Trajectory-User Link with Attention Recurrent Networks

Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, 塘文 钱, Zezhi Shao

Responsive image

Auto-TLDR; TULAR: Trajectory-User Link with Attention Recurrent Neural Networks

Slides Poster

The prevalent adoptions of GPS-enabled devices have witnessed an explosion of various location-based services which produces a huge amount of trajectories monitoring the individuals' movements. In this paper, we tackle Trajectory-User Link (TUL) problem, which identifies humans' movement patterns and links trajectories to the users who generated them. Existing solutions on TUL problem employ recurrent neural networks and variational autoencoder methods, which face the bottlenecks in the case of excessively long trajectories and fragmentary users' movements. However, these are common characteristics of trajectory data in reality, leading to performance degradation of the existing models. In this paper, we propose an end-to-end attention recurrent neural learning framework, called TULAR (Trajectory-User Link with Attention Recurrent Networks), which focus on selected parts of the source trajectories when linking. TULAR introduce the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and recurrent neural networks, by which to reckon the weight of parts of source trajectory. Further, we employ three attention scores for the weight measurements. Experiments are conducted on two real world datasets and compared with several existing methods, and the results show that TULAR yields a new state-of-the-art performance. Source code is public available at GitHub: https://github.com/taos123/TULAR.

Similar papers

MA-LSTM: A Multi-Attention Based LSTM for Complex Pattern Extraction

Jingjie Guo, Kelang Tian, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; MA-LSTM: Multiple Attention based recurrent neural network for forget gate

Slides Poster Similar

With the improvement of data, computing powerand algorithms, deep learning has achieved rapid developmentand showing excellent performance. Recently, many deep learn-ing models are proposed to solve the problems in different areas.A recurrent neural network (RNN) is a class of artificial neuralnetworks where connections between nodes form a directedgraph along a temporal sequence. This allows it to exhibittemporal dynamic behavior, which makes it applicable to taskssuch as handwriting recognition or speech recognition. How-ever, the RNN relies heavily on the automatic learning abilityto update parameters which concentrate on the data flow butseldom considers the feature extraction capability of the gatemechanism. In this paper, we propose a novel architecture tobuild the forget gate which is generated by multiple bases.Instead of using the traditional single-layer fully-connectednetwork, we use a Multiple Attention (MA) based network togenerate the forget gate which refines the optimization spaceof gate function and improve the granularity of the recurrentneural network to approximate the map in the ground truth.Credit to the MA structure on the gate mechanism. Our modelhas a better feature extraction capability than other knownmodels. MA-LSTM is an alternative module which can directly replace the recurrent neural network and has achieved good performance in many areas that people are concerned about.

AG-GAN: An Attentive Group-Aware GAN for Pedestrian Trajectory Prediction

Yue Song, Niccolò Bisagno, Syed Zohaib Hassan, Nicola Conci

Responsive image

Auto-TLDR; An attentive group-aware GAN for motion prediction in crowded scenarios

Slides Poster Similar

Understanding human behaviors in crowded scenarios requires analyzing not only the position of the subjects in space, but also the scene context. Existing approaches mostly rely on the motion history of each pedestrian and model the interactions among people by considering the entire surrounding neighborhood. In our approach, we address the problem of motion prediction by applying coherent group clustering and a global attention mechanism on the LSTM-based Generative Adversarial Networks (GANs). The proposed model consists of an attentive group-aware GAN that observes the agents' past motion and predicts future paths, using (i) a group pooling module to model neighborhood interaction, and (ii) an attention module to specifically focus on hidden states. The experimental results demonstrate that our proposal outperforms state-of-the-art models on common benchmark datasets, and is able to generate socially-acceptable trajectories.

Road Network Metric Learning for Estimated Time of Arrival

Yiwen Sun, Kun Fu, Zheng Wang, Changshui Zhang, Jieping Ye

Responsive image

Auto-TLDR; Road Network Metric Learning for Estimated Time of Arrival (RNML-ETA)

Slides Poster Similar

Recently, deep learning have achieved promising results in Estimated Time of Arrival (ETA), which is considered as predicting the travel time from the origin to the destination along a given path. One of the key techniques is to use embedding vectors to represent the elements of road network, such as the links (road segments). However, the embedding suffers from the data sparsity problem that many links in the road network are traversed by too few floating cars even in large ride-hailing platforms like Uber and DiDi. Insufficient data makes the embedding vectors in an under-fitting status, which undermines the accuracy of ETA prediction. To address the data sparsity problem, we propose the Road Network Metric Learning framework for ETA (RNML ETA). It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors. We further propose the triangle loss, a novel loss function to improve the efficiency of metric learning. We validated the effectiveness of RNML-ETA on large scale real-world datasets, by showing that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.

Constructing Geographic and Long-term Temporal Graph for Traffic Forecasting

Yiwen Sun, Yulu Wang, Kun Fu, Zheng Wang, Changshui Zhang, Jieping Ye

Responsive image

Auto-TLDR; GLT-GCRNN: Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network for Traffic Forecasting

Slides Poster Similar

Traffic forecasting influences various intelligent transportation system (ITS) services and is of great significance for user experience as well as urban traffic control. It is challenging due to the fact that the road network contains complex and time-varying spatial-temporal dependencies. Recently, deep learning based methods have achieved promising results by adopting graph convolutional network (GCN) to extract the spatial correlations and recurrent neural network (RNN) to capture the temporal dependencies. However, the existing methods often construct the graph only based on road network connectivity, which limits the interaction between roads. In this work, we propose Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN), a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or long-term temporal patterns. Extensive experiments on a real-world traffic state dataset validate the effectiveness of our method by showing that GLT-GCRNN outperforms the state-of-the-art methods in terms of different metrics.

Moto: Enhancing Embedding with Multiple Joint Factors for Chinese Text Classification

Xunzhu Tang, Rujie Zhu, Tiezhu Sun

Responsive image

Auto-TLDR; Moto: Enhancing Embedding with Multiple J\textbf{o}int Fac\textBF{to}rs

Slides Poster Similar

Recently, language representation techniques have achieved great performances in text classification. However, most existing representation models are specifically designed for English materials, which may fail in Chinese because of the huge difference between these two languages. Actually, few existing methods for Chinese text classification process texts at a single level. However, as a special kind of hieroglyphics, radicals of Chinese characters are good semantic carriers. In addition, Pinyin codes carry the semantic of tones, and Wubi reflects the stroke structure information, \textit{etc}. Unfortunately, previous researches neglected to find an effective way to distill the useful parts of these four factors and to fuse them. In our works, we propose a novel model called Moto: Enhancing Embedding with \textbf{M}ultiple J\textbf{o}int Fac\textbf{to}rs. Specifically, we design an attention mechanism to distill the useful parts by fusing the four-level information above more effectively. We conduct extensive experiments on four popular tasks. The empirical results show that our Moto achieves SOTA 0.8316 ($F_1$-score, 2.11\% improvement) on Chinese news titles, 96.38 (1.24\% improvement) on Fudan Corpus and 0.9633 (3.26\% improvement) on THUCNews.

Tackling Contradiction Detection in German Using Machine Translation and End-To-End Recurrent Neural Networks

Maren Pielka, Rafet Sifa, Lars Patrick Hillebrand, David Biesner, Rajkumar Ramamurthy, Anna Ladi, Christian Bauckhage

Responsive image

Auto-TLDR; Contradiction Detection in Natural Language Inference using Recurrent Neural Networks

Slides Poster Similar

Natural Language Inference, and specifically Contradiction Detection, is still an unexplored topic with respect to German text. In this paper, we apply Recurrent Neural Network (RNN) methods to learn contradiction-specific sentence embeddings. Our data set for evaluation is a machine-translated version of the Stanford Natural Language Inference (SNLI) corpus. The results are compared to a baseline using unsupervised vectorization techniques, namely tf-idf and Flair, as well as state-of-the art transformer-based (MBERT) methods. We find that the end-to-end models outperform the models trained on unsupervised embeddings, which makes them the better choice in an empirical use case. The RNN methods also perform superior to MBERT on the translated data set.

Temporal Collaborative Filtering with Graph Convolutional Neural Networks

Esther Rodrigo-Bonet, Minh Duc Nguyen, Nikos Deligiannis

Responsive image

Auto-TLDR; Temporal Collaborative Filtering with Graph-Neural-Network-based Neural Networks

Slides Poster Similar

Temporal collaborative filtering (TCF) methods aim at modelling non-static aspects behind recommender systems, such as the dynamics in users' preferences and social trends around items. State-of-the-art TCF methods employ recurrent neural networks (RNNs) to model such aspects. These methods deploy matrix-factorization-based (MF-based) approaches to learn the user and item representations. Recently, graph-neural-network-based (GNN-based) approaches have shown improved performance in providing accurate recommendations over traditional MF-based approaches in non-temporal CF settings. Motivated by this, we propose a novel TCF method that leverages GNNs to learn user and item representations, and RNNs to model their temporal dynamics. A challenge with this method lies in the increased data sparsity, which negatively impacts obtaining meaningful quality representations with GNNs. To overcome this challenge, we train a GNN model at each time step using a set of observed interactions accumulated time-wise. Comprehensive experiments on real-world data show the improved performance obtained by our method over several state-of-the-art temporal and non-temporal CF models.

Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction

Jiexia Ye, Juanjuan Zhao, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Multi-GCGRU: A Deep Learning Framework for Stock Price Prediction with Cross Effect

Slides Poster Similar

Stock price movement prediction is commonly accepted as a very challenging task due to the volatile nature of financial markets. Previous works typically predict the stock price mainly based on its own information, neglecting the cross effect among involved stocks. However, it is well known that an individual stock price is correlated with prices of other stocks in complex ways. To take the cross effect into consideration, we propose a deep learning framework, called Multi-GCGRU, which comprises graph convolutional network (GCN) and gated recurrent units (GRU) to predict stock movement. Specifically, we first encode multiple relationships among stocks into graphs based on financial domain knowledge and utilize GCN to extract the cross effect based on the pre-defined graphs. The cross-correlation features produced by GCN are concatenated with historical records and fed into GRU to model the temporal pattern in stock price. To further get rid of prior knowledge, we explore an adaptive stock graph learned by data automatically. Experiments on two stock indexes in China market show that our model outperforms other baselines. Note that our model is rather feasible to incorporate more effective pre-defined stock relationships. What's more, it can also learn a data-driven relationship without any domain knowledge.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting

Tanwi Mallick, Prasanna Balaprakash, Eric Rask, Jane Macfarlane

Responsive image

Auto-TLDR; Transfer Learning for Highway Traffic Forecasting on Unseen Traffic Networks

Slides Poster Similar

Large-scale highway traffic forecasting approaches are critical for intelligent transportation systems. Recently, deep-learning-based traffic forecasting methods have emerged as promising approaches for a wide range of traffic forecasting tasks. However, these methods are specific to a given traffic network and consequently, they cannot be used for forecasting traffic on an unseen traffic network. Previous work has identified diffusion convolutional recurrent neural network (DCRNN), as a state-of-the-art method for highway traffic forecasting. It models the complex spatial and temporal dynamics of a highway network using a graph-based diffusion convolution operation within a recurrent neural network. Currently, DCRNN cannot perform transfer learning because it learns location-specific traffic patterns, which cannot be used for unseen regions of a network or new geographic locations. To that end, we develop TL-DCRNN, a new transfer learning approach for DCRNN, where a single model trained on a highway network can be used to forecast traffic on unseen highway networks. Given a traffic network with a large amount of traffic data, our approach consists of partitioning the traffic network into a number of subgraphs and using a new training scheme that utilizes subgraphs for the DCRNN to marginalize the location-specific information, thus learning the traffic as a function of network connectivity and temporal patterns alone. The resulting trained model can be used to forecast traffic on unseen networks. We demonstrate that TL-DCRNN can learn from San Francisco regional traffic data and forecast traffic on the Los Angeles region and vice versa.

DAG-Net: Double Attentive Graph Neural Network for Trajectory Forecasting

Alessio Monti, Alessia Bertugli, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Recurrent Generative Model for Multi-modal Human Motion Behaviour in Urban Environments

Slides Poster Similar

Understanding human motion behaviour is a critical task for several possible applications like self-driving cars or social robots, and in general for all those settings where an autonomous agent has to navigate inside a human-centric environment. This is non-trivial because human motion is inherently multi-modal: given a history of human motion paths, there are many plausible ways by which people could move in the future. Additionally, people activities are often driven by goals, e.g. reaching particular locations or interacting with the environment. We address both the aforementioned aspects by proposing a new recurrent generative model that considers both single agents’ future goals and interactions between different agents. The model exploits a double attention-based graph neural network to collect information about the mutual influences among different agents and integrates it with data about agents’ possible future objectives. Our proposal is general enough to be applied in different scenarios: the model achieves state-of-the-art results in both urban environments and also in sports applications.

PIN: A Novel Parallel Interactive Network for Spoken Language Understanding

Peilin Zhou, Zhiqi Huang, Fenglin Liu, Yuexian Zou

Responsive image

Auto-TLDR; Parallel Interactive Network for Spoken Language Understanding

Slides Poster Similar

Spoken Language Understanding (SLU) is an essential part of the spoken dialogue system, which typically consists of intent detection (ID) and slot filling (SF) tasks. Recently, recurrent neural networks (RNNs) based methods achieved the state-of-the-art for SLU. It is noted that, in the existing RNN-based approaches, ID and SF tasks are often jointly modeled to utilize the correlation information between them. However, we noted that, so far, the efforts to obtain better performance by supporting bidirectional and explicit information exchange between ID and SF are not well studied. In addition, few studies attempt to capture the local context information to enhance the performance of SF. Motivated by these findings, in this paper, Parallel Interactive Network (PIN) is proposed to model the mutual guidance between ID and SF. Specifically, given an utterance, a Gaussian self-attentive encoder is introduced to generate the context-aware feature embedding of the utterance which is able to capture local context information. Taking the feature embedding of the utterance, Slot2Intent module and Intent2Slot module are developed to capture the bidirectional information flow for ID and SF tasks. Finally, a cooperation mechanism is constructed to fuse the information obtained from Slot2Intent and Intent2Slot modules to further reduce the prediction bias. The experiments on two benchmark datasets, i.e., SNIPS and ATIS, demonstrate the effectiveness of our approach, which achieves a competitive result with state-of-the-art models. More encouragingly, by using the feature embedding of the utterance generated by the pre-trained language model BERT, our method achieves the state-of-the-art among all comparison approaches.

Visual Oriented Encoder: Integrating Multimodal and Multi-Scale Contexts for Video Captioning

Bang Yang, Yuexian Zou

Responsive image

Auto-TLDR; Visual Oriented Encoder for Video Captioning

Slides Poster Similar

Video captioning is a challenging task which aims at automatically generating a natural language description of a given video. Recent researches have shown that exploiting the intrinsic multi-modalities of videos significantly promotes captioning performance. However, how to integrate multi-modalities to generate effective semantic representations for video captioning is still an open issue. Some researchers proposed to learn multimodal features in parallel during the encoding stage. The downside of these methods lies in the neglect of the interaction among multi-modalities and their rich contextual information. In this study, inspired by the fact that visual contents are generally more important for comprehending videos, we propose a novel Visual Oriented Encoder (VOE) to integrate multimodal features in an interactive manner. Specifically, VOE is designed as a hierarchical structure, where bottom layers are utilized to extract multi-scale contexts from auxiliary modalities while the top layer is exploited to generate joint representations by considering both visual and contextual information. Following the encoder-decoder framework, we systematically develop a VOE-LSTM model and evaluate it on two mainstream benchmarks: MSVD and MSR-VTT. Experimental results show that the proposed VOE surpasses conventional encoders and our VOE-LSTM model achieves competitive results compared with state-of-the-art approaches.

Context Visual Information-Based Deliberation Network for Video Captioning

Min Lu, Xueyong Li, Caihua Liu

Responsive image

Auto-TLDR; Context visual information-based deliberation network for video captioning

Slides Poster Similar

Video captioning is to automatically and accurately generate a textual description for a video. The typical methods following the encoder-decoder architecture directly utilized hidden states to predict words. Nevertheless, these methods did not amend the inaccurate hidden states before feeding those states into word prediction. This led to a cascade of errors on generating word by word. In this paper, the context visual information-based deliberation network is proposed, abbreviated as CVI-DelNet. Its key idea is to introduce the deliberator into the encoder-decoder framework. The encoder-decoder firstly generates a raw hidden state sequence. Unlike the existing methods, the raw hidden state is no more directly used for word prediction but is fed into the deliberator to generate the refined hidden state. The words are then predicted according to the refined hidden states and the contextual visual features. Results on two datasets shows that the proposed method significantly outperforms the baselines.

Global Context-Based Network with Transformer for Image2latex

Nuo Pang, Chun Yang, Xiaobin Zhu, Jixuan Li, Xu-Cheng Yin

Responsive image

Auto-TLDR; Image2latex with Global Context block and Transformer

Slides Poster Similar

Image2latex usually means converts mathematical formulas in images into latex markup. It is a very challenging job due to the complex two-dimensional structure, variant scales of input, and very long representation sequence. Many researchers use encoder-decoder based model to solve this task and achieved good results. However, these methods don't make full use of the structure and position information of the formula. %In this paper, we improve the encoder by employing Global Context block and Transformer. To solve this problem, we propose a global context-based network with transformer that can (1) learn a more powerful and robust intermediate representation via aggregating global features and (2) encode position information explicitly and (3) learn latent dependencies between symbols by using self-attention mechanism. The experimental results on the dataset IM2LATEX-100K demonstrate the effectiveness of our method.

Attentive Visual Semantic Specialized Network for Video Captioning

Jesus Perez-Martin, Benjamin Bustos, Jorge Pérez

Responsive image

Auto-TLDR; Adaptive Visual Semantic Specialized Network for Video Captioning

Slides Poster Similar

As an essential high-level task of video understanding topic, automatically describing a video with natural language has recently gained attention as a fundamental challenge in computer vision. Previous models for video captioning have several limitations, such as the existence of gaps in current semantic representations and the inexpressibility of the generated captions. To deal with these limitations, in this paper, we present a new architecture that we callAttentive Visual Semantic Specialized Network(AVSSN), which is an encoder-decoder model based on our Adaptive Attention Gate and Specialized LSTM layers. This architecture can selectively decide when to use visual or semantic information into the text generation process. The adaptive gate makes the decoder to automatically select the relevant information for providing a better temporal state representation than the existing decoders. Besides, the model is capable of learning to improve the expressiveness of generated captions attending to their length, using a sentence-length-related loss function. We evaluate the effectiveness of the proposed approach on the Microsoft Video Description(MSVD) and the Microsoft Research Video-to-Text (MSR-VTT) datasets, achieving state-of-the-art performance with several popular evaluation metrics: BLEU-4, METEOR, CIDEr, and ROUGE_L.

Enhanced User Interest and Expertise Modeling for Expert Recommendation

Tongze He, Caili Guo, Yunfei Chu

Responsive image

Auto-TLDR; A Unified Framework for Expert Recommendation in Community Question Answering

Slides Poster Similar

The rapid development of Community Question Answering (CQA) satisfies users' request for professional and personal knowledge. In CQA, one key issue is to recommend users with high expertise and willingness to answer the given questions, namely expert recommendation. However, most of existing methods for expert recommendation ignore some key information, such as time information and historical feedback information, degrading the performance. On the one hand, users' interest are changing over time. It is biased if we don't consider the dynamics. On the other hand, feedback information is critical to estimate users' expertise. To solve these problems, we propose a unified framework for expert recommendation to exploit user interest and expertise more precisely. Considering the inconsistency between them, we propose to learn their embeddings separately. We leverage Long Short-Term Memory (LSTM) to model user's short-term interest and combine it with long-term interest. The user expertise is learned by the designed user expertise network, which explicitly models feedback on users' historical behavior. The extensive experiments on a large-scale dataset from a real-world CQA site demonstrate the superior performance of our method than state-of-the-art solutions to the problem.

Map-Based Temporally Consistent Geolocalization through Learning Motion Trajectories

Bing Zha, Alper Yilmaz

Responsive image

Auto-TLDR; Exploiting Motion Trajectories for Geolocalization of Object on Topological Map using Recurrent Neural Network

Slides Poster Similar

In this paper, we propose a novel trajectory learning method that exploits motion trajectories on topological map using recurrent neural network for temporally consistent geolocalization of object. Inspired by human's ability to both be aware of distance and direction of self-motion in navigation, our trajectory learning method learns a pattern representation of trajectories encoded as a sequence of distances and turning angles to assist self-localization. We pose the learning process as a conditional sequence prediction problem in which each output locates the object on a traversable edge in a map. Considering the prediction sequence ought to be topologically connected in the graph-structured map, we adopt two different hypotheses generation and elimination strategies to eliminate disconnected sequence prediction. We demonstrate our approach on the KITTI stereo visual odometry dataset which is a city-scale environment. The key benefits of our approach to geolocalization are that 1) we take advantage of powerful sequence modeling ability of recurrent neural network and its robustness to noisy input, 2) only require a map in the form of a graph and 3) simply use an affordable sensor that generates motion trajectory. The experiments show that the motion trajectories can be learned by training an recurrent neural network, and temporally consistent geolocation can be predicted with both of the proposed strategies.

Cross-Lingual Text Image Recognition Via Multi-Task Sequence to Sequence Learning

Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, Cheng-Lin Liu

Responsive image

Auto-TLDR; Cross-Lingual Text Image Recognition with Multi-task Learning

Slides Poster Similar

This paper considers recognizing texts shown in a source language and translating into a target language, without generating the intermediate source language text image recognition results. We call this problem Cross-Lingual Text Image Recognition (CLTIR). To solve this problem, we propose a multi-task system containing a main task of CLTIR and an auxiliary task of Mono-Lingual Text Image Recognition (MLTIR) simultaneously. Two different sequence to sequence learning methods, a convolution based attention model and a BLSTM model with CTC, are adopted for these tasks respectively. We evaluate the system on a newly collected Chinese-English bilingual movie subtitle image dataset. Experimental results demonstrate the multi-task learning framework performs superiorly in both languages.

Transformer Networks for Trajectory Forecasting

Francesco Giuliari, Hasan Irtiza, Marco Cristani, Fabio Galasso

Responsive image

Auto-TLDR; TransformerNetworks for Trajectory Prediction of People Interactions

Slides Poster Similar

Most recent successes on forecasting the people mo-tion are based on LSTM models andallmost recent progress hasbeen achieved by modelling the social interaction among peopleand the people interaction with the scene. We question the useof the LSTM models and propose the novel use of TransformerNetworks for trajectory forecasting. This is a fundamental switchfrom the sequential step-by-step processing of LSTMs to theonly-attention-based memory mechanisms of Transformers. Inparticular, we consider both the original Transformer Network(TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposedTransformers predict the trajectories of the individual peoplein the scene. These are “simple” models because each personis modelled separately without any complex human-human norscene interaction terms. In particular, the TF modelwithoutbells and whistlesyields the best score on the largest and mostchallenging trajectory forecasting benchmark of TrajNet [1]. Ad-ditionally, its extension which predicts multiple plausible futuretrajectories performs on par with more engineered techniqueson the 5 datasets of ETH [2]+UCY [3]. Finally, we showthat Transformers may deal with missing observations, as itmay be the case with real sensor data. Code is available atgithub.com/FGiuliari/Trajectory-Transformer

Adversarial Training for Aspect-Based Sentiment Analysis with BERT

Akbar Karimi, Andrea Prati, Leonardo Rossi

Responsive image

Auto-TLDR; Adversarial Training of BERT for Aspect-Based Sentiment Analysis

Slides Poster Similar

Aspect-Based Sentiment Analysis (ABSA) studies the extraction of sentiments and their targets. Collecting labeled data for this task in order to help neural networks generalize better can be laborious and time-consuming. As an alternative, similar data to the real-world examples can be produced artificially through an adversarial process which is carried out in the embedding space. Although these examples are not real sentences, they have been shown to act as a regularization method which can make neural networks more robust. In this work, we fine-tune the general purpose BERT and domain specific post-trained BERT (BERT-PT) using adversarial training. After improving the results of post-trained BERT with different hyperparameters, we propose a novel architecture called BERT Adversarial Training (BAT) to utilize adversarial training for the two major tasks of Aspect Extraction and Aspect Sentiment Classification in sentiment analysis. The proposed model outperforms the general BERT as well as the in-domain post-trained BERT in both tasks. To the best of our knowledge, this is the first study on the application of adversarial training in ABSA. The code is publicly available on a GitHub repository at https://github.com/IMPLabUniPr/Adversarial-Training-fo r-ABSA

Interpretable Structured Learning with Sparse Gated Sequence Encoder for Protein-Protein Interaction Prediction

Kishan K C, Feng Cui, Anne Haake, Rui Li

Responsive image

Auto-TLDR; Predicting Protein-Protein Interactions Using Sequence Representations

Slides Poster Similar

Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology. Although various deep learning models in Siamese architecture have been proposed to model PPIs from sequences, these methods are computationally expensive for a large number of PPIs due to the pairwise encoding process. Furthermore, these methods are difficult to interpret because of non-intuitive mappings from protein sequences to their sequence representation. To address these challenges, we present a novel deep framework to model and predict PPIs from sequence alone. Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences. We further employ a sparse regularization to model long-range dependencies between amino acids and to select important amino acids (protein motifs), thus enhancing interpretability. Besides, the novel design of the encoding process makes our model computationally efficient and scalable to an increasing number of interactions. Experimental results on up-to-date interaction datasets demonstrate that our model achieves superior performance compared to other state-of-the-art methods. Literature-based case studies illustrate the ability of our model to provide biological insights to interpret the predictions.

Exploring Spatial-Temporal Representations for fNIRS-based Intimacy Detection via an Attention-enhanced Cascade Convolutional Recurrent Neural Network

Chao Li, Qian Zhang, Ziping Zhao

Responsive image

Auto-TLDR; Intimate Relationship Prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network Using Functional Near-Infrared Spectroscopy

Slides Poster Similar

The detection of intimacy plays a crucial role in the improvement of intimate relationship, which contributes to promote the family and social harmony. Previous studies have shown that different degrees of intimacy have significant differences in brain imaging. Recently, a few of work has emerged to recognise intimacy automatically by using machine learning technique. Moreover, considering the temporal dynamic characteristics of intimacy relationship on neural mechanism, how to model spatio-temporal dynamics for intimacy prediction effectively is still a challenge. In this paper, we propose a novel method to explore deep spatial-temporal representations for intimacy prediction by Attention-enhanced Cascade Convolutional Recurrent Neural Network (ACCRNN). Given the advantages of time-frequency resolution in complex neuronal activities analysis, this paper utilizes functional near-infrared spectroscopy (fNIRS) to analyse and infer to intimate relationship. We collect a fNIRS-based dataset for the analysis of intimate relationship. Forty-two-channel fNIRS signals are recorded from the 44 subjects' prefrontal cortex when they watched a total of 18 photos of lovers, friends and strangers for 30 seconds per photo. The experimental results show that our proposed method outperforms the others in terms of accuracy with the precision of 96.5%. To the best of our knowledge, this is the first time that such a hybrid deep architecture has been employed for fNIRS-based intimacy prediction.

End-To-End Multi-Task Learning of Missing Value Imputation and Forecasting in Time-Series Data

Jinhee Kim, Taesung Kim, Jang-Ho Choi, Jaegul Choo

Responsive image

Auto-TLDR; Time-Series Prediction with Denoising and Imputation of Missing Data

Slides Poster Similar

Multivariate time-series prediction is a common task, but it often becomes challenging due to missing values involved in data caused by unreliable sensors and other issues. In fact, inaccurate imputation of missing values can degrade the downstream prediction performance, so it may be better not to rely on the estimated values of missing data. Furthermore, observed data may contain noise, so denoising them can be helpful for the main task at hand. In response, we propose a novel approach that can automatically utilize the optimal combination of the observed and the estimated values to generate not only complete, but also noise-reduced data by our own gating mechanism. We evaluate our model on real-world time-series datasets and achieved state-of-the-art performance, demonstrating that our method successfully handle the incomplete datasets. Moreover, we present in-depth studies using a carefully designed, synthetic multivariate time-series dataset to verify the effectiveness of the proposed model. The ablation studies and the experimental analysis of the proposed gating mechanism show that the proposed method works as an effective denoising as well as imputation method for time-series classification tasks.

Trajectory Representation Learning for Multi-Task NMRDP Planning

Firas Jarboui, Vianney Perchet

Responsive image

Auto-TLDR; Exploring Non Markovian Reward Decision Processes for Reinforcement Learning

Slides Poster Similar

Expanding Non Markovian Reward Decision Processes (NMRDP) into Markov Decision Processes (MDP) enables the use of state of the art Reinforcement Learning (RL) techniques to identify optimal policies. In this paper an approach to exploring NMRDPs and expanding them into MDPs, without the prior knowledge of the reward structure, is proposed. The non Markovianity of the reward function is disentangled under the assumption that sets of similar and dissimilar trajectory batches can be sampled. More precisely, within the same batch, measuring the similarity between any couple of trajectories is permitted, although comparing trajectories from different batches is not possible. A modified version of the triplet loss is optimised to construct a representation of the trajectories under which rewards become Markovian.

Global Feature Aggregation for Accident Anticipation

Mishal Fatima, Umar Karim Khan, Chong Min Kyung

Responsive image

Auto-TLDR; Feature Aggregation for Predicting Accidents in Video Sequences

Slides Similar

Anticipation of accidents ahead of time in autonomous and non-autonomous vehicles aids in accident avoidance. In order to recognize abnormal events such as traffic accidents in a video sequence, it is important that the network takes into account interactions of objects in a given frame. We propose a novel Feature Aggregation (FA) block that refines each object's features by computing a weighted sum of the features of all objects in a frame. We use FA block along with Long Short Term Memory (LSTM) network to anticipate accidents in the video sequences. We report mean Average Precision (mAP) and Average Time-to-Accident (ATTA) on Street Accident (SA) dataset. Our proposed method achieves the highest score for risk anticipation by predicting accidents 0.32 sec and 0.75 sec earlier compared to the best results with Adaptive Loss and dynamic parameter prediction based methods respectively.

ConvMath : A Convolutional Sequence Network for Mathematical Expression Recognition

Zuoyu Yan, Xiaode Zhang, Liangcai Gao, Ke Yuan, Zhi Tang

Responsive image

Auto-TLDR; Convolutional Sequence Modeling for Mathematical Expressions Recognition

Slides Poster Similar

Despite the recent advances in optical character recognition (OCR), mathematical expressions still face a great challenge to recognize due to their two-dimensional graphical layout. In this paper, we propose a convolutional sequence modeling network, ConvMath, which converts the mathematical expression description in an image into a LaTeX sequence in an end-to-end way. The network combines an image encoder for feature extraction and a convolutional decoder for sequence generation. Compared with other Long Short Term Memory(LSTM) based encoder-decoder models, ConvMath is entirely based on convolution, thus it is easy to perform parallel computation. Besides, the network adopts multi-layer attention mechanism in the decoder, which allows the model to align output symbols with source feature vectors automatically, and alleviates the problem of lacking coverage while training the model. The performance of ConvMath is evaluated on an open dataset named IM2LATEX-100K, including 103556 samples. The experimental results demonstrate that the proposed network achieves state-of-the-art accuracy and much better efficiency than previous methods.

Geographic-Semantic-Temporal Hypergraph Convolutional Network for Traffic Flow Prediction

Kesu Wang, Jing Chen, Shijie Liao, Jiaxin Hou, Qingyu Xiong

Responsive image

Auto-TLDR; Geographic-semantic-temporal convolutional network for traffic flow prediction

Similar

Traffic flow prediction is becoming an increasingly important part for intelligent transportation control and management. This task is challenging due to (1) complex geographic and non-geographic spatial correlation; (2) temporal correlations between time slices; (3) dynamics of semantic high-order correlations along temporal dimension. To address those difficulties, commonly-used methods apply graph convolutional networks for spatial correlations and recurrent neural networks for temporal dependencies. In this work, We distinguish the two aspects of spatial correlations and propose the two types of spatial graphes, named as geographic graph and semantic hypergraph. We extend the traditional convolution and propose geographic-temporal graph convolution to jointly capture geographic-temporal correlations and semantic-temporal hypergraph convolution to jointly capture semantic-temporal correlations. Then We propose a geographic-semantic-temporal convolutional network (GST-HCN) that combines our graph convolutions and GRU units hierarchically in a unified end-to-end network. The experiment results on the Caltrans Performance Measurement System (PeMS) dataset show that our proposed model significantly outperforms other popular spatio-temporal deep learning models and suggest the effectiveness to explore geographic-semantic-temporal dependencies on deep learning models for traffic flow prediction.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

CardioGAN: An Attention-Based Generative Adversarial Network for Generation of Electrocardiograms

Subhrajyoti Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; CardioGAN: Generative Adversarial Network for Synthetic Electrocardiogram Signals

Slides Poster Similar

Electrocardiogram (ECG) signal is studied to obtain crucial information about the condition of a patient's heart. Machine learning based automated medical diagnostic systems that may help to evaluate the condition of the heart from this signal are required to be trained using large volumes of labelled training samples and the same may increase the chance of compromising with the patients' privacy. To solve this issue, generation of synthetic electrocardiogram signals by learning only from the general distributions of the available real training samples have been attempted in the literature. However, these studies did not pay necessary attention to the specific vital details of these signals, such as the P wave, the QRS complex, and the T wave. This shortcoming often results in the generation of unrealistic synthetic signals, such as a signal which does not contain one or more of the above components. In the present study, a novel deep generative architecture, termed as CardioGAN, based on generative adversarial network and powered by the effective attention mechanism has been designed which is capable of learning the intricate inter-dependencies among the various parts of real samples leading to the generation of more realistic electrocardiogram signals. Also, it helps in reducing the risk of breaching the privacy of patients. Extensive experimentation performed by us establishes that the proposed method achieves a better performance in generating synthetic electrocardiogram signals in comparison to the existing methods. The source code will be made available on github.

SDMA: Saliency Driven Mutual Cross Attention for Multi-Variate Time Series

Yash Garg, K. Selcuk Candan

Responsive image

Auto-TLDR; Salient-Driven Mutual Cross Attention for Intelligent Time Series Analytics

Slides Poster Similar

Integration of rich sensory technologies into critical applications, such as gesture recognition and building energy optimization, has highlighted the importance of intelligent time series analytics. To accommodate this demand, uni-variate approaches have been extended for multi-variate scenarios, but naive extensions have lead to deterioration in model performances due to their limited ability to capture the information recorded in different variates and complex multi-variate time series patterns’ evolution over time. Furthermore, real-world time series are often contaminated with noisy information. In this paper, we note that a time series often carry robust localized temporal events that could help improve model performance by highlighting the relevant information; however, the lack of sufficient data to train for these events make it impossible for neural architectures to identify and make use of these temporal events. We, therefore, argue that a companion process helping identify salient events in the input time series and driving model’s attention to the associated salient sub-sequences can help with learning a high-performing network. Relying on this observation, we propose a novel Saliency-Driven Mutual Cross Attention (SDMA) framework that extracts localized temporal events and generate a saliency series to complement the input time series. We further propose an architecture which accounts for the mutual cross-talk between the input and saliency series branches where input and saliency series attend each other. Experiments show that the proposed mutually-cross attention framework can offer significant boosts in model performance when compared against non-attentioned, conventionally attentioned, and conventionally cross-attentioned models.

RNN Training along Locally Optimal Trajectories via Frank-Wolfe Algorithm

Yun Yue, Ming Li, Venkatesh Saligrama, Ziming Zhang

Responsive image

Auto-TLDR; Frank-Wolfe Algorithm for Efficient Training of RNNs

Slides Poster Similar

We propose a novel and efficient training method for RNNs by iteratively seeking a local minima on the loss surface within a small region, and leverage this directional vector for the update, in an outer-loop. We propose to utilize the Frank-Wolfe (FW) algorithm in this context. Although, FW implicitly involves normalized gradients, which can lead to a slow convergence rate, we develop a novel RNN training method that, surprisingly, even with the additional cost, the overall training cost is empirically observed to be lower than back-propagation. Our method leads to a new Frank-Wolfe method, that is in essence an SGD algorithm with a restart scheme. We prove that under certain conditions our algorithm has a sublinear convergence rate of $O(1/\epsilon)$ for $\epsilon$ error. We then conduct empirical experiments on several benchmark datasets including those that exhibit long-term dependencies, and show significant performance improvement. We also experiment with deep RNN architectures and show efficient training performance. Finally, we demonstrate that our training method is robust to noisy data.

Human or Machine? It Is Not What You Write, but How You Write It

Luis Leiva, Moises Diaz, M.A. Ferrer, Réjean Plamondon

Responsive image

Auto-TLDR; Behavioral Biometrics via Handwritten Symbols for Identification and Verification

Slides Poster Similar

Online fraud often involves identity theft. Since most security measures are weak or can be spoofed, we investigate a more nuanced and less explored avenue: behavioral biometrics via handwriting movements. This kind of data can be used to verify if a legitimate user is operating a device or a computer application, so it is important to distinguish between human and machine-generated movements reliably. For this purpose, we study handwritten symbols (isolated characters, digits, gestures, and signatures) produced by humans and machines, and compare and contrast several deep learning models. We find that if symbols are presented as static images, they can fool state-of-the-art classifiers (near 75% accuracy in the best case) but can be distinguished with remarkable accuracy if they are presented as temporal sequences (95% accuracy in the average case). We conclude that an accurate detection of fake movements has more to do with how users write, rather than what they write. Our work has implications for computerized systems that need to authenticate or verify legitimate human users, and provides an additional layer of security to keep attackers at bay.

Multiple Future Prediction Leveraging Synthetic Trajectories

Lorenzo Berlincioni, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Synthetic Trajectory Prediction using Markov Chains

Slides Poster Similar

Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.

Context Matters: Self-Attention for Sign Language Recognition

Fares Ben Slimane, Mohamed Bouguessa

Responsive image

Auto-TLDR; Attentional Network for Continuous Sign Language Recognition

Slides Poster Similar

This paper proposes an attentional network for the task of Continuous Sign Language Recognition. The proposed approach exploits co-independent streams of data to model the sign language modalities. These different channels of information can share a complex temporal structure between each other. For that reason, we apply attention to synchronize and help capture entangled dependencies between the different sign language components. Even though Sign Language is multi-channel, handshapes represent the central entities in sign interpretation. Seeing handshapes in their correct context defines the meaning of a sign. Taking that into account, we utilize the attention mechanism to efficiently aggregate the hand features with their appropriate Spatio-temporal context for better sign recognition. We found that by doing so the model is able to identify the essential Sign Language components that revolve around the dominant hand and the face areas. We test our model on the benchmark dataset RWTH-PHOENIX-Weather 2014, yielding competitive results.

Region and Relations Based Multi Attention Network for Graph Classification

Manasvi Aggarwal, M. Narasimha Murty

Responsive image

Auto-TLDR; R2POOL: A Graph Pooling Layer for Non-euclidean Structures

Slides Poster Similar

Graphs are non-euclidean structures that can represent many relational data efficiently. Many studies have proposed the convolution and the pooling operators on the non-euclidean domain. The graph convolution operators have shown astounding performance on various tasks such as node representation and classification. For graph classification, different pooling techniques are introduced, but none of them has considered both neighborhood of the node and the long-range dependencies of the node. In this paper, we propose a novel graph pooling layer R2POOL, which balances the structure information around the node as well as the dependencies with far away nodes. Further, we propose a new training strategy to learn coarse to fine representations. We add supervision at only intermediate levels to generate predictions using only intermediate-level features. For this, we propose the concept of an alignment score. Moreover, each layer's prediction is controlled by our proposed branch training strategy. This complete training helps in learning dominant class features at each layer for representing graphs. We call the combined model by R2MAN. Experiments show that R2MAN the potential to improve the performance of graph classification on various datasets.

Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks

Jiehui Deng, Sheng Wan, Xiang Wang, Enmei Tu, Xiaolin Huang, Jie Yang, Chen Gong

Responsive image

Auto-TLDR; EAGAT: Edge-Aware Graph Attention Network for Automatic REU Estimation in Mobile Networks

Slides Poster Similar

Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, which are experience-dependent and labor-intensive, and thus the estimated REU might be imprecise. Considering the inherited graph structure of mobile networks, in this paper, we utilize a graph-based deep learning method for automatic REU estimation, where the practical cells are deemed as nodes and the load switchings among them constitute edges. Concretely, Graph Attention Network (GAT) is employed as the backbone of our method due to its impressive generalizability in dealing with networked data. Nevertheless, conventional GAT cannot make full use of the information in mobile networks, since it only incorporates node features to infer the pairwise importance and conduct graph convolutions, while the edge features that are actually critical in our problem are disregarded. To accommodate this issue, we propose an Edge-Aware Graph Attention Network (EAGAT), which is able to fuse the node features and edge features for REU estimation. Extensive experimental results on two real-world mobile network datasets demonstrate the superiority of our EAGAT approach to several state-of-the-art methods.

Emerging Relation Network and Task Embedding for Multi-Task Regression Problems

Schreiber Jens, Bernhard Sick

Responsive image

Auto-TLDR; A Comparative Study of Multi-Task Learning for Non-linear Time Series Problems

Slides Poster Similar

Multi-Task learning (MTL) provides state-of-the-art results in many applications of computer vision and natural language processing. In contrast to single-task learning (STL), MTL allows for leveraging knowledge between related tasks improving prediction results on all tasks. However, there is a limited number of comparative studies applied to MTL architectures for regression and time series problems taking recent advances of MTL into account. An intriguing, non-linear time-series problem are day ahead forecasts of the expected power generation for renewable power plants. Therefore, the main contribution of this article is a comparative study of the following recent and relevant MTL architectures: Hard-parameter sharing, cross-stitch network, and sluice network (SN). They are compared to a multi-layer peceptron (MLP) model of similar size in an STL setting. As a additional contribution, we provide a simple, yet practical approach to model task specific information through an embedding layer in an MLP, referred to as task embedding. Further, we contribute a new MTL architecture named emerging relation network (ERN), which can be considered as an extension of the SN. For a solar power dataset, the task embedding achieves the best mean improvement with 8.2%. For two wind and one additional solar dataset, the ERN is the best MTL architecture with improvements up to 11.3%.

GCNs-Based Context-Aware Short Text Similarity Model

Xiaoqi Sun

Responsive image

Auto-TLDR; Context-Aware Graph Convolutional Network for Text Similarity

Slides Poster Similar

Semantic textual similarity is a fundamental task in text mining and natural language processing (NLP), which has profound research value. The essential step for text similarity is text representation learning. Recently, researches have explored the graph convolutional network (GCN) techniques on text representation, since GCN does well in handling complex structures and preserving syntactic information. However, current GCN models are usually limited to very shallow layers due to the vanishing gradient problem, which cannot capture non-local dependency information of sentences. In this paper, we propose a GCNs-based context-aware (GCSTS) model that applies iterated GCN blocks to train deeper GCNs. Recurrently employing the same GCN block prevents over-fitting and provides broad effective input width. Combined with dense connections, GCSTS can be trained more deeply. Besides, we use dynamic graph structures in the block, which further extend the receptive field of each vertex in graphs, learning better sentence representations. Experiments show that our model outperforms existing models on several text similarity datasets, while also verify that GCNs-based text representation models can be trained in a deeper manner, rather than being trained in two or three layers.

Social Network Analysis Using Knowledge-Graph Embeddings and Convolution Operations

Bonaventure Chidube Molokwu, Shaon Bhatta Shuvo, Ziad Kobti, Narayan C. Kar

Responsive image

Auto-TLDR; RLVECO: Representation Learning via Knowledge- Graph Embeddings and Convolution Operations for Social Network Analysis

Slides Poster Similar

Link prediction and node classification tasks in Social Network Analysis (SNA) remain open research problems with respect to Artificial Intelligence (AI). Thus, the inherent representations about social network structures can be effectively harnessed for training AI models in a bid to predict ties as well as detect clusters via classification of actors with regard to a given social network structure. In this paper, we have proposed a special hybrid model comprising dual layers of Feature Learning (FL): Representation Learning via Knowledge- Graph Embeddings and Convolution Operations (RLVECO). The architecture of RLVECO is tailored towards analyzing and extracting meaningful representations from social network structures so as to aid in link prediction, node classification, and community detection tasks. RLVECO utilizes an edge sampling approach for exploiting features of the social graph via learning the context of each actor with respect to its neighboring actors.

PrivAttNet: Predicting Privacy Risks in Images Using Visual Attention

Chen Zhang, Thivya Kandappu, Vigneshwaran Subbaraju

Responsive image

Auto-TLDR; PrivAttNet: A Visual Attention Based Approach for Privacy Sensitivity in Images

Slides Poster Similar

Visual privacy concerns associated with image sharing is a critical issue that need to be addressed to enable safe and lawful use of online social platforms. Users of social media platforms often suffer from no guidance in sharing sensitive images in public, and often face with social and legal consequences. Given the recent success of visual attention based deep learning methods in measuring abstract phenomena like image memorability, we are motivated to investigate whether visual attention based methods could be useful in measuring psycho-physical phenomena like "privacy sensitivity". In this paper we propose PrivAttNet -- a visual attention based approach, that can be trained end-to-end to estimate the privacy sensitivity of images without explicitly detecting objects and attributes present in the image. We show that our PrivAttNet model outperforms various SOTA and baseline strategies -- a 1.6 fold reduction in $L1-error$ over SOTA and 7%--10% improvement in Spearman-rank correlation between the predicted and ground truth sensitivity scores. Additionally, the attention maps from PrivAttNet are found to be useful in directing the users to the regions that are responsible for generating the privacy risk score.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

MEG: Multi-Evidence GNN for Multimodal Semantic Forensics

Ekraam Sabir, Ayush Jaiswal, Wael Abdalmageed, Prem Natarajan

Responsive image

Auto-TLDR; Scalable Image Repurposing Detection with Graph Neural Network Based Model

Slides Poster Similar

Image repurposing is a category of fake news where a digitally unmanipulated image is misrepresented by means of its accompanying metadata such as captions, location, etc., where the image and accompanying metadata together comprise a multimedia package. The problem setup is to authenticate a query multimedia package using a reference dataset of potentially related packages as evidences. Existing methods are limited to using a single evidence (retrieved package), which ignores potential performance improvement from the use of multiple evidences. In this work, we introduce a novel graph neural network based model for image repurposing detection, which effectively utilizes multiple retrieved packages as evidences and is scalable with the number of evidences. We compare the scalability and performance of our model against existing methods. Experimental results show that the proposed model outperforms existing state-of-the-art for image repurposing detection with an error reduction of up to 25%.

2D License Plate Recognition based on Automatic Perspective Rectification

Hui Xu, Zhao-Hong Guo, Da-Han Wang, Xiang-Dong Zhou, Yu Shi

Responsive image

Auto-TLDR; Perspective Rectification Network for License Plate Recognition

Slides Poster Similar

License plate recognition (LPR) remains a challenging task in face of some difficulties such as image deformation and multi-line character distribution. Text rectification that is crucial to eliminate the effects of image deformation has attracted increasing attentions in scene text recognition. However, current text rectification methods are not designed specifically for LPR, which did not take the features of plate deformation into account. Considering the fact that a license plate (LP) can only generate perspective distortion in the image due to its rigid feature, in this paper we propose a novel perspective rectification network (PRN) to automatically estimate the perspective transformation and rectify the distorted LP accordingly. For recognition, we propose a location-aware 2D attention based recognition network that is capable of recognizing both single-line and double-line plates with perspective deformation. The rectification network and recognition network are connected for end-to-end training. Experiments on common datasets show that the proposed method achieves the state-of-the-art performance, demonstrating the effectiveness of the proposed approach.

Text Synopsis Generation for Egocentric Videos

Aidean Sharghi, Niels Lobo, Mubarak Shah

Responsive image

Auto-TLDR; Egocentric Video Summarization Using Multi-task Learning for End-to-End Learning

Slides Similar

Mass utilization of body-worn cameras has led to a huge corpus of available egocentric video. Existing video summarization algorithms can accelerate browsing such videos by selecting (visually) interesting shots from them. Nonetheless, since the system user still has to watch the summary videos, browsing large video databases remain a challenge. Hence, in this work, we propose to generate a textual synopsis, consisting of a few sentences describing the most important events in a long egocentric videos. Users can read the short text to gain insight about the video, and more importantly, efficiently search through the content of a large video database using text queries. Since egocentric videos are long and contain many activities and events, using video-to-text algorithms results in thousands of descriptions, many of which are incorrect. Therefore, we propose a multi-task learning scheme to simultaneously generate descriptions for video segments and summarize the resulting descriptions in an end-to-end fashion. We Input a set of video shots and the network generates a text description for each shot. Next, visual-language content matching unit that is trained with a weakly supervised objective, identifies the correct descriptions. Finally, the last component of our network, called purport network, evaluates the descriptions all together to select the ones containing crucial information. Out of thousands of descriptions generated for the video, a few informative sentences are returned to the user. We validate our framework on the challenging UT Egocentric video dataset, where each video is between 3 to 5 hours long, associated with over 3000 textual descriptions on average. The generated textual summaries, including only 5 percent (or less) of the generated descriptions, are compared to groundtruth summaries in text domain using well-established metrics in natural language processing.

Cross-People Mobile-Phone Based Airwriting Character Recognition

Yunzhe Li, Hui Zheng, He Zhu, Haojun Ai, Xiaowei Dong

Responsive image

Auto-TLDR; Cross-People Airwriting Recognition via Motion Sensor Signal via Deep Neural Network

Slides Poster Similar

Airwriting using mobile phones has many applications in human-computer interaction. However, the recognition of airwriting character needs a lot of training data from user, which brings great difficulties to the pratical application. The model learnt from a specific person often cannot yield satisfied results when used on another person. The data gap between people is mainly caused by the following factors: personal writing styles, mobile phone sensors, and ways to hold mobile phones. To address the cross-people problem, we propose a deep neural network(DNN) that combines convolutional neural network(CNN) and bilateral long short-term memory(BLSTM). In each layer of the network, we also add an AdaBN layer which is able to increase the generalization ability of the DNN. Different from the original AdaBN method, we explore the feasibility for semi-supervised learning. We implement it to our design and conduct comprehensive experiments. The evaluation results show that our system can achieve an accuracy of 99% for recognition and an improvement of 10% on average for transfer learning between various factors such as people, devices and postures. To the best of our knowledge, our work is the first to implement cross-people airwriting recognition via motion sensor signal, which is a fundamental step towards ubiquitous sensing.

Detecting Manipulated Facial Videos: A Time Series Solution

Zhang Zhewei, Ma Can, Gao Meilin, Ding Bowen

Responsive image

Auto-TLDR; Face-Alignment Based Bi-LSTM for Fake Video Detection

Slides Poster Similar

We propose a new method to expose fake videos based on a time series solution. The method is based on bidirectional long short-term memory (Bi-LSTM) backbone architecture with two different types of features: {Face-Alignment} and {Dense-Face-Alignment}, in which both of them are physiological signals that can be distinguished between fake and original videos. We choose 68 landmark points as the feature of {Face-Alignment} and Pose Adaptive Feature (PAF) for {Dense-Face-Alignment}. Based on these two facial features, we designed two deep networks. In addition, we optimize our network by adding an attention mechanism that improves detection precision. Our method is tested over benchmarks of Face Forensics/Face Forensics++ dataset and show a promising performance on inference speed while maintaining accuracy with state-of art solutions that deal against DeepFake.

Regularized Flexible Activation Function Combinations for Deep Neural Networks

Renlong Jie, Junbin Gao, Andrey Vasnev, Minh-Ngoc Tran

Responsive image

Auto-TLDR; Flexible Activation in Deep Neural Networks using ReLU and ELUs

Slides Poster Similar

Activation in deep neural networks is fundamental to achieving non-linear mappings. Traditional studies mainly focus on finding fixed activations for a particular set of learning tasks or model architectures. The research on flexible activation is quite limited in both designing philosophy and application scenarios. In this study, three principles of choosing flexible activation components are proposed and a general combined form of flexible activation functions is implemented. Based on this, a novel family of flexible activation functions that can replace sigmoid or tanh in LSTM cells are implemented, as well as a new family by combining ReLU and ELUs. Also, two new regularisation terms based on assumptions as prior knowledge are introduced. It has been shown that LSTM models with proposed flexible activations P-Sig-Ramp provide significant improvements in time series forecasting, while the proposed P-E2-ReLU achieves better and more stable performance on lossy image compression tasks with convolutional auto-encoders. In addition, the proposed regularization terms improve the convergence,performance and stability of the models with flexible activation functions. The code for this paper is available at https://github.com/9NXJRDDRQK/Flexible Activation.