PrivAttNet: Predicting Privacy Risks in Images Using Visual Attention

Chen Zhang, Thivya Kandappu, Vigneshwaran Subbaraju

Responsive image

Auto-TLDR; PrivAttNet: A Visual Attention Based Approach for Privacy Sensitivity in Images

Slides Poster

Visual privacy concerns associated with image sharing is a critical issue that need to be addressed to enable safe and lawful use of online social platforms. Users of social media platforms often suffer from no guidance in sharing sensitive images in public, and often face with social and legal consequences. Given the recent success of visual attention based deep learning methods in measuring abstract phenomena like image memorability, we are motivated to investigate whether visual attention based methods could be useful in measuring psycho-physical phenomena like "privacy sensitivity". In this paper we propose PrivAttNet -- a visual attention based approach, that can be trained end-to-end to estimate the privacy sensitivity of images without explicitly detecting objects and attributes present in the image. We show that our PrivAttNet model outperforms various SOTA and baseline strategies -- a 1.6 fold reduction in $L1-error$ over SOTA and 7%--10% improvement in Spearman-rank correlation between the predicted and ground truth sensitivity scores. Additionally, the attention maps from PrivAttNet are found to be useful in directing the users to the regions that are responsible for generating the privacy risk score.

Similar papers

Privacy Attributes-Aware Message Passing Neural Network for Visual Privacy Attributes Classification

Hanbin Hong, Wentao Bao, Yuan Hong, Yu Kong

Responsive image

Auto-TLDR; Privacy Attributes-Aware Message Passing Neural Network for Visual Privacy Attribute Classification

Slides Poster Similar

Visual Privacy Attribute Classification (VPAC) identifies privacy information leakage via social media images. These images containing privacy attributes such as skin color, face or gender are classified into multiple privacy attribute categories in VPAC. With limited works in this task, current methods often extract features from images and simply classify the extracted feature into multiple privacy attribute classes. The dependencies between privacy attributes, e.g., skin color and face typically co-exist in the same image, are usually ignored in classification, which causes performance degradation in VPAC. In this paper, we propose a novel end-to-end Privacy Attributes-aware Message Passing Neural Network (PA-MPNN) to address VPAC. Privacy attributes are considered as nodes on a graph and an MPNN is introduced to model the privacy attribute dependencies. To generate representative features for privacy attribute nodes, a class-wise encoder-decoder is proposed to learn a latent space for each attribute. An attention mechanism with multiple correlation matrices is also introduced in MPNN to learn the privacy attributes graph automatically. Experimental results on the Privacy Attribute Dataset demonstrate that our framework achieves better performance than state-of-the-art methods on visual privacy attributes classification.

MAGNet: Multi-Region Attention-Assisted Grounding of Natural Language Queries at Phrase Level

Amar Shrestha, Krittaphat Pugdeethosapol, Haowen Fang, Qinru Qiu

Responsive image

Auto-TLDR; MAGNet: A Multi-Region Attention-Aware Grounding Network for Free-form Textual Queries

Slides Poster Similar

Grounding free-form textual queries necessitates an understanding of these textual phrases and its relation to the visual cues to reliably reason about the described locations. Spatial attention networks are known to learn this relationship and focus its gaze on salient objects in the image. Thus, we propose to utilize spatial attention networks for image-level visual-textual fusion preserving local (word) and global (phrase) information to refine region proposals with an in-network Region Proposal Network (RPN) and detect single or multiple regions for a phrase query. We focus only on the phrase query - ground truth pair (referring expression) for a model independent of the constraints of the datasets i.e. additional attributes, context etc. For such referring expression dataset ReferIt game, our Multi- region Attention-assisted Grounding network (MAGNet) achieves over 12% improvement over the state-of-the-art. Without the con- text from image captions and attribute information in Flickr30k Entities, we still achieve competitive results compared to the state- of-the-art.

Question-Agnostic Attention for Visual Question Answering

Moshiur R Farazi, Salman Hameed Khan, Nick Barnes

Responsive image

Auto-TLDR; Question-Agnostic Attention for Visual Question Answering

Slides Poster Similar

Visual Question Answering (VQA) models employ attention mechanisms to discover image locations that are most relevant for answering a specific question. For this purpose, several multimodal fusion strategies have been proposed, ranging from relatively simple operations (e.g., linear sum) to more complex ones (e.g., Block). The resulting multimodal representations define an intermediate feature space for capturing the interplay between visual and semantic features, that is helpful in selectively focusing on image content. In this paper, we propose a question-agnostic attention mechanism that is complementary to the existing question-dependent attention mechanisms. Our proposed model parses object instances to obtain an `object map' and applies this map on the visual features to generate Question-Agnostic Attention (QAA) features. In contrast to question-dependent attention approaches that are learned end-to-end, the proposed QAA does not involve question-specific training, and can be easily included in almost any existing VQA model as a generic light-weight pre-processing step, thereby adding minimal computation overhead for training. Further, when used in complement with the question-dependent attention, the QAA allows the model to focus on the regions containing objects that might have been overlooked by the learned attention representation. Through extensive evaluation on VQAv1, VQAv2 and TDIUC datasets, we show that incorporating complementary QAA allows state-of-the-art VQA models to perform better, and provides significant boost to simplistic VQA models, enabling them to performance on par with highly sophisticated fusion strategies.

Two-Level Attention-Based Fusion Learning for RGB-D Face Recognition

Hardik Uppal, Alireza Sepas-Moghaddam, Michael Greenspan, Ali Etemad

Responsive image

Auto-TLDR; Fused RGB-D Facial Recognition using Attention-Aware Feature Fusion

Slides Poster Similar

With recent advances in RGB-D sensing technologies as well as improvements in machine learning and fusion techniques, RGB-D facial recognition has become an active area of research. A novel attention aware method is proposed to fuse two image modalities, RGB and depth, for enhanced RGB-D facial recognition. The proposed method first extracts features from both modalities using a convolutional feature extractor. These features are then fused using a two layer attention mechanism. The first layer focuses on the fused feature maps generated by the feature extractor, exploiting the relationship between feature maps using LSTM recurrent learning. The second layer focuses on the spatial features of those maps using convolution. The training database is preprocessed and augmented through a set of geometric transformations, and the learning process is further aided using transfer learning from a pure 2D RGB image training process. Comparative evaluations demonstrate that the proposed method outperforms other state-of-the-art approaches, including both traditional and deep neural network-based methods, on the challenging CurtinFaces and IIIT-D RGB-D benchmark databases, achieving classification accuracies over 98.2% and 99.3% respectively. The proposed attention mechanism is also compared with other attention mechanisms, demonstrating more accurate results.

Multi-Label Contrastive Focal Loss for Pedestrian Attribute Recognition

Xiaoqiang Zheng, Zhenxia Yu, Lin Chen, Fan Zhu, Shilong Wang

Responsive image

Auto-TLDR; Multi-label Contrastive Focal Loss for Pedestrian Attribute Recognition

Slides Poster Similar

Pedestrian Attribute Recognition (PAR) has received extensive attention during the past few years. With the advances of deep constitutional neural networks (CNNs), the performance of PAR has been significantly improved. Existing methods tend to acquire attribute-specific features by designing various complex network structures with additional modules. Such additional modules, however, dramatically increase the number of parameters. Meanwhile, the problems of class imbalance and hard attribute retrieving remain underestimated in PAR. In this paper, we explore the optimization mechanism of the training processing to account for these problems and propose a new loss function called Multi-label Contrastive Focal Loss (MCFL). This proposed MCFL emphasizes the hard and minority attributes by using a separated re-weighting mechanism for different positive and negative classes to alleviate the impact of the imbalance. MCFL is also able to enlarge the gaps between the intra-class of multi-label attributes, to force CNNs to extract more subtle discriminative features. We evaluate the proposed MCFL on three large public pedestrian datasets, including RAP, PA-100K, and PETA. The experimental results indicate that the proposed MCFL with the ResNet-50 backbone is able to outperform other state-of-the-art approaches in comparison.

Multi-Stage Attention Based Visual Question Answering

Aakansha Mishra, Ashish Anand, Prithwijit Guha

Responsive image

Auto-TLDR; Alternative Bi-directional Attention for Visual Question Answering

Poster Similar

Recent developments in the field of Visual Question Answering (VQA) have witnessed promising improvements in performance through contributions in attention based networks. Most such approaches have focused on unidirectional attention that leverage over attention from textual domain (question) on visual space. These approaches mostly focused on learning high-quality attention in the visual space. In contrast, this work proposes an alternating bi-directional attention framework. First, a question to image attention helps to learn the robust visual space embedding, and second, an image to question attention helps to improve the question embedding. This attention mechanism is realized in an alternating fashion i.e. question-to-image followed by image-to-question and is repeated for maximizing performance. We believe that this process of alternating attention generation helps both the modalities and leads to better representations for the VQA task. This proposal is benchmark on TDIUC dataset and against state-of-art approaches. Our ablation analysis shows that alternate attention is the key to achieve high performance in VQA.

Classifying Eye-Tracking Data Using Saliency Maps

Shafin Rahman, Sejuti Rahman, Omar Shahid, Md. Tahmeed Abdullah, Jubair Ahmed Sourov

Responsive image

Auto-TLDR; Saliency-based Feature Extraction for Automatic Classification of Eye-tracking Data

Slides Poster Similar

A plethora of research in the literature shows how human eye fixation pattern varies depending on different factors, including genetics, age, social functioning, cognitive functioning, and so on. Analysis of these variations in visual attention has already elicited two potential research avenues: 1) determining the physiological or psychological state of the subject and 2) predicting the tasks associated with the act of viewing from the recorded eye-fixation data. To this end, this paper proposes a visual saliency based novel feature extraction method for automatic and quantitative classification of eye-tracking data, which is applicable to both of the research directions. Instead of directly extracting features from the fixation data, this method employs several well-known computational models of visual attention to predict eye fixation locations as saliency maps. Comparing the saliency amplitudes, similarity and dissimilarity of saliency maps with the corresponding eye fixations maps gives an extra dimension of information which is effectively utilized to generate discriminative features to classify the eye-tracking data. Extensive experimentation using Saliency4ASD [1], Age Prediction [2], and Visual Perceptual Task [3] dataset show that our saliency-based feature can achieve superior performance, outperforming the previous state-of-the-art methods [2],[4], [5] by a considerable margin. Moreover, unlike the existing application-specific solutions, our method demonstrates performance improvement across three distinct problems from the real-life domain: Autism Spectrum Disorder screening, toddler age prediction, and human visual perceptual task classification, providing a general paradigm that utilizes the extra-information inherent in saliency maps for a more accurate classification.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Detective: An Attentive Recurrent Model for Sparse Object Detection

Amine Kechaou, Manuel Martinez, Monica Haurilet, Rainer Stiefelhagen

Responsive image

Auto-TLDR; Detective: An attentive object detector that identifies objects in images in a sequential manner

Slides Poster Similar

In this work, we present Detective – an attentive object detector that identifies objects in images in a sequential manner. Our network is based on an encoder-decoder architecture, where the encoder is a convolutional neural network, and the decoder is a convolutional recurrent neural network coupled with an attention mechanism. At each iteration, our decoder focuses on the relevant parts of the image using an attention mechanism, and then estimates the object’s class and the bounding box coordinates. Current object detection models generate dense predictions and rely on post-processing to remove duplicate predictions. Detective is a sparse object detector that generates a single bounding box per object instance. However, training a sparse object detector is challenging, as it requires the model to reason at the instance level and not just at the class and spatial levels. We propose a training mechanism based on the Hungarian Algorithm and a loss that balances the localization and classification tasks. This allows Detective to achieve promising results on the PASCAL VOC object detection dataset. Our experiments demonstrate that sparse object detection is possible and has a great potential for future developments in applications where the order of the objects to be predicted is of interest.

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan, Pasquale Coscia, Lamberto Ballan

Responsive image

Auto-TLDR; Context-Based Image Annotation with Multiple Semantic Embeddings and Recurrent Neural Networks

Slides Poster Similar

Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images.

Coarse to Fine: Progressive and Multi-Task Learning for Salient Object Detection

Dong-Goo Kang, Sangwoo Park, Joonki Paik

Responsive image

Auto-TLDR; Progressive and mutl-task learning scheme for salient object detection

Slides Poster Similar

Most deep learning-based salient object detection (SOD) methods tried to manipulate the convolution block to effectively capture the context of object. In this paper, we propose a novel method, called progressive and mutl-task learning scheme, to extract the context of object by only manipulating the learning scheme without changing the network architecture. The progressive learning scheme is a method to grow the decoder progressively in the train phase. In other words, starting from easier low-resolution layers, it gradually adds high-resolution layers. Although the progressive learning successfullyl captures the context of object, its output boundary tends to be rough. To solve this problem, we also propose a multi-task learning (MTL) scheme that processes the object saliency map and contour in a single network jointly. The proposed MTL scheme trains the network in an edge-preserved direction through an auxiliary branch that learns contours. The proposed a learning scheme can be combined with other convolution block manipulation methods. Extensive experiments on five datasets show that the proposed method performs best compared with state-of-the-art methods in most cases.

More Correlations Better Performance: Fully Associative Networks for Multi-Label Image Classification

Yaning Li, Liu Yang

Responsive image

Auto-TLDR; Fully Associative Network for Fully Exploiting Correlation Information in Multi-Label Classification

Slides Poster Similar

Recent researches demonstrate that correlation modeling plays a key role in high-performance multi-label classification methods. However, existing methods do not take full advantage of correlation information, especially correlations in feature and label spaces of each image, which limits the performance of correlation-based multi-label classification methods. With more correlations considered, in this study, a Fully Associative Network (FAN) is proposed for fully exploiting correlation information, which involves both visual feature and label correlations. Specifically, FAN introduces a robust covariance pooling to summarize convolution features as global image representation for capturing feature correlation in the multi-label task. Moreover, it constructs an effective label correlation matrix based on a re-weighted scheme, which is fed into a graph convolution network for capturing label correlation. Then, correlation between covariance representations (i.e., feature correlation ) and the outputs of GCN (i.e., label correlation) are modeled for final prediction. Experimental results on two datasets illustrate the effectiveness and efficiency of our proposed FAN compared with state-of-the-art methods.

Global Feature Aggregation for Accident Anticipation

Mishal Fatima, Umar Karim Khan, Chong Min Kyung

Responsive image

Auto-TLDR; Feature Aggregation for Predicting Accidents in Video Sequences

Slides Similar

Anticipation of accidents ahead of time in autonomous and non-autonomous vehicles aids in accident avoidance. In order to recognize abnormal events such as traffic accidents in a video sequence, it is important that the network takes into account interactions of objects in a given frame. We propose a novel Feature Aggregation (FA) block that refines each object's features by computing a weighted sum of the features of all objects in a frame. We use FA block along with Long Short Term Memory (LSTM) network to anticipate accidents in the video sequences. We report mean Average Precision (mAP) and Average Time-to-Accident (ATTA) on Street Accident (SA) dataset. Our proposed method achieves the highest score for risk anticipation by predicting accidents 0.32 sec and 0.75 sec earlier compared to the best results with Adaptive Loss and dynamic parameter prediction based methods respectively.

Multi-Attribute Learning with Highly Imbalanced Data

Lady Viviana Beltran Beltran, Mickaël Coustaty, Nicholas Journet, Juan C. Caicedo, Antoine Doucet

Responsive image

Auto-TLDR; Data Imbalance in Multi-Attribute Deep Learning Models: Adaptation to face each one of the problems derived from imbalance

Slides Poster Similar

Data is one of the most important keys for success when studying a simple or a complex phenomenon. With the use of deep-learning exploding and its democratization, non-computer science experts may struggle to use highly complex deep learning architectures, even when straightforward models offer them suitable performances. In this article, we study the specific and common problem of data imbalance in real databases as most of the bad performance problems are due to the data itself. We review two points: first, when the data contains different levels of imbalance. Classical imbalanced learning strategies cannot be directly applied when using multi-attribute deep learning models, i.e., multi-task and multi-label architectures. Therefore, one of our contributions is our proposed adaptations to face each one of the problems derived from imbalance. Second, we demonstrate that with little to no imbalance, straightforward deep learning models work well. However, for non-experts, these models can be seen as black boxes, where all the effort is put in pre-processing the data. To simplify the problem, we performed the classification task ignoring information that is costly to extract, such as part localization which is widely used in the state of the art of attribute classification. We make use of a widely known attribute database, CUB-200-2011 - CUB as our main use case due to its deeply imbalanced nature, along with two better structured databases: celebA and Awa2. All of them contain multi-attribute annotations. The results of highly fine-grained attribute learning over CUB demonstrate that in the presence of imbalance, by using our proposed strategies is possible to have competitive results against the state of the art, while taking advantage of multi-attribute deep learning models. We also report results for two better-structured databases over which our models over-perform the state of the art.

Integrating Historical States and Co-Attention Mechanism for Visual Dialog

Tianling Jiang, Yi Ji, Chunping Liu

Responsive image

Auto-TLDR; Integrating Historical States and Co-attention for Visual Dialog

Slides Poster Similar

Visual dialog is a typical multi-modal task which involves both vision and language. Nowadays, it faces two major difficulties. In this paper, we propose Integrating Historical States and Co-attention (HSCA) for visual dialog to solve them. It includes two main modules, Co-ATT and MATCH. Specifically, the main purpose of the Co-ATT module is to guide the image with questions and answers in the early stage to get more specific objects. It tackles the temporal sequence issue in historical information which may influence the precise answer for multi-round questions. The MATCH module is, based on a question with pronouns, to retrieve the best matching historical information block. It overcomes the visual reference problem which requires to solve pronouns referring to unknowns in the text message and then to locate the objects in the given image. We quantitatively and qualitatively evaluate our model on VisDial v1.0, at the same time, ablation studies are carried out. The experimental results demonstrate that HSCA outperforms the state-of-the-art methods in many aspects.

FastSal: A Computationally Efficient Network for Visual Saliency Prediction

Feiyan Hu, Kevin Mcguinness

Responsive image

Auto-TLDR; MobileNetV2: A Convolutional Neural Network for Saliency Prediction

Slides Poster Similar

This paper focuses on the problem of visual saliency prediction, predicting regions of an image that tend to attract human visual attention, under a constrained computational budget. We modify and test various recent efficient convolutional neural network architectures like EfficientNet and MobileNetV2 and compare them with existing state-of-the-art saliency models such as SalGAN and DeepGaze II both in terms of standard accuracy metrics like AUC and NSS, and in terms of the computational complexity and model size. We find that MobileNetV2 makes an excellent backbone for a visual saliency model and can be effective even without a complex decoder. We also show that knowledge transfer from a more computationally expensive model like DeepGaze II can be achieved via pseudo-labelling an unlabelled dataset, and that this approach gives result on-par with many state-of-the-art algorithms with a fraction of the computational cost and model size.

Relatable Clothing: Detecting Visual Relationships between People and Clothing

Thomas Truong, Svetlana Yanushkevich

Responsive image

Auto-TLDR; Relatable Clothing Dataset for ``worn'' and ``unworn'' Classification

Slides Poster Similar

Detecting visual relationships between people and clothing in an image has been a relatively unexplored problem in the field of computer vision and biometrics. The lack readily available public dataset for ``worn'' and ``unworn'' classification has slowed the development of solutions for this problem. We present the release of the Relatable Clothing Dataset which contains 35287 person-clothing pairs and segmentation masks for the development of ``worn'' and ``unworn'' classification models. Additionally, we propose a novel soft attention unit for performing ``worn'' and ``unworn'' classification using deep neural networks. The proposed soft attention models have an accuracy of upward 98.55% +/- 0.35% on the Relatable Clothing Dataset and demonstrate high generalizable, allowing us to classify unseen articles of clothing such as high visibility vests as ``worn'' or ``unworn''.

Utilising Visual Attention Cues for Vehicle Detection and Tracking

Feiyan Hu, Venkatesh Gurram Munirathnam, Noel E O'Connor, Alan Smeaton, Suzanne Little

Responsive image

Auto-TLDR; Visual Attention for Object Detection and Tracking in Driver-Assistance Systems

Slides Poster Similar

Advanced Driver-Assistance Systems (ADAS) have been attracting attention from many researchers. Vision based sensors are the closest way to emulate human driver visual behavior while driving. In this paper, we explore possible ways to use visual attention (saliency) for object detection and tracking. We investigate: 1) How a visual attention map such as a subjectness attention or saliency map and an objectness attention map can facilitate region proposal generation in a 2-stage object detector; 2) How a visual attention map can be used for tracking multiple objects. We propose a neural network that can simultaneously detect objects as and generate objectness and subjectness maps to save computational power. We further exploit the visual attention map during tracking using a sequential Monte Carlo probability hypothesis density (PHD) filter. The experiments are conducted on KITTI and DETRAC datasets. The use of visual attention and hierarchical features has shown a considerable improvement of≈8% in object detection which effectively increased tracking performance by≈4% on KITTI dataset.

Multi-Scale Relational Reasoning with Regional Attention for Visual Question Answering

Yuntao Ma, Yirui Wu, Tong Lu

Responsive image

Auto-TLDR; Question-Guided Relational Reasoning for Visual Question Answering

Slides Poster Similar

The main challenges of visual question answering (VQA) lie in modeling an alignment between image and question to find out informative regions in images that related to the question and reasoning relations among visual objects according to the question. In this paper, we propose question-guided relational reasoning in multi-scales for visual question answering, in which each region is enhanced by regional attention. Specifically, we present regional attention, which consists of a soft attention and a hard attention, to pick up informative regions of the image according to informative evaluations implemented by question-guided soft attention. And combinations of different informative regions are then concatenated with question embedding in different scales to capture relational information. Relational reasoning can extract question-based relational information between regions, and the multi-scale mechanism gives it the ability to analyze relationships in diversity and sensitivity to numbers by modeling scales of relationships. We conduct experiments to show that our proposed architecture is effective and achieves a new state-of-the-art on VQA v2.

Trajectory-User Link with Attention Recurrent Networks

Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, 塘文 钱, Zezhi Shao

Responsive image

Auto-TLDR; TULAR: Trajectory-User Link with Attention Recurrent Neural Networks

Slides Poster Similar

The prevalent adoptions of GPS-enabled devices have witnessed an explosion of various location-based services which produces a huge amount of trajectories monitoring the individuals' movements. In this paper, we tackle Trajectory-User Link (TUL) problem, which identifies humans' movement patterns and links trajectories to the users who generated them. Existing solutions on TUL problem employ recurrent neural networks and variational autoencoder methods, which face the bottlenecks in the case of excessively long trajectories and fragmentary users' movements. However, these are common characteristics of trajectory data in reality, leading to performance degradation of the existing models. In this paper, we propose an end-to-end attention recurrent neural learning framework, called TULAR (Trajectory-User Link with Attention Recurrent Networks), which focus on selected parts of the source trajectories when linking. TULAR introduce the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and recurrent neural networks, by which to reckon the weight of parts of source trajectory. Further, we employ three attention scores for the weight measurements. Experiments are conducted on two real world datasets and compared with several existing methods, and the results show that TULAR yields a new state-of-the-art performance. Source code is public available at GitHub: https://github.com/taos123/TULAR.

CardioGAN: An Attention-Based Generative Adversarial Network for Generation of Electrocardiograms

Subhrajyoti Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; CardioGAN: Generative Adversarial Network for Synthetic Electrocardiogram Signals

Slides Poster Similar

Electrocardiogram (ECG) signal is studied to obtain crucial information about the condition of a patient's heart. Machine learning based automated medical diagnostic systems that may help to evaluate the condition of the heart from this signal are required to be trained using large volumes of labelled training samples and the same may increase the chance of compromising with the patients' privacy. To solve this issue, generation of synthetic electrocardiogram signals by learning only from the general distributions of the available real training samples have been attempted in the literature. However, these studies did not pay necessary attention to the specific vital details of these signals, such as the P wave, the QRS complex, and the T wave. This shortcoming often results in the generation of unrealistic synthetic signals, such as a signal which does not contain one or more of the above components. In the present study, a novel deep generative architecture, termed as CardioGAN, based on generative adversarial network and powered by the effective attention mechanism has been designed which is capable of learning the intricate inter-dependencies among the various parts of real samples leading to the generation of more realistic electrocardiogram signals. Also, it helps in reducing the risk of breaching the privacy of patients. Extensive experimentation performed by us establishes that the proposed method achieves a better performance in generating synthetic electrocardiogram signals in comparison to the existing methods. The source code will be made available on github.

Learning Natural Thresholds for Image Ranking

Somayeh Keshavarz, Quang Nhat Tran, Richard Souvenir

Responsive image

Auto-TLDR; Image Representation Learning and Label Discretization for Natural Image Ranking

Slides Poster Similar

For image ranking tasks with naturally continuous output, such as age and scenicness estimation, it is common to discretize the label range and apply methods from (ordered) classification analysis. In this paper, we propose a data-driven approach for simultaneous representation learning and label discretization. Compared to arbitrarily selecting thresholds, we seek to learn thresholds and image representations by minimizing a novel loss function in an end-to-end model. We demonstrate our combined approach on a variety of image ranking tasks and demonstrate that it outperforms task-specific methods. Additionally, our learned partitioning scheme can be transferred to improve methods that rely on discretization.

Recurrent Deep Attention Network for Person Re-Identification

Changhao Wang, Jun Zhou, Xianfei Duan, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Recurrent Deep Attention Network for Person Re-identification

Slides Poster Similar

Person re-identification (re-id) is an important task in video surveillance. It is challenging due to the appearance of person varying a wide range acrossnon-overlapping camera views. Recent years, attention-based models are introduced to learn discriminative representation. In this paper, we consider the attention selection in a natural way as like human moving attention on different parts of the visual field for person re-id. In concrete, we propose a Recurrent Deep Attention Network (RDAN) with an attention selection mechanism based on reinforcement learning. The RDAN aims to adaptively observe the identity-sensitive regions to build up the representation of individuals step by step. Extensive experiments on three person re-id benchmarks Market-1501, DukeMTMC-reID and CUHK03-NP demonstrate the proposed method can achieve competitive performance.

Enhanced User Interest and Expertise Modeling for Expert Recommendation

Tongze He, Caili Guo, Yunfei Chu

Responsive image

Auto-TLDR; A Unified Framework for Expert Recommendation in Community Question Answering

Slides Poster Similar

The rapid development of Community Question Answering (CQA) satisfies users' request for professional and personal knowledge. In CQA, one key issue is to recommend users with high expertise and willingness to answer the given questions, namely expert recommendation. However, most of existing methods for expert recommendation ignore some key information, such as time information and historical feedback information, degrading the performance. On the one hand, users' interest are changing over time. It is biased if we don't consider the dynamics. On the other hand, feedback information is critical to estimate users' expertise. To solve these problems, we propose a unified framework for expert recommendation to exploit user interest and expertise more precisely. Considering the inconsistency between them, we propose to learn their embeddings separately. We leverage Long Short-Term Memory (LSTM) to model user's short-term interest and combine it with long-term interest. The user expertise is learned by the designed user expertise network, which explicitly models feedback on users' historical behavior. The extensive experiments on a large-scale dataset from a real-world CQA site demonstrate the superior performance of our method than state-of-the-art solutions to the problem.

From Early Biological Models to CNNs: Do They Look Where Humans Look?

Marinella Iole Cadoni, Andrea Lagorio, Enrico Grosso, Jia Huei Tan, Chee Seng Chan

Responsive image

Auto-TLDR; Comparing Neural Networks to Human Fixations for Semantic Learning

Slides Poster Similar

Early hierarchical computational visual models as well as recent deep neural networks have been inspired by the functioning of the primate visual cortex system. Although much effort has been made to dissect neural networks to visualize the features they learn at the individual units, the scope of the visualizations has been limited to a categorization of the features in terms of their semantic level. Considering the ability humans have to select high semantic level regions of a scene, the question whether neural networks can match this ability, and if similarity with humans attention is correlated with neural networks performance naturally arise. To address this question we propose a pipeline to select and compare sets of feature points that maximally activate individual networks units to human fixations. We extract features from a variety of neural networks, from early hierarchical models such as HMAX up to recent deep convolutional neural netwoks such as Densnet, to compare them to human fixations. Experiments over the ETD database show that human fixations correlate with CNNs features from deep layers significantly better than with random sets of points, while they do not with features extracted from the first layers of CNNs, nor with the HMAX features, which seem to have low semantic level compared with the features that respond to the automatically learned filters of CNNs. It also turns out that there is a correlation between CNN’s human similarity and classification performance.

How Important Are Faces for Person Re-Identification?

Julia Dietlmeier, Joseph Antony, Kevin Mcguinness, Noel E O'Connor

Responsive image

Auto-TLDR; Anonymization of Person Re-identification Datasets with Face Detection and Blurring

Slides Poster Similar

This paper investigates the dependence of existing state-of-the-art person re-identification models on the presence and visibility of human faces. We apply a face detection and blurring algorithm to create anonymized versions of several popular person re-identification datasets including Market1501, DukeMTMC-reID, CUHK03, Viper, and Airport. Using a cross-section of existing state-of-the-art models that range in accuracy and computational efficiency, we evaluate the effect of this anonymization on re-identification performance using standard metrics. Perhaps surprisingly, the effect on mAP is very small, and accuracy is recovered by simply training on the anonymized versions of the data rather than the original data. These findings are consistent across multiple models and datasets. These results indicate that datasets can be safely anonymized by blurring faces without significantly impacting the performance of person re-identification systems, and may allow for the release of new richer re-identification datasets where previously there were privacy or data protection concerns.

Learning Disentangled Representations for Identity Preserving Surveillance Face Camouflage

Jingzhi Li, Lutong Han, Hua Zhang, Xiaoguang Han, Jingguo Ge, Xiaochu Cao

Responsive image

Auto-TLDR; Individual Face Privacy under Surveillance Scenario with Multi-task Loss Function

Poster Similar

In this paper, we focus on protecting the person face privacy under the surveillance scenarios, whose goal is to change the visual appearances of faces while keep them to be recognizable by current face recognition systems. This is a challenging problem as that we should retain the most important structures of captured facial images, while alter the salient facial regions to protect personal privacy. To address this problem, we introduce a novel individual face protection model, which can camouflage the face appearance from the perspective of human visual perception and preserve the identity features of faces used for face authentication. To that end, we develop an encoder-decoder network architecture that can separately disentangle the person feature representation into an appearance code and an identity code. Specifically, we first randomly divide the face image into two groups, the source set and the target set, where the source set is used to extract the identity code and the target set provides the appearance code. Then, we recombine the identity and appearance codes to synthesize a new face, which has the same identity with the source subject. Finally, the synthesized faces are used to replace the original face to protect the privacy of individual. Furthermore, our model is trained end-to-end with a multi-task loss function, which can better preserve the identity and stabilize the training loss. Experiments conducted on Cross-Age Celebrity dataset demonstrate the effectiveness of our model and validate our superiority in terms of visual quality and scalability.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

Context Visual Information-Based Deliberation Network for Video Captioning

Min Lu, Xueyong Li, Caihua Liu

Responsive image

Auto-TLDR; Context visual information-based deliberation network for video captioning

Slides Poster Similar

Video captioning is to automatically and accurately generate a textual description for a video. The typical methods following the encoder-decoder architecture directly utilized hidden states to predict words. Nevertheless, these methods did not amend the inaccurate hidden states before feeding those states into word prediction. This led to a cascade of errors on generating word by word. In this paper, the context visual information-based deliberation network is proposed, abbreviated as CVI-DelNet. Its key idea is to introduce the deliberator into the encoder-decoder framework. The encoder-decoder firstly generates a raw hidden state sequence. Unlike the existing methods, the raw hidden state is no more directly used for word prediction but is fed into the deliberator to generate the refined hidden state. The words are then predicted according to the refined hidden states and the contextual visual features. Results on two datasets shows that the proposed method significantly outperforms the baselines.

Learning Emotional Blinded Face Representations

Alejandro Peña Almansa, Julian Fierrez, Agata Lapedriza, Aythami Morales

Responsive image

Auto-TLDR; Blind Face Representations for Emotion Recognition

Slides Poster Similar

This work proposes two new face representations that are blind to the expressions associated to emotional responses. This work is in part motivated by new international regulations for personal data protection, which force data controllers to protect any kind of sensitive information involved in automatic processes. The advances in affective computing have contributed to improve human-machine interfaces, but at the same time, the capacity to monitorize emotional responses trigger potential risks for humans, both in terms of fairness and privacy. We propose two different methods to learn these facial expression blinded features. We show that it is possible to eliminate information related to emotion recognition tasks, while the performance of subject verification, gender recognition, and ethnicity classification are just slightly affected. We also present an application to train fairer classifiers over a protected facial expression attribute. The results demonstrate that it is possible to reduce emotional information in the face representation while retaining competitive performance in other face-based artificial intelligence tasks.

Attentive Hybrid Feature Based a Two-Step Fusion for Facial Expression Recognition

Jun Weng, Yang Yang, Zichang Tan, Zhen Lei

Responsive image

Auto-TLDR; Attentive Hybrid Architecture for Facial Expression Recognition

Slides Poster Similar

Facial expression recognition is inherently a challenging task, especially for the in-the-wild images with various occlusions and large pose variations, which may lead to the loss of some crucial information. To address it, in this paper, we propose an attentive hybrid architecture (AHA) which learns global, local and integrated features based on different face regions. Compared with one type of feature, our extracted features own complementary information and can reduce the loss of crucial information. Specifically, AHA contains three branches, where all sub-networks in those branches employ the attention mechanism to further localize the interested pixels/regions. Moreover, we propose a two-step fusion strategy based on LSTM to deeply explore the hidden correlations among different face regions. Extensive experiments on four popular expression databases (i.e., CK+, FER-2013, SFEW 2.0, RAF-DB) show the effectiveness of the proposed method.

Dual Path Multi-Modal High-Order Features for Textual Content Based Visual Question Answering

Yanan Li, Yuetan Lin, Hongrui Zhao, Donghui Wang

Responsive image

Auto-TLDR; TextVQA: An End-to-End Visual Question Answering Model for Text-Based VQA

Slides Similar

As a typical cross-modal problem, visual question answering (VQA) has received increasing attention from the communities of computer vision and natural language processing. Reading and reasoning about texts and visual contents in the images is a burgeoning and important research topic in VQA, especially for the visually impaired assistance applications. Given an image, it aims to predict an answer to a provided natural language question closely related to its textual contents. In this paper, we propose a novel end-to-end textual content based VQA model, which grounds question answering both on the visual and textual information. After encoding the image, question and recognized text words, it uses multi-modal factorized high-order modules and the attention mechanism to fuse question-image and question-text features respectively. The complex correlations among different features can be captured efficiently. To ensure the model's extendibility, it embeds candidate answers and recognized texts in a semantic embedding space and adopts semantic embedding based classifier to perform answer prediction. Extensive experiments on the newly proposed benchmark TextVQA demonstrate that the proposed model can achieve promising results.

AG-GAN: An Attentive Group-Aware GAN for Pedestrian Trajectory Prediction

Yue Song, Niccolò Bisagno, Syed Zohaib Hassan, Nicola Conci

Responsive image

Auto-TLDR; An attentive group-aware GAN for motion prediction in crowded scenarios

Slides Poster Similar

Understanding human behaviors in crowded scenarios requires analyzing not only the position of the subjects in space, but also the scene context. Existing approaches mostly rely on the motion history of each pedestrian and model the interactions among people by considering the entire surrounding neighborhood. In our approach, we address the problem of motion prediction by applying coherent group clustering and a global attention mechanism on the LSTM-based Generative Adversarial Networks (GANs). The proposed model consists of an attentive group-aware GAN that observes the agents' past motion and predicts future paths, using (i) a group pooling module to model neighborhood interaction, and (ii) an attention module to specifically focus on hidden states. The experimental results demonstrate that our proposal outperforms state-of-the-art models on common benchmark datasets, and is able to generate socially-acceptable trajectories.

Global Context-Based Network with Transformer for Image2latex

Nuo Pang, Chun Yang, Xiaobin Zhu, Jixuan Li, Xu-Cheng Yin

Responsive image

Auto-TLDR; Image2latex with Global Context block and Transformer

Slides Poster Similar

Image2latex usually means converts mathematical formulas in images into latex markup. It is a very challenging job due to the complex two-dimensional structure, variant scales of input, and very long representation sequence. Many researchers use encoder-decoder based model to solve this task and achieved good results. However, these methods don't make full use of the structure and position information of the formula. %In this paper, we improve the encoder by employing Global Context block and Transformer. To solve this problem, we propose a global context-based network with transformer that can (1) learn a more powerful and robust intermediate representation via aggregating global features and (2) encode position information explicitly and (3) learn latent dependencies between symbols by using self-attention mechanism. The experimental results on the dataset IM2LATEX-100K demonstrate the effectiveness of our method.

Collaborative Human Machine Attention Module for Character Recognition

Chetan Ralekar, Tapan Gandhi, Santanu Chaudhury

Responsive image

Auto-TLDR; A Collaborative Human-Machine Attention Module for Deep Neural Networks

Slides Poster Similar

The deep learning models which include attention mechanisms are shown to enhance the performance and efficiency of the various computer vision tasks such as pattern recognition, object detection, face recognition, etc. Although the visual attention mechanism is the source of inspiration for these models, recent attention models consider `attention' as a pure machine vision optimization problem and visual attention remains the most neglected aspect. Therefore, this paper presents a collaborative human and machine attention module which considers both visual and network's attention. The proposed module is inspired by the dorsal (`where') pathways of visual processing and it can be integrated with any convolutional neural network (CNN) model. First, the module computes the spatial attention map from the input feature maps which is then combined with the visual attention maps. The visual attention maps are created using eye-fixations obtained by performing an eye-tracking experiment with human participants. The visual attention map covers the highly salient and discriminative image regions as humans tend to focus on such regions, whereas the other relevant image regions are processed by spatial attention map. The combination of these two maps results in the finer refinement in feature maps which results in improved performance. The comparative analysis reveals that our model not only shows significant improvement over the baseline model but also outperforms the other models. We hope that our findings using a collaborative human-machine attention module will be helpful in other vision tasks as well.

Assessing the Severity of Health States Based on Social Media Posts

Shweta Yadav, Joy Prakash Sain, Amit Sheth, Asif Ekbal, Sriparna Saha, Pushpak Bhattacharyya

Responsive image

Auto-TLDR; A Multiview Learning Framework for Assessment of Health State in Online Health Communities

Slides Poster Similar

The unprecedented growth of Internet users has resulted in an abundance of unstructured information on social media including health forums, where patients request health-related information or opinions from other users. Previous studies have shown that online peer support has limited effectiveness without expert intervention. Therefore, a system capable of assessing the severity of health state from the patients' social media posts can help health professionals (HP) in prioritizing the user’s post. In this study, we inspect the efficacy of different aspects of Natural Language Understanding (NLU) to identify the severity of the user’s health state in relation to two perspectives(tasks) (a) Medical Condition (i.e., Recover, Exist, Deteriorate, Other) and (b) Medication (i.e., Effective, Ineffective, Serious Adverse Effect, Other) in online health communities. We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user’s health state. Specifically, our model utilizes the NLU views such as sentiment, emotions, personality, and use of figurative language to extract the contextual information. The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user’s health.

Exploring Spatial-Temporal Representations for fNIRS-based Intimacy Detection via an Attention-enhanced Cascade Convolutional Recurrent Neural Network

Chao Li, Qian Zhang, Ziping Zhao

Responsive image

Auto-TLDR; Intimate Relationship Prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network Using Functional Near-Infrared Spectroscopy

Slides Poster Similar

The detection of intimacy plays a crucial role in the improvement of intimate relationship, which contributes to promote the family and social harmony. Previous studies have shown that different degrees of intimacy have significant differences in brain imaging. Recently, a few of work has emerged to recognise intimacy automatically by using machine learning technique. Moreover, considering the temporal dynamic characteristics of intimacy relationship on neural mechanism, how to model spatio-temporal dynamics for intimacy prediction effectively is still a challenge. In this paper, we propose a novel method to explore deep spatial-temporal representations for intimacy prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network (ACCRNN). Given the advantages of time-frequency resolution in complex neuronal activities analysis, this paper utilizes functional near-infrared spectroscopy (fNIRS) to analyse and infer to intimate relationship. We collect a fNIRS-based dataset for the analysis of intimate relationship. Forty-two-channel fNIRS signals are recorded from the 44 subjects' prefrontal cortex when they watched a total of 18 photos of lovers, friends and strangers for 30 seconds per photo. The experimental results show that our proposed method outperforms the others in terms of accuracy with the precision of 96.5%. To the best of our knowledge, this is the first time that such a hybrid deep architecture has been employed for fNIRS-based intimacy prediction.

Context for Object Detection Via Lightweight Global and Mid-Level Representations

Mesut Erhan Unal, Adriana Kovashka

Responsive image

Auto-TLDR; Context-Based Object Detection with Semantic Similarity

Slides Poster Similar

We propose an approach for explicitly capturing context in object detection. We model visual and geometric relationships between object regions, but also model the global scene as a first-class participant. In contrast to prior approaches, both the context we rely on, as well as our proposed mechanism for belief propagation over regions, is lightweight. We also experiment with capturing similarities between regions at a semantic level, by modeling class co-occurrence and linguistic similarity between class names. We show that our approach significantly outperforms Faster R-CNN, and performs competitively with a much more costly approach that also models context.

Information Graphic Summarization Using a Collection of Multimodal Deep Neural Networks

Edward Kim, Connor Onweller, Kathleen F. Mccoy

Responsive image

Auto-TLDR; A multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to blind or visually impaired

Slides Similar

We present a multimodal deep learning framework that can generate summarization text supporting the main idea of an information graphic for presentation to a person who is blind or visually impaired. The framework utilizes the visual, textual, positional, and size characteristics extracted from the image to create the summary. Different and complimentary neural architectures are optimized for each task using crowdsourced training data. From our quantitative experiments and results, we explain the reasoning behind our framework and show the effectiveness of our models. Our qualitative results showcase text generated from our framework and show that Mechanical Turk participants favor them to other automatic and human generated summarizations. We describe the design and of of an experiment to evaluate the utility of our system for people who have visual impairments in the context of understanding Twitter Tweets containing line graphs.

Deep Gait Relative Attribute Using a Signed Quadratic Contrastive Loss

Yuta Hayashi, Shehata Allam, Yasushi Makihara, Daigo Muramatsu, Yasushi Yagi

Responsive image

Auto-TLDR; Signal-Contrastive Loss for Gait Attributes Estimation

Similar

This paper presents a deep learning-based method to estimate gait attributes (e.g., stately, cool, relax, etc.). Similarly to the existing studies on relative attribute, human perception-based annotations on the gait attributes are given to pairs of gait videos (i.e., the first one is better, tie, and the second one is better), and the relative annotations are utilized to train a ranking model of the gait attribute. More specifically, we design a Siamese (i.e., two-stream) network which takes a pair of gait inputs and output gait attribute score for each. We then introduce a suitable loss function called a signed contrastive loss to train the network parameters with the relative annotation. Unlike the existing loss functions for learning to rank does not inherent a nice property of a quadratic contrastive loss, the proposed signed quadratic contrastive loss function inherents the nice property. The quantitative evaluation results reveal that the proposed method shows better or comparable accuracies of relative attribute prediction against the baseline methods.

Picture-To-Amount (PITA): Predicting Relative Ingredient Amounts from Food Images

Jiatong Li, Fangda Han, Ricardo Guerrero, Vladimir Pavlovic

Responsive image

Auto-TLDR; PITA: A Deep Learning Architecture for Predicting the Relative Amount of Ingredients from Food Images

Slides Poster Similar

Increased awareness of the impact of food consumption on health and lifestyle today has given rise to novel data-driven food analysis systems. Although these systems may recognize the ingredients, a detailed analysis of their amounts in the meal, which is paramount for estimating the correct nutrition, is usually ignored. In this paper, we study the novel and challenging problem of predicting the relative amount of each ingredient from a food image. We propose PITA, the Picture-to-Amount deep learning architecture to solve the problem. More specifically, we predict the ingredient amounts using a domain-driven Wasserstein loss from image-to-recipe cross-modal embeddings learned to align the two views of food data. Experiments on a dataset of recipes collected from the Internet show the model generates promising results and improves the baselines on this challenging task.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

Adaptive L2 Regularization in Person Re-Identification

Xingyang Ni, Liang Fang, Heikki Juhani Huttunen

Responsive image

Auto-TLDR; AdaptiveReID: Adaptive L2 Regularization for Person Re-identification

Slides Poster Similar

We introduce an adaptive L2 regularization mechanism termed AdaptiveReID, in the setting of person re-identification. In the literature, it is common practice to utilize hand-picked regularization factors which remain constant throughout the training procedure. Unlike existing approaches, the regularization factors in our proposed method are updated adaptively through backpropagation. This is achieved by incorporating trainable scalar variables as the regularization factors, which are further fed into a scaled hard sigmoid function. Extensive experiments on the Market-1501, DukeMTMC-reID and MSMT17 datasets validate the effectiveness of our framework. Most notably, we obtain state-of-the-art performance on MSMT17, which is the largest dataset for person re-identification. Source code will be published at https://github.com/nixingyang/AdaptiveReID.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

The Color Out of Space: Learning Self-Supervised Representations for Earth Observation Imagery

Stefano Vincenzi, Angelo Porrello, Pietro Buzzega, Marco Cipriano, Pietro Fronte, Roberto Cuccu, Carla Ippoliti, Annamaria Conte, Simone Calderara

Responsive image

Auto-TLDR; Satellite Image Representation Learning for Remote Sensing

Slides Poster Similar

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.

StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation

Niaz Ahmad, Jongwon Yoon

Responsive image

Auto-TLDR; StrongPose: A bottom-up box-free approach for human pose estimation and action recognition

Slides Poster Similar

Adaptation of deep convolutional neural network has made revolutionary progress in human pose estimation, various applications in recent years have drawn considerable attention. However, prediction and localization of the keypoints in single and multi-person images are a challenging problem. Towards this purpose, we present a bottom-up box-free approach for the task of pose estimation and action recognition. We proposed a StrongPose system model that uses part-based modeling to tackle object-part associations. The model utilizes a convolution network that learns how to detect Strong Keypoints Heat Maps (SKHM) and predict their comparative displacements, enabling us to group keypoints into person pose instances. Further, we produce Body Heat Maps (BHM) with the help of keypoints which allows us to localize the human body in the picture. The StrongPose framework is based on fully-convolutional engineering and permits proficient inference, with runtime basically autonomous of the number of individuals display within the scene. Train and test on COCO data alone, our framework achieves COCO test-dev keypoint average precision of 0.708 using ResNet-101 and 0.725 using ResNet-152, which considerably outperforms all prior bottom-up pose estimation frameworks.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.