iocchi

Responsive image

Auto-TLDR; Low-Complex Neural Networks for Small Data Conditions

Slides Poster Similar

In this work, we perform a wide variety of experiments with different Deep Learning architectures in small data conditions. We show that model complexity is a critical factor when only a few samples per class are available. Differently from the literature, we improve the state of the art using low complexity models. We show that standard convolutional neural networks with relatively few parameters are effective in this scenario. In many of our experiments, low complexity models outperform state-of-the-art architectures. Moreover, we propose a novel network that uses an unsupervised loss to regularize its training. Such architecture either improves the results either performs comparably well to low capacity networks. Surprisingly, experiments show that the dynamic data augmentation pipeline is not beneficial in this particular domain. Statically augmenting the dataset might be a promising research direction while dropout maintains its role as a good regularizer.

Background Invariance by Adversarial Learning

Ricardo Cruz, Ricardo M. Prates, Eduardo F. Simas Filho, Joaquim F. Pinto Costa, Jaime S. Cardoso

Responsive image

Auto-TLDR; Improving Convolutional Neural Networks for Overhead Power Line Insulators Detection using a Drone

Slides Poster Similar

Convolutional neural networks are shown to be vulnerable to changes in the background. The proposed method is an end-to-end method that augments the training set by introducing new backgrounds during the training process. These backgrounds are created by a generative network that is trained as an adversary to the model. A case study is explored based on overhead power line insulators detection using a drone – a training set is prepared from photographs taken inside a laboratory and then evaluated using photographs that are harder to collect from outside the laboratory. The proposed method improves performance by over 20% for this case study.

Identity-Preserved Face Beauty Transformation with Conditional Generative Adversarial Networks

Zhitong Huang, Ching Y Suen

Responsive image

Auto-TLDR; Identity-preserved face beauty transformation using conditional GANs

Slides Poster Similar

Identity-preserved face beauty transformation aims to change the beauty scale of a face image while preserving the identity of the original face. In our framework of conditional Generative Adversarial Networks (cGANs), the synthesized face produced by the generator would have the same beauty scale indicated by the input condition. Unlike the discrete class labels used in most cGANs, the condition of target beauty scale in our framework is given by a continuous real-valued beauty score in the range [1 to 5], which makes the work challenging. To tackle the problem, we have implemented a triple structure, in which the conditional discriminator is divided into a normal discriminator and a separate face beauty predictor. We have also developed another new structure called Conditioned Instance Normalization to replace the original concatenation used in cGANs, which makes the combination of the input image and condition more effective. Furthermore, Self-Consistency Loss is introduced as a new parameter to improve the stability of training and quality of the generated image. In the end, the objectives of beauty transformation and identity preservation are evaluated by the pretrained face beauty predictor and state-of-the-art face recognition network. The result is encouraging and it also shows that certain facial features could be synthesized by the generator according to the target beauty scale, while preserving the original identity.

High Resolution Face Age Editing

Xu Yao, Gilles Puy, Alasdair Newson, Yann Gousseau, Pierre Hellier

Responsive image

Auto-TLDR; An Encoder-Decoder Architecture for Face Age editing on High Resolution Images

Slides Poster Similar

Face age editing has become a crucial task in film post-production, and is also becoming popular for general purpose photography. Recently, adversarial training has produced some of the most visually impressive results for image manipulation, including the face aging/de-aging task. In spite of considerable progress, current methods often present visual artifacts and can only deal with low-resolution images. In order to achieve aging/de-aging with the high quality and robustness necessary for wider use, these problems need to be addressed. This is the goal of the present work. We present an encoder-decoder architecture for face age editing. The core idea of our network is to encode a face image to age-invariant features, and learn a modulation vector corresponding to a target age. We then combine these two elements to produce a realistic image of the person with the desired target age. Our architecture is greatly simplified with respect to other approaches, and allows for fine-grained age editing on high resolution images in a single unified model. Source codes are available at https://github.com/InterDigitalInc/HRFAE.

UCCTGAN: Unsupervised Clothing Color Transformation Generative Adversarial Network

Shuming Sun, Xiaoqiang Li, Jide Li

Responsive image

Auto-TLDR; An Unsupervised Clothing Color Transformation Generative Adversarial Network

Slides Poster Similar

Clothing color transformation refers to changing the clothes color in an original image to the clothes color in a target image. In this paper, we propose an Unsupervised Clothing Color Transformation Generative Adversarial Network (UCCTGAN) for the task. UCCTGAN adopts the color histogram of a target clothes as color guidance and an improved U-net architecture called AntennaNet is put forward to fuse the extracted color information with the original image. Meanwhile, to accomplish unsupervised learning, the loss function is carefully designed according to color moment, which evaluates the chromatic aberration between the target clothing and the generated clothing. Experimental results show that our network has the ability to generate convincing color transformation results.

Stochastic 3D Rock Reconstruction Using GANs

Sergio Damas, Andrea Valsecchi

Responsive image

Auto-TLDR; Generative Adversarial Neural Networks for 3D-to-3D Reconstruction of Porous Media

Slides Poster Similar

The study of the physical properties of porous media is crucial for petrophysics laboratories. Even though micro computed tomography (CT) could be useful, the appropriate evaluation of flow properties would involve the acquisition of a large number of representative images. That is often unfeasible. Stochastic reconstruction methods aim to generate novel, realistic rock images from a small sample, thus avoiding a large acquisition process. In this contribution, we improve a previous method for 3D-to-3D reconstruction of the structure of porous media by applying generative adversarial neural networks (GANs). We compare several measures of pore morphology between simulated and acquired images. Experiments include Beadpack, Berea sandstone, and Ketton limestone images. Results show that our GANs-based method can reconstruct three-dimensional images of porous media at different scales that are representative of the morphology of the original images. Furthermore, the generation of multiple images is much faster than classical image reconstruction methods.

Quantifying the Use of Domain Randomization

Mohammad Ani, Hector Basevi, Ales Leonardis

Responsive image

Auto-TLDR; Evaluating Domain Randomization for Synthetic Image Generation by directly measuring the difference between realistic and synthetic data distributions

Slides Poster Similar

Synthetic image generation provides the ability to efficiently produce large quantities of labeled data, which addresses both the data volume requirements of state-of-the-art vision systems and the expense of manually labeling data. However, systems trained on synthetic data typically under-perform systems trained on realistic data due to mismatch between the synthetic and realistic data distributions. Domain Randomization (DR) is a method of broadening a synthetic data distribution to encompass a realistic data distribution, and so provide better performance, when the exact characteristics of the realistic data distribution are not known or cannot be simulated. However, there is no consensus in the literature on the best method of performing DR. We propose a novel method of ranking DR methods by directly measuring the difference between realistic and DR data distributions. This avoids the need to measure task-specific performance and the associated expense of training and evaluation. We compare different methods for measuring distribution differences including the Wasserstein, and Fr\'echet Inception distances. We also examine the effect of performing this evaluation directly on images, and on features generated by an image classification backbone. Finally, we show that the ranking generated by our method is reflected in actual task performance.

MBD-GAN: Model-Based Image Deblurring with a Generative Adversarial Network

Li Song, Edmund Y. Lam

Responsive image

Auto-TLDR; Model-Based Deblurring GAN for Inverse Imaging

Slides Poster Similar

This paper presents a methodology to tackle inverse imaging problems by leveraging the synergistic power of imaging model and deep learning. The premise is that while learning-based techniques have quickly become the methods of choice in various applications, they often ignore the prior knowledge embedded in imaging models. Incorporating the latter has the potential to improve the image estimation. Specifically, we first provide a mathematical basis of using generative adversarial network (GAN) in inverse imaging through considering an optimization framework. Then, we develop the specific architecture that connects the generator and discriminator networks with the imaging model. While this technique can be applied to a variety of problems, from image reconstruction to super-resolution, we take image deblurring as the example here, where we show in detail the implementation and experimental results of what we call the model-based deblurring GAN (MBD-GAN).

Adaptive Image Compression Using GAN Based Semantic-Perceptual Residual Compensation

Ruojing Wang, Zitang Sun, Sei-Ichiro Kamata, Weili Chen

Responsive image

Auto-TLDR; Adaptive Image Compression using GAN based Semantic-Perceptual Residual Compensation

Slides Poster Similar

Image compression is a basic task in image processing. In this paper, We present an adaptive image compression algorithm that relies on GAN based semantic-perceptual residual compensation, which is available to offer visually pleasing reconstruction at a low bitrate. Our method adopt an U-shaped encoding and decoding structure accompanied by a well-designed dense residual connection with strip pooling module to improve the original auto-encoder. Besides, we introduce the idea of adversarial learning by introducing a discriminator thus constructed a complete GAN. To improve the coding efficiency, we creatively designed an adaptive semantic-perception residual compensation block based on Grad-CAM algorithm. In the improvement of the quantizer, we embed the method of soft-quantization so as to solve the problem to some extent that back propagation process is irreversible. Simultaneously, we use the latest FLIF lossless compression algorithm and BPG vector compression algorithm to perform deeper compression on the image. More importantly experimental results including PSNR, MS-SSIM demonstrate that the proposed approach outperforms the current state-of-the-art image compression methods.

Adversarial Knowledge Distillation for a Compact Generator

Hideki Tsunashima, Shigeo Morishima, Junji Yamato, Qiu Chen, Hirokatsu Kataoka

Responsive image

Auto-TLDR; Adversarial Knowledge Distillation for Generative Adversarial Nets

Slides Poster Similar

In this paper, we propose memory-efficient Generative Adversarial Nets (GANs) in line with knowledge distillation. Most existing GANs have a shortcoming in terms of the number of model parameters and low processing speed. Here, to tackle the problem, we propose Adversarial Knowledge Distillation for Generative models (AKDG) for highly efficient GANs, in terms of unconditional generation. Using AKDG, model size and processing speed are substantively reduced. Through an adversarial training exercise with a distillation discriminator, a student generator successfully mimics a teacher generator in fewer model layers and fewer parameters and at a higher processing speed. Moreover, our AKDG is network architecture-agnostic. Comparison of AKDG-applied models to vanilla models suggests that it achieves closer scores to a teacher generator and more efficient performance than a baseline method with respect to Inception Score (IS) and Frechet Inception Distance (FID). In CIFAR-10 experiments, improving IS/FID 1.17pt/55.19pt and in LSUN bedroom experiments, improving FID 71.1pt in comparison to the conventional distillation method for GANs.

Learning Disentangled Representations for Identity Preserving Surveillance Face Camouflage

Jingzhi Li, Lutong Han, Hua Zhang, Xiaoguang Han, Jingguo Ge, Xiaochu Cao

Responsive image

Auto-TLDR; Individual Face Privacy under Surveillance Scenario with Multi-task Loss Function

Poster Similar

In this paper, we focus on protecting the person face privacy under the surveillance scenarios, whose goal is to change the visual appearances of faces while keep them to be recognizable by current face recognition systems. This is a challenging problem as that we should retain the most important structures of captured facial images, while alter the salient facial regions to protect personal privacy. To address this problem, we introduce a novel individual face protection model, which can camouflage the face appearance from the perspective of human visual perception and preserve the identity features of faces used for face authentication. To that end, we develop an encoder-decoder network architecture that can separately disentangle the person feature representation into an appearance code and an identity code. Specifically, we first randomly divide the face image into two groups, the source set and the target set, where the source set is used to extract the identity code and the target set provides the appearance code. Then, we recombine the identity and appearance codes to synthesize a new face, which has the same identity with the source subject. Finally, the synthesized faces are used to replace the original face to protect the privacy of individual. Furthermore, our model is trained end-to-end with a multi-task loss function, which can better preserve the identity and stabilize the training loss. Experiments conducted on Cross-Age Celebrity dataset demonstrate the effectiveness of our model and validate our superiority in terms of visual quality and scalability.

Robust Pedestrian Detection in Thermal Imagery Using Synthesized Images

My Kieu, Lorenzo Berlincioni, Leonardo Galteri, Marco Bertini, Andrew Bagdanov, Alberto Del Bimbo

Responsive image

Auto-TLDR; Improving Pedestrian Detection in the thermal domain using Generative Adversarial Network

Slides Poster Similar

In this paper we propose a method for improving pedestrian detection in the thermal domain using two stages: first, a generative data augmentation approach is used, then a domain adaptation method using generated data adapts an RGB pedestrian detector. Our model, based on the Least-Squares Generative Adversarial Network, is trained to synthesize realistic thermal versions of input RGB images which are then used to augment the limited amount of labeled thermal pedestrian images available for training. We apply our generative data augmentation strategy in order to adapt a pretrained YOLOv3 pedestrian detector to detection in the thermal-only domain. Experimental results demonstrate the effectiveness of our approach: using less than 50% of available real thermal training data, and relying on synthesized data generated by our model in the domain adaptation phase, our detector achieves state-of-the-art results on the KAIST Multispectral Pedestrian Detection Benchmark; even if more real thermal data is available adding GAN generated images to the training data results in improved performance, thus showing that these images act as an effective form of data augmentation. To the best of our knowledge, our detector achieves the best single-modality detection results on KAIST with respect to the state-of-the-art.

On the Evaluation of Generative Adversarial Networks by Discriminative Models

Amirsina Torfi, Mohammadreza Beyki, Edward Alan Fox

Responsive image

Auto-TLDR; Domain-agnostic GAN Evaluation with Siamese Neural Networks

Slides Poster Similar

Generative Adversarial Networks (GANs) can accurately model complex multi-dimensional data and generate realistic samples. However, due to their implicit estimation of data distributions, their evaluation is a challenging task. The majority of research efforts associated with tackling this issue were validated by qualitative visual evaluation. Such approaches do not generalize well beyond the image domain. Since many of those evaluation metrics are proposed and bound to the vision domain, they are difficult to apply to other domains. Quantitative measures are necessary to better guide the training and comparison of different GANs models. In this work, we leverage Siamese neural networks to propose a domain-agnostic evaluation metric: (1) with a qualitative evaluation that is consistent with human evaluation, (2) that is robust relative to common GAN issues such as mode dropping and invention, and (3) does not require any pretrained classifier. The empirical results in this paper demonstrate the superiority of this method compared to the popular Inception Score and are competitive with the FID score.

SATGAN: Augmenting Age Biased Dataset for Cross-Age Face Recognition

Wenshuang Liu, Wenting Chen, Yuanlue Zhu, Linlin Shen

Responsive image

Auto-TLDR; SATGAN: Stable Age Translation GAN for Cross-Age Face Recognition

Slides Poster Similar

In this paper, we propose a Stable Age Translation GAN (SATGAN) to generate fake face images at different ages to augment age biased face datasets for Cross-Age Face Recognition (CAFR) . The proposed SATGAN consists of both generator and discriminator. As a part of the generator, a novel Mask Attention Module (MAM) is introduced to make the generator focus on the face area. In addition, the generator employs a Uniform Distribution Discriminator (UDD) to supervise the learning of latent feature map and enforce the uniform distribution. Besides, the discriminator employs a Feature Separation Module (FSM) to disentangle identity information from the age information. The quantitative and qualitative evaluations on Morph dataset prove that SATGAN achieves much better performance than existing methods. The face recognition model trained using dataset (VGGFace2 and MS-Celeb-1M) augmented using our SATGAN achieves better accuracy on cross age dataset like Cross-Age LFW and AgeDB-30.

Thermal Image Enhancement Using Generative Adversarial Network for Pedestrian Detection

Mohamed Amine Marnissi, Hajer Fradi, Anis Sahbani, Najoua Essoukri Ben Amara

Responsive image

Auto-TLDR; Improving Visual Quality of Infrared Images for Pedestrian Detection Using Generative Adversarial Network

Slides Poster Similar

Infrared imaging has recently played an important role in a wide range of applications including surveillance, robotics and night vision. However, infrared cameras often suffer from some limitations, essentially about low-contrast and blurred details. These problems contribute to the loss of observation of target objects in infrared images, which could limit the feasibility of different infrared imaging applications. In this paper, we mainly focus on the problem of pedestrian detection on thermal images. Particularly, we emphasis the need for enhancing the visual quality of images beforehand performing the detection step. % to ensure effective results. To address that, we propose a novel thermal enhancement architecture based on Generative Adversarial Network, and composed of two modules contrast enhancement and denoising modules with a post-processing step for edge restoration in order to improve the overall quality. The effectiveness of the proposed architecture is assessed by means of visual quality metrics and better results are obtained compared to the original thermal images and to the obtained results by other existing enhancement methods. These results have been conduced on a subset of KAIST dataset. Using the same dataset, the impact of the proposed enhancement architecture has been demonstrated on the detection results by obtaining better performance with a significant margin using YOLOv3 detector.

A NoGAN Approach for Image and Video Restoration and Compression Artifact Removal

Mameli Filippo, Marco Bertini, Leonardo Galteri, Alberto Del Bimbo

Responsive image

Auto-TLDR; Deep Neural Network for Image and Video Compression Artifact Removal and Restoration

Poster Similar

Lossy image and video compression algorithms introduce several different types of visual artifacts that reduce the visual quality of the compressed media, and the higher the compression rate the higher is the strength of these artifacts. In this work, we describe an approach for visual quality improvement of compressed images and videos to be performed at presentation time, so to obtain the benefits of fast data transfer and reduced data storage, while enjoying a visual quality that could be obtained only reducing the compression rate. To obtain this result we propose to use a deep neural network trained using the NoGAN approach, adapting the popular DeOldify architecture used for colorization. We show how the proposed method can be applied both to image and video compression artifact removal and restoration.

Position-Aware and Symmetry Enhanced GAN for Radial Distortion Correction

Yongjie Shi, Xin Tong, Jingsi Wen, He Zhao, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Generative Adversarial Network for Radial Distorted Image Correction

Slides Poster Similar

This paper presents a novel method based on the generative adversarial network for radial distortion correction. Instead of generating a corrected image, our generator predicts a pixel flow map to measure the pixel offset between the distorted and corrected image. The quality of the generated pixel flow map and the warped image are judged by the discriminator. As texture far away from the image center has strong distortion, we develop an Adaptive Inverted Foveal layer which can transform the deformation to the intensity of the image to exploit this property. Rotation symmetry enhanced convolution kernels are applied to extract geometric features of different orientations explicitly. These learned features are recalibrated using the Squeeze-and-Excitation block to assign different weights for different directions. Moreover, we construct a first real-world radial distorted image dataset RD600 annotated with ground truth to evaluate our proposed method. We conduct extensive experiments to validate the effectiveness of each part of our framework. The further experiment shows our approach outperforms previous methods in both synthetic and real-world datasets quantitatively and qualitatively.

Mask-Based Style-Controlled Image Synthesis Using a Mask Style Encoder

Jaehyeong Cho, Wataru Shimoda, Keiji Yanai

Responsive image

Auto-TLDR; Style-controlled Image Synthesis from Semantic Segmentation masks using GANs

Slides Poster Similar

In recent years, the advances in Generative Adversarial Networks (GANs) have shown impressive results for image generation and translation tasks. In particular, the image-to-image translation is a method of learning mapping from a source domain to a target domain and synthesizing an image. Image-to-image translation can be applied to a variety of tasks, making it possible to quickly and easily synthesize realistic images from semantic segmentation masks. However, in the existing image-to-image translation method, there is a limitation on controlling the style of the translated image, and it is not easy to synthesize an image by controlling the style of each mask element in detail. Therefore, we propose an image synthesis method that controls the style of each element by improving the existing image-to-image translation method. In the proposed method, we implement a style encoder that extracts style features for each mask element. The extracted style features are concatenated to the semantic mask in the normalization layer, and used the style-controlled image synthesis of each mask element. In experiments, we train style-controlled images synthesis using the datasets consisting of semantic segmentation masks and real images. The results show that the proposed method has excellent performance for style-controlled images synthesis for each element.

Generating Private Data Surrogates for Vision Related Tasks

Ryan Webster, Julien Rabin, Loic Simon, Frederic Jurie

Responsive image

Auto-TLDR; Generative Adversarial Networks for Membership Inference Attacks

Slides Poster Similar

With the widespread application of deep networks in industry, membership inference attacks, i.e. the ability to discern training data from a model, become more and more problematic for data privacy. Recent work suggests that generative networks may be robust against membership attacks. In this work, we build on this observation, offering a general-purpose solution to the membership privacy problem. As the primary contribution, we demonstrate how to construct surrogate datasets, using images from GAN generators, labelled with a classifier trained on the private dataset. Next, we show this surrogate data can further be used for a variety of downstream tasks (here classification and regression), while being resistant to membership attacks. We study a variety of different GANs proposed in the literature, concluding that higher quality GANs result in better surrogate data with respect to the task at hand.

Hierarchical Mixtures of Generators for Adversarial Learning

Alper Ahmetoğlu, Ethem Alpaydin

Responsive image

Auto-TLDR; Hierarchical Mixture of Generative Adversarial Networks

Slides Similar

Generative adversarial networks (GANs) are deep neural networks that allow us to sample from an arbitrary probability distribution without explicitly estimating the distri- bution. There is a generator that takes a latent vector as input and transforms it into a valid sample from the distribution. There is also a discriminator that is trained to discriminate such fake samples from true samples of the distribution; at the same time, the generator is trained to generate fakes that the discriminator cannot tell apart from the true samples. Instead of learning a global generator, a recent approach involves training multiple generators each responsible from one part of the distribution. In this work, we review such approaches and propose the hierarchical mixture of generators, inspired from the hierarchical mixture of experts model, that learns a tree structure implementing a hierarchical clustering with soft splits in the decision nodes and local generators in the leaves. Since the generators are combined softly, the whole model is continuous and can be trained using gradient-based optimization, just like the original GAN model. Our experiments on five image data sets, namely, MNIST, FashionMNIST, UTZap50K, Oxford Flowers, and CelebA, show that our proposed model generates samples of high quality and diversity in terms of popular GAN evaluation metrics. The learned hierarchical structure also leads to knowledge extraction.

Continuous Learning of Face Attribute Synthesis

Ning Xin, Shaohui Xu, Fangzhe Nan, Xiaoli Dong, Weijun Li, Yuanzhou Yao

Responsive image

Auto-TLDR; Continuous Learning for Face Attribute Synthesis

Slides Poster Similar

The generative adversarial network (GAN) exhibits great superiority in the face attribute synthesis task. However, existing methods have very limited effects on the expansion of new attributes. To overcome the limitations of a single network in new attribute synthesis, a continuous learning method for face attribute synthesis is proposed in this work. First, the feature vector of the input image is extracted and attribute direction regression is performed in the feature space to obtain the axes of different attributes. The feature vector is then linearly guided along the axis so that images with target attributes can be synthesized by the decoder. Finally, to make the network capable of continuous learning, the orthogonal direction modification module is used to extend the newly-added attributes. Experimental results show that the proposed method can endow a single network with the ability to learn attributes continuously, and, as compared to those produced by the current state-of-the-art methods, the synthetic attributes have higher accuracy.

Multi-Modal Deep Clustering: Unsupervised Partitioning of Images

Guy Shiran, Daphna Weinshall

Responsive image

Auto-TLDR; Multi-Modal Deep Clustering for Unlabeled Images

Slides Poster Similar

The clustering of unlabeled raw images is a daunting task, which has recently been approached with some success by deep learning methods. Here we propose an unsupervised clustering framework, which learns a deep neural network in an end-to-end fashion, providing direct cluster assignments of images without additional processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its image embeddings with target points sampled from a Gaussian Mixture Model distribution. The cluster assignments are then determined by mixture component association of image embeddings. Simultaneously, the same deep network is trained to solve an additional self-supervised task. This pushes the network to learn more meaningful image representations and stabilizes the training. Experimental results show that MMDC achieves or exceeds state-of-the-art performance on four challenging benchmarks. On natural image datasets we improve on previous results with significant margins of up to 11% absolute accuracy points, yielding an accuracy of 70% on CIFAR-10 and 61% on STL-10.

Can Data Placement Be Effective for Neural Networks Classification Tasks? Introducing the Orthogonal Loss

Brais Cancela, Veronica Bolon-Canedo, Amparo Alonso-Betanzos

Responsive image

Auto-TLDR; Spatial Placement for Neural Network Training Loss Functions

Slides Poster Similar

Traditionally, a Neural Network classification training loss function follows the same principle: minimizing the distance between samples that belong to the same class, while maximizing the distance to the other classes. There are no restrictions on the spatial placement of deep features (last layer input). This paper addresses this issue when dealing with Neural Networks, providing a set of loss functions that are able to train a classifier by forcing the deep features to be projected over a predefined orthogonal basis. Experimental results shows that these `data placement' functions can overcome the training accuracy provided by the classic cross-entropy loss function.

Detail Fusion GAN: High-Quality Translation for Unpaired Images with GAN-Based Data Augmentation

Ling Li, Yaochen Li, Chuan Wu, Hang Dong, Peilin Jiang, Fei Wang

Responsive image

Auto-TLDR; Data Augmentation with GAN-based Generative Adversarial Network

Slides Poster Similar

Image-to-image translation, a task to learn the mapping relation between two different domains, is a rapid-growing research field in deep learning. Although existing Generative Adversarial Network(GAN)-based methods have achieved decent results in this field, there are still some limitations in generating high-quality images for practical applications (e.g., data augmentation and image inpainting). In this work, we aim to propose a GAN-based network for data augmentation which can generate translated images with more details and less artifacts. The proposed Detail Fusion Generative Adversarial Network(DFGAN) consists of a detail branch, a transfer branch, a filter module, and a reconstruction module. The detail branch is trained by a super-resolution loss and its intermediate features can be used to introduce more details to the transfer branch by the filter module. Extensive evaluations demonstrate that our model generates more satisfactory images against the state-of-the-art approaches for data augmentation.

The Role of Cycle Consistency for Generating Better Human Action Videos from a Single Frame

Runze Li, Bir Bhanu

Responsive image

Auto-TLDR; Generating Videos with Human Action Semantics using Cycle Constraints

Slides Poster Similar

This paper addresses the challenging problem of generating videos with human action semantics. Unlike previous work which predict future frames in a single forward pass, this paper introduces the cycle constraints in both forward and backward passes in the generation of human actions. This is achieved by enforcing the appearance and motion consistency across a sequence of frames generated in the future. The approach consists of two stages. In the first stage, the pose of a human body is generated. In the second stage, an image generator is used to generate future frames by using (a) generated human poses in the future from the first stage, (b) the single observed human pose, and (c) the single corresponding future frame. The experiments are performed on three datasets: Weizmann dataset involving simple human actions, Penn Action dataset and UCF-101 dataset containing complicated human actions, especially in sports. The results from these experiments demonstrate the effectiveness of the proposed approach.

Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN

Tao Wang, Can Zhang, Runwei Ding, Ge Yang

Responsive image

Auto-TLDR; Faster R-CNN for Mobile Phone Surface Defect Detection

Slides Poster Similar

Various surface defects will inevitably occur in the production process of mobile phones, which have a huge impact on the enterprise. Therefore, precise defect detection is of great significance in the production of mobile phones. However, the traditional manual inspection and machine vision inspection have low efficiency and accuracy respectively which cannot meet the rapid production needs of modern enterprises. In this paper, we proposed a mobile phone surface defect (MPSD) detection model based on deep learning, which greatly reduce the requirement of a large dataset and improve detection performance. First, Boundary Equilibrium Generative Adversarial Networks (BEGAN) is used to generate and augment the defect data. Then, based on Faster R-CNN model, Feature Pyramid Network (FPN) and ResNet 101 are combined as feature extraction network to get more small target defect features. Further, replacing the ROI pooling layer with an ROI Align layer reduces the quantization deviation during the pooling process. Finally, we train and evaluate our model on our own dataset. The experimental results indicate that compared with some traditional methods based on handcrafted feature extraction and the traditional Faster R-CNN, the improved Faster R-CNN achieves 99.43% mAP, which is more effective in MPSD defect detection area.