Christian Bauckhage

Papers from this author

Decision Snippet Features

Pascal Welke, Fouad Alkhoury, Christian Bauckhage, Stefan Wrobel

Responsive image

Auto-TLDR; Decision Snippet Features for Interpretability

Slides Poster Similar

Decision trees excel at interpretability of their prediction results. To achieve required prediction accuracies, however, often large ensembles of decision trees -- random forests -- are considered, reducing interpretability due to large size. Additionally, their size slows down inference on modern hardware and restricts their applicability in low-memory embedded devices. We introduce \emph{Decision Snippet Features}, which are obtained from small subtrees that appear frequently in trained random forests. We subsequently show that linear models on top of these features achieve comparable and sometimes even better predictive performance than the original random forest, while reducing the model size by up to two orders of magnitude.

Street-Map Based Validation of Semantic Segmentation in Autonomous Driving

Laura Von Rueden, Tim Wirtz, Fabian Hueger, Jan David Schneider, Nico Piatkowski, Christian Bauckhage

Responsive image

Auto-TLDR; Semantic Segmentation Mask Validation Using A-priori Knowledge from Street Maps

Slides Poster Similar

Artificial intelligence for autonomous driving must meet strict requirements on safety and robustness, which motivates the thorough validation of learned models. However, current validation approaches mostly require ground truth data and are thus both cost-intensive and limited in their applicability. We propose to overcome these limitations by a model agnostic validation using a-priori knowledge from street maps. In particular, we show how to validate semantic segmentation masks and demonstrate the potential of our approach using OpenStreetMap. We introduce validation metrics that indicate false positive or negative road segments. Besides the validation approach, we present a method to correct the vehicle's GPS position so that a more accurate localization can be used for the street map based validation. Lastly, we present quantitative results on the Cityscapes dataset indicating that our validation approach can indeed uncover errors in semantic segmentation masks.

Tackling Contradiction Detection in German Using Machine Translation and End-To-End Recurrent Neural Networks

Maren Pielka, Rafet Sifa, Lars Patrick Hillebrand, David Biesner, Rajkumar Ramamurthy, Anna Ladi, Christian Bauckhage

Responsive image

Auto-TLDR; Contradiction Detection in Natural Language Inference using Recurrent Neural Networks

Slides Poster Similar

Natural Language Inference, and specifically Contradiction Detection, is still an unexplored topic with respect to German text. In this paper, we apply Recurrent Neural Network (RNN) methods to learn contradiction-specific sentence embeddings. Our data set for evaluation is a machine-translated version of the Stanford Natural Language Inference (SNLI) corpus. The results are compared to a baseline using unsupervised vectorization techniques, namely tf-idf and Flair, as well as state-of-the art transformer-based (MBERT) methods. We find that the end-to-end models outperform the models trained on unsupervised embeddings, which makes them the better choice in an empirical use case. The RNN methods also perform superior to MBERT on the translated data set.