End-To-End Multi-Task Learning of Missing Value Imputation and Forecasting in Time-Series Data

Jinhee Kim, Taesung Kim, Jang-Ho Choi, Jaegul Choo

Responsive image

Auto-TLDR; Time-Series Prediction with Denoising and Imputation of Missing Data

Slides Poster

Multivariate time-series prediction is a common task, but it often becomes challenging due to missing values involved in data caused by unreliable sensors and other issues. In fact, inaccurate imputation of missing values can degrade the downstream prediction performance, so it may be better not to rely on the estimated values of missing data. Furthermore, observed data may contain noise, so denoising them can be helpful for the main task at hand. In response, we propose a novel approach that can automatically utilize the optimal combination of the observed and the estimated values to generate not only complete, but also noise-reduced data by our own gating mechanism. We evaluate our model on real-world time-series datasets and achieved state-of-the-art performance, demonstrating that our method successfully handle the incomplete datasets. Moreover, we present in-depth studies using a carefully designed, synthetic multivariate time-series dataset to verify the effectiveness of the proposed model. The ablation studies and the experimental analysis of the proposed gating mechanism show that the proposed method works as an effective denoising as well as imputation method for time-series classification tasks.

Similar papers

CardioGAN: An Attention-Based Generative Adversarial Network for Generation of Electrocardiograms

Subhrajyoti Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; CardioGAN: Generative Adversarial Network for Synthetic Electrocardiogram Signals

Slides Poster Similar

Electrocardiogram (ECG) signal is studied to obtain crucial information about the condition of a patient's heart. Machine learning based automated medical diagnostic systems that may help to evaluate the condition of the heart from this signal are required to be trained using large volumes of labelled training samples and the same may increase the chance of compromising with the patients' privacy. To solve this issue, generation of synthetic electrocardiogram signals by learning only from the general distributions of the available real training samples have been attempted in the literature. However, these studies did not pay necessary attention to the specific vital details of these signals, such as the P wave, the QRS complex, and the T wave. This shortcoming often results in the generation of unrealistic synthetic signals, such as a signal which does not contain one or more of the above components. In the present study, a novel deep generative architecture, termed as CardioGAN, based on generative adversarial network and powered by the effective attention mechanism has been designed which is capable of learning the intricate inter-dependencies among the various parts of real samples leading to the generation of more realistic electrocardiogram signals. Also, it helps in reducing the risk of breaching the privacy of patients. Extensive experimentation performed by us establishes that the proposed method achieves a better performance in generating synthetic electrocardiogram signals in comparison to the existing methods. The source code will be made available on github.

Transformer Networks for Trajectory Forecasting

Francesco Giuliari, Hasan Irtiza, Marco Cristani, Fabio Galasso

Responsive image

Auto-TLDR; TransformerNetworks for Trajectory Prediction of People Interactions

Slides Poster Similar

Most recent successes on forecasting the people mo-tion are based on LSTM models andallmost recent progress hasbeen achieved by modelling the social interaction among peopleand the people interaction with the scene. We question the useof the LSTM models and propose the novel use of TransformerNetworks for trajectory forecasting. This is a fundamental switchfrom the sequential step-by-step processing of LSTMs to theonly-attention-based memory mechanisms of Transformers. Inparticular, we consider both the original Transformer Network(TF) and the larger Bidirectional Transformer (BERT), state-of-the-art on all natural language processing tasks. Our proposedTransformers predict the trajectories of the individual peoplein the scene. These are “simple” models because each personis modelled separately without any complex human-human norscene interaction terms. In particular, the TF modelwithoutbells and whistlesyields the best score on the largest and mostchallenging trajectory forecasting benchmark of TrajNet [1]. Ad-ditionally, its extension which predicts multiple plausible futuretrajectories performs on par with more engineered techniqueson the 5 datasets of ETH [2]+UCY [3]. Finally, we showthat Transformers may deal with missing observations, as itmay be the case with real sensor data. Code is available atgithub.com/FGiuliari/Trajectory-Transformer

Trajectory-User Link with Attention Recurrent Networks

Tao Sun, Yongjun Xu, Fei Wang, Lin Wu, 塘文 钱, Zezhi Shao

Responsive image

Auto-TLDR; TULAR: Trajectory-User Link with Attention Recurrent Neural Networks

Slides Poster Similar

The prevalent adoptions of GPS-enabled devices have witnessed an explosion of various location-based services which produces a huge amount of trajectories monitoring the individuals' movements. In this paper, we tackle Trajectory-User Link (TUL) problem, which identifies humans' movement patterns and links trajectories to the users who generated them. Existing solutions on TUL problem employ recurrent neural networks and variational autoencoder methods, which face the bottlenecks in the case of excessively long trajectories and fragmentary users' movements. However, these are common characteristics of trajectory data in reality, leading to performance degradation of the existing models. In this paper, we propose an end-to-end attention recurrent neural learning framework, called TULAR (Trajectory-User Link with Attention Recurrent Networks), which focus on selected parts of the source trajectories when linking. TULAR introduce the Trajectory Semantic Vector (TSV) via unsupervised location representation learning and recurrent neural networks, by which to reckon the weight of parts of source trajectory. Further, we employ three attention scores for the weight measurements. Experiments are conducted on two real world datasets and compared with several existing methods, and the results show that TULAR yields a new state-of-the-art performance. Source code is public available at GitHub: https://github.com/taos123/TULAR.

AG-GAN: An Attentive Group-Aware GAN for Pedestrian Trajectory Prediction

Yue Song, Niccolò Bisagno, Syed Zohaib Hassan, Nicola Conci

Responsive image

Auto-TLDR; An attentive group-aware GAN for motion prediction in crowded scenarios

Slides Poster Similar

Understanding human behaviors in crowded scenarios requires analyzing not only the position of the subjects in space, but also the scene context. Existing approaches mostly rely on the motion history of each pedestrian and model the interactions among people by considering the entire surrounding neighborhood. In our approach, we address the problem of motion prediction by applying coherent group clustering and a global attention mechanism on the LSTM-based Generative Adversarial Networks (GANs). The proposed model consists of an attentive group-aware GAN that observes the agents' past motion and predicts future paths, using (i) a group pooling module to model neighborhood interaction, and (ii) an attention module to specifically focus on hidden states. The experimental results demonstrate that our proposal outperforms state-of-the-art models on common benchmark datasets, and is able to generate socially-acceptable trajectories.

Switching Dynamical Systems with Deep Neural Networks

Cesar Ali Ojeda Marin, Kostadin Cvejoski, Bogdan Georgiev, Ramses J. Sanchez

Responsive image

Auto-TLDR; Variational RNN for Switching Dynamics

Slides Poster Similar

The problem of uncovering different dynamicalregimes is of pivotal importance in time series analysis. Switchingdynamical systems provide a solution for modeling physical phe-nomena whose time series data exhibit different dynamical modes.In this work we propose a novel variational RNN model forswitching dynamics allowing for both non-Markovian and non-linear dynamical behavior between and within dynamic modes.Attention mechanisms are provided to inform the switchingdistribution. We evaluate our model on synthetic and empiricaldatasets of diverse nature and successfully uncover differentdynamical regimes and predict the switching dynamics.

Constructing Geographic and Long-term Temporal Graph for Traffic Forecasting

Yiwen Sun, Yulu Wang, Kun Fu, Zheng Wang, Changshui Zhang, Jieping Ye

Responsive image

Auto-TLDR; GLT-GCRNN: Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network for Traffic Forecasting

Slides Poster Similar

Traffic forecasting influences various intelligent transportation system (ITS) services and is of great significance for user experience as well as urban traffic control. It is challenging due to the fact that the road network contains complex and time-varying spatial-temporal dependencies. Recently, deep learning based methods have achieved promising results by adopting graph convolutional network (GCN) to extract the spatial correlations and recurrent neural network (RNN) to capture the temporal dependencies. However, the existing methods often construct the graph only based on road network connectivity, which limits the interaction between roads. In this work, we propose Geographic and Long-term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN), a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or long-term temporal patterns. Extensive experiments on a real-world traffic state dataset validate the effectiveness of our method by showing that GLT-GCRNN outperforms the state-of-the-art methods in terms of different metrics.

Geographic-Semantic-Temporal Hypergraph Convolutional Network for Traffic Flow Prediction

Kesu Wang, Jing Chen, Shijie Liao, Jiaxin Hou, Qingyu Xiong

Responsive image

Auto-TLDR; Geographic-semantic-temporal convolutional network for traffic flow prediction

Similar

Traffic flow prediction is becoming an increasingly important part for intelligent transportation control and management. This task is challenging due to (1) complex geographic and non-geographic spatial correlation; (2) temporal correlations between time slices; (3) dynamics of semantic high-order correlations along temporal dimension. To address those difficulties, commonly-used methods apply graph convolutional networks for spatial correlations and recurrent neural networks for temporal dependencies. In this work, We distinguish the two aspects of spatial correlations and propose the two types of spatial graphes, named as geographic graph and semantic hypergraph. We extend the traditional convolution and propose geographic-temporal graph convolution to jointly capture geographic-temporal correlations and semantic-temporal hypergraph convolution to jointly capture semantic-temporal correlations. Then We propose a geographic-semantic-temporal convolutional network (GST-HCN) that combines our graph convolutions and GRU units hierarchically in a unified end-to-end network. The experiment results on the Caltrans Performance Measurement System (PeMS) dataset show that our proposed model significantly outperforms other popular spatio-temporal deep learning models and suggest the effectiveness to explore geographic-semantic-temporal dependencies on deep learning models for traffic flow prediction.

Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting

Tanwi Mallick, Prasanna Balaprakash, Eric Rask, Jane Macfarlane

Responsive image

Auto-TLDR; Transfer Learning for Highway Traffic Forecasting on Unseen Traffic Networks

Slides Poster Similar

Large-scale highway traffic forecasting approaches are critical for intelligent transportation systems. Recently, deep-learning-based traffic forecasting methods have emerged as promising approaches for a wide range of traffic forecasting tasks. However, these methods are specific to a given traffic network and consequently, they cannot be used for forecasting traffic on an unseen traffic network. Previous work has identified diffusion convolutional recurrent neural network (DCRNN), as a state-of-the-art method for highway traffic forecasting. It models the complex spatial and temporal dynamics of a highway network using a graph-based diffusion convolution operation within a recurrent neural network. Currently, DCRNN cannot perform transfer learning because it learns location-specific traffic patterns, which cannot be used for unseen regions of a network or new geographic locations. To that end, we develop TL-DCRNN, a new transfer learning approach for DCRNN, where a single model trained on a highway network can be used to forecast traffic on unseen highway networks. Given a traffic network with a large amount of traffic data, our approach consists of partitioning the traffic network into a number of subgraphs and using a new training scheme that utilizes subgraphs for the DCRNN to marginalize the location-specific information, thus learning the traffic as a function of network connectivity and temporal patterns alone. The resulting trained model can be used to forecast traffic on unseen networks. We demonstrate that TL-DCRNN can learn from San Francisco regional traffic data and forecast traffic on the Los Angeles region and vice versa.

Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction

Jiexia Ye, Juanjuan Zhao, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; Multi-GCGRU: A Deep Learning Framework for Stock Price Prediction with Cross Effect

Slides Poster Similar

Stock price movement prediction is commonly accepted as a very challenging task due to the volatile nature of financial markets. Previous works typically predict the stock price mainly based on its own information, neglecting the cross effect among involved stocks. However, it is well known that an individual stock price is correlated with prices of other stocks in complex ways. To take the cross effect into consideration, we propose a deep learning framework, called Multi-GCGRU, which comprises graph convolutional network (GCN) and gated recurrent units (GRU) to predict stock movement. Specifically, we first encode multiple relationships among stocks into graphs based on financial domain knowledge and utilize GCN to extract the cross effect based on the pre-defined graphs. The cross-correlation features produced by GCN are concatenated with historical records and fed into GRU to model the temporal pattern in stock price. To further get rid of prior knowledge, we explore an adaptive stock graph learned by data automatically. Experiments on two stock indexes in China market show that our model outperforms other baselines. Note that our model is rather feasible to incorporate more effective pre-defined stock relationships. What's more, it can also learn a data-driven relationship without any domain knowledge.

Adversarial Encoder-Multi-Task-Decoder for Multi-Stage Processes

Andre Mendes, Julian Togelius, Leandro Dos Santos Coelho

Responsive image

Auto-TLDR; Multi-Task Learning and Semi-Supervised Learning for Multi-Stage Processes

Similar

In multi-stage processes, decisions occur in an ordered sequence of stages. Early stages usually have more observations with general information (easier/cheaper to collect), while later stages have fewer observations but more specific data. This situation can be represented by a dual funnel structure, in which the sample size decreases from one stage to the other while the information increases. Training classifiers in this scenario is challenging since information in the early stages may not contain distinct patterns to learn (underfitting). In contrast, the small sample size in later stages can cause overfitting. We address both cases by introducing a framework that combines adversarial autoencoders (AAE), multi-task learning (MTL), and multi-label semi-supervised learning (MLSSL). We improve the decoder of the AAE with an MTL component so it can jointly reconstruct the original input and use feature nets to predict the features for the next stages. We also introduce a sequence constraint in the output of an MLSSL classifier to guarantee the sequential pattern in the predictions. Using real-world data from different domains (selection process, medical diagnosis), we show that our approach outperforms other state-of-the-art methods.

Interpretable Structured Learning with Sparse Gated Sequence Encoder for Protein-Protein Interaction Prediction

Kishan K C, Feng Cui, Anne Haake, Rui Li

Responsive image

Auto-TLDR; Predicting Protein-Protein Interactions Using Sequence Representations

Slides Poster Similar

Predicting protein-protein interactions (PPIs) by learning informative representations from amino acid sequences is a challenging yet important problem in biology. Although various deep learning models in Siamese architecture have been proposed to model PPIs from sequences, these methods are computationally expensive for a large number of PPIs due to the pairwise encoding process. Furthermore, these methods are difficult to interpret because of non-intuitive mappings from protein sequences to their sequence representation. To address these challenges, we present a novel deep framework to model and predict PPIs from sequence alone. Our model incorporates a bidirectional gated recurrent unit to learn sequence representations by leveraging contextualized and sequential information from sequences. We further employ a sparse regularization to model long-range dependencies between amino acids and to select important amino acids (protein motifs), thus enhancing interpretability. Besides, the novel design of the encoding process makes our model computationally efficient and scalable to an increasing number of interactions. Experimental results on up-to-date interaction datasets demonstrate that our model achieves superior performance compared to other state-of-the-art methods. Literature-based case studies illustrate the ability of our model to provide biological insights to interpret the predictions.

DAG-Net: Double Attentive Graph Neural Network for Trajectory Forecasting

Alessio Monti, Alessia Bertugli, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Recurrent Generative Model for Multi-modal Human Motion Behaviour in Urban Environments

Slides Poster Similar

Understanding human motion behaviour is a critical task for several possible applications like self-driving cars or social robots, and in general for all those settings where an autonomous agent has to navigate inside a human-centric environment. This is non-trivial because human motion is inherently multi-modal: given a history of human motion paths, there are many plausible ways by which people could move in the future. Additionally, people activities are often driven by goals, e.g. reaching particular locations or interacting with the environment. We address both the aforementioned aspects by proposing a new recurrent generative model that considers both single agents’ future goals and interactions between different agents. The model exploits a double attention-based graph neural network to collect information about the mutual influences among different agents and integrates it with data about agents’ possible future objectives. Our proposal is general enough to be applied in different scenarios: the model achieves state-of-the-art results in both urban environments and also in sports applications.

Temporal Pattern Detection in Time-Varying Graphical Models

Federico Tomasi, Veronica Tozzo, Annalisa Barla

Responsive image

Auto-TLDR; A dynamical network inference model that leverages on kernels to consider general temporal patterns

Slides Poster Similar

Graphical models allow to describe the interplay among variables of a system through a compact representation, suitable when relations evolve over time. For example, in a biological setting, genes interact differently depending on external environmental or metabolic factors. To incorporate this dynamics a viable strategy is to estimate a sequence of temporally related graphs assuming similarity among samples in different time points. While adjacent time points may direct the analysis towards a robust estimate of the underlying graph, the resulting model will not incorporate long-term or recurrent temporal relationships. In this work we propose a dynamical network inference model that leverages on kernels to consider general temporal patterns (such as circadian rhythms or seasonality). We show how our approach may also be exploited when the recurrent patterns are unknown, by coupling the network inference with a clustering procedure that detects possibly non-consecutive similar networks. Such clusters are then used to build similarity kernels. The convexity of the functional is determined by whether we impose or infer the kernel. In the first case, the optimisation algorithm exploits efficiently proximity operators with closed-form solutions. In the other case, we resort to an alternating minimisation procedure which jointly learns the temporal kernel and the underlying network. Extensive analysis on synthetic data shows the efficacy of our models compared to state-of-the-art methods. Finally, we applied our approach on two real-world applications to show how considering long-term patterns is fundamental to have insights on the behaviour of a complex system.

SDMA: Saliency Driven Mutual Cross Attention for Multi-Variate Time Series

Yash Garg, K. Selcuk Candan

Responsive image

Auto-TLDR; Salient-Driven Mutual Cross Attention for Intelligent Time Series Analytics

Slides Poster Similar

Integration of rich sensory technologies into critical applications, such as gesture recognition and building energy optimization, has highlighted the importance of intelligent time series analytics. To accommodate this demand, uni-variate approaches have been extended for multi-variate scenarios, but naive extensions have lead to deterioration in model performances due to their limited ability to capture the information recorded in different variates and complex multi-variate time series patterns’ evolution over time. Furthermore, real-world time series are often contaminated with noisy information. In this paper, we note that a time series often carry robust localized temporal events that could help improve model performance by highlighting the relevant information; however, the lack of sufficient data to train for these events make it impossible for neural architectures to identify and make use of these temporal events. We, therefore, argue that a companion process helping identify salient events in the input time series and driving model’s attention to the associated salient sub-sequences can help with learning a high-performing network. Relying on this observation, we propose a novel Saliency-Driven Mutual Cross Attention (SDMA) framework that extracts localized temporal events and generate a saliency series to complement the input time series. We further propose an architecture which accounts for the mutual cross-talk between the input and saliency series branches where input and saliency series attend each other. Experiments show that the proposed mutually-cross attention framework can offer significant boosts in model performance when compared against non-attentioned, conventionally attentioned, and conventionally cross-attentioned models.

EasiECG: A Novel Inter-Patient Arrhythmia Classification Method Using ECG Waves

Chuanqi Han, Ruoran Huang, Fang Yu, Xi Huang, Li Cui

Responsive image

Auto-TLDR; EasiECG: Attention-based Convolution Factorization Machines for Arrhythmia Classification

Slides Poster Similar

Abstract—In an ECG record, the PQRST waves are of important medical significance which provide ample information reflecting heartbeat activities. In this paper, we propose a novel arrhythmia classification method namely EasiECG, characterized by simplicity and accuracy. Compared with other works, the EasiECG takes the configuration of these five key waves into account and does not require complicated feature engineering. Meanwhile, an additional encoding of the extracted features makes the EasiECG applicable even on samples with missing waves. To automatically capture interactions that contribute to the classification among the processed features, a novel adapted classification model named Attention-based Convolution Factorization Machines (ACFM) is proposed. In detail, the ACFM can learn both linear and high-order interactions from linear regression and convolution on outer-product feature interaction maps, respectively. After that, an attention mechanism implemented in the model can further assign different importance of these interactions when predicting certain types of heartbeats. To validate the effectiveness and practicability of our EasiECG, extensive experiments of inter-patient paradigm on the benchmark MIT-BIH arrhythmia database are conducted. To tackle the imbalanced sample problem in this dataset, an ingenious loss function: focal loss is adopted when training. The experiment results show that our method is competitive compared with other state-of-the-arts, especially in classifying the Supraventricular ectopic beats. Besides, the EasiECG achieves an overall accuracy of 87.6% on samples with a missing wave in the related experiment, demonstrating the robustness of our proposed method.

What and How? Jointly Forecasting Human Action and Pose

Yanjun Zhu, Yanxia Zhang, Qiong Liu, Andreas Girgensohn

Responsive image

Auto-TLDR; Forecasting Human Actions and Motion Trajectories with Joint Action Classification and Pose Regression

Slides Poster Similar

Forecasting human actions and motion trajectories addresses the problem of predicting what a person is going to do next and how they will perform it. This is crucial in a wide range of applications such as assisted living and future co-robotic settings. We propose to simultaneously learn actions and action-related human motion dynamics, while existing works perform them independently. In this paper, we present a method to jointly forecast categories of human action and the pose of skeletal joints in the hope that the two tasks can help each other. As a result, our system can predict not only the future actions but also the motion trajectories that will result. To achieve this, we define a task of joint action classification and pose regression. We employ a sequence to sequence encoder-decoder model combined with multi-task learning to forecast future actions and poses progressively before the action happens. Experimental results on two public datasets, IkeaDB and OAD, demonstrate the effectiveness of the proposed method.

MA-LSTM: A Multi-Attention Based LSTM for Complex Pattern Extraction

Jingjie Guo, Kelang Tian, Kejiang Ye, Cheng-Zhong Xu

Responsive image

Auto-TLDR; MA-LSTM: Multiple Attention based recurrent neural network for forget gate

Slides Poster Similar

With the improvement of data, computing powerand algorithms, deep learning has achieved rapid developmentand showing excellent performance. Recently, many deep learn-ing models are proposed to solve the problems in different areas.A recurrent neural network (RNN) is a class of artificial neuralnetworks where connections between nodes form a directedgraph along a temporal sequence. This allows it to exhibittemporal dynamic behavior, which makes it applicable to taskssuch as handwriting recognition or speech recognition. How-ever, the RNN relies heavily on the automatic learning abilityto update parameters which concentrate on the data flow butseldom considers the feature extraction capability of the gatemechanism. In this paper, we propose a novel architecture tobuild the forget gate which is generated by multiple bases.Instead of using the traditional single-layer fully-connectednetwork, we use a Multiple Attention (MA) based network togenerate the forget gate which refines the optimization spaceof gate function and improve the granularity of the recurrentneural network to approximate the map in the ground truth.Credit to the MA structure on the gate mechanism. Our modelhas a better feature extraction capability than other knownmodels. MA-LSTM is an alternative module which can directly replace the recurrent neural network and has achieved good performance in many areas that people are concerned about.

Phase Retrieval Using Conditional Generative Adversarial Networks

Tobias Uelwer, Alexander Oberstraß, Stefan Harmeling

Responsive image

Auto-TLDR; Conditional Generative Adversarial Networks for Phase Retrieval

Slides Poster Similar

In this paper, we propose the application of conditional generative adversarial networks to solve various phase retrieval problems. We show that including knowledge of the measurement process at training time leads to an optimization at test time that is more robust to initialization than existing approaches involving generative models. In addition, conditioning the generator network on the measurements enables us to achieve much more detailed results. We empirically demonstrate that these advantages provide meaningful solutions to the Fourier and the compressive phase retrieval problem and that our method outperforms well-established projection-based methods as well as existing methods that are based on neural networks. Like other deep learning methods, our approach is very robust to noise and can therefore be very useful for real-world applications.

Regularized Flexible Activation Function Combinations for Deep Neural Networks

Renlong Jie, Junbin Gao, Andrey Vasnev, Minh-Ngoc Tran

Responsive image

Auto-TLDR; Flexible Activation in Deep Neural Networks using ReLU and ELUs

Slides Poster Similar

Activation in deep neural networks is fundamental to achieving non-linear mappings. Traditional studies mainly focus on finding fixed activations for a particular set of learning tasks or model architectures. The research on flexible activation is quite limited in both designing philosophy and application scenarios. In this study, three principles of choosing flexible activation components are proposed and a general combined form of flexible activation functions is implemented. Based on this, a novel family of flexible activation functions that can replace sigmoid or tanh in LSTM cells are implemented, as well as a new family by combining ReLU and ELUs. Also, two new regularisation terms based on assumptions as prior knowledge are introduced. It has been shown that LSTM models with proposed flexible activations P-Sig-Ramp provide significant improvements in time series forecasting, while the proposed P-E2-ReLU achieves better and more stable performance on lossy image compression tasks with convolutional auto-encoders. In addition, the proposed regularization terms improve the convergence,performance and stability of the models with flexible activation functions. The code for this paper is available at https://github.com/9NXJRDDRQK/Flexible Activation.

JUMPS: Joints Upsampling Method for Pose Sequences

Lucas Mourot, Francois Le Clerc, Cédric Thébault, Pierre Hellier

Responsive image

Auto-TLDR; JUMPS: Increasing the Number of Joints in 2D Pose Estimation and Recovering Occluded or Missing Joints

Slides Poster Similar

Human Pose Estimation is a low-level task useful for surveillance, human action recognition, and scene understanding at large. It also offers promising perspectives for the animation of synthetic characters. For all these applications, and especially the latter, estimating the positions of many joints is desirable for improved performance and realism. To this purpose, we propose a novel method called JUMPS for increasing the number of joints in 2D pose estimates and recovering occluded or missing joints. We believe this is the first attempt to address the issue. We build on a deep generative model that combines a GAN and an encoder. The GAN learns the distribution of high-resolution human pose sequences, the encoder maps the input low-resolution sequences to its latent space. Inpainting is obtained by computing the latent representation whose decoding by the GAN generator optimally matches the joints locations at the input. Post-processing a 2D pose sequence using our method provides a richer representation of the character motion. We show experimentally that the localization accuracy of the additional joints is on average on par with the original pose estimates.

A Joint Representation Learning and Feature Modeling Approach for One-Class Recognition

Pramuditha Perera, Vishal Patel

Responsive image

Auto-TLDR; Combining Generative Features and One-Class Classification for Effective One-class Recognition

Slides Poster Similar

One-class recognition is traditionally approached either as a representation learning problem or a feature modelling problem. In this work, we argue that both of these approaches have their own limitations; and a more effective solution can be obtained by combining the two. The proposed approach is based on the combination of a generative framework and a one-class classification method. First, we learn generative features using the one-class data with a generative framework. We augment the learned features with the corresponding reconstruction errors to obtain augmented features. Then, we qualitatively identify a suitable feature distribution that reduces the redundancy in the chosen classifier space. Finally, we force the augmented features to take the form of this distribution using an adversarial framework. We test the effectiveness of the proposed method on three one-class classification tasks and obtain state-of-the-art results.

PIN: A Novel Parallel Interactive Network for Spoken Language Understanding

Peilin Zhou, Zhiqi Huang, Fenglin Liu, Yuexian Zou

Responsive image

Auto-TLDR; Parallel Interactive Network for Spoken Language Understanding

Slides Poster Similar

Spoken Language Understanding (SLU) is an essential part of the spoken dialogue system, which typically consists of intent detection (ID) and slot filling (SF) tasks. Recently, recurrent neural networks (RNNs) based methods achieved the state-of-the-art for SLU. It is noted that, in the existing RNN-based approaches, ID and SF tasks are often jointly modeled to utilize the correlation information between them. However, we noted that, so far, the efforts to obtain better performance by supporting bidirectional and explicit information exchange between ID and SF are not well studied. In addition, few studies attempt to capture the local context information to enhance the performance of SF. Motivated by these findings, in this paper, Parallel Interactive Network (PIN) is proposed to model the mutual guidance between ID and SF. Specifically, given an utterance, a Gaussian self-attentive encoder is introduced to generate the context-aware feature embedding of the utterance which is able to capture local context information. Taking the feature embedding of the utterance, Slot2Intent module and Intent2Slot module are developed to capture the bidirectional information flow for ID and SF tasks. Finally, a cooperation mechanism is constructed to fuse the information obtained from Slot2Intent and Intent2Slot modules to further reduce the prediction bias. The experiments on two benchmark datasets, i.e., SNIPS and ATIS, demonstrate the effectiveness of our approach, which achieves a competitive result with state-of-the-art models. More encouragingly, by using the feature embedding of the utterance generated by the pre-trained language model BERT, our method achieves the state-of-the-art among all comparison approaches.

Estimation of Clinical Tremor Using Spatio-Temporal Adversarial AutoEncoder

Li Zhang, Vidya Koesmahargyo, Isaac Galatzer-Levy

Responsive image

Auto-TLDR; ST-AAE: Spatio-temporal Adversarial Autoencoder for Clinical Assessment of Hand Tremor Frequency and Severity

Slides Poster Similar

Collecting sufficient well-labeled training data is a challenging task in many clinical applications. Besides the tremendous efforts required for data collection, clinical assessments are also impacted by raters’ variabilities, which may be significant even among experienced clinicians. The high demands of reproducible and scalable data-driven approaches in these areas necessitates relevant research on learning with limited data. In this work, we propose a spatio-temporal adversarial autoencoder (ST-AAE) for clinical assessment of hand tremor frequency and severity. The ST-AAE integrates spatial and temporal information simultaneously into the original AAE, taking optical flows as inputs. Using only optical flows, irrelevant background or static objects from RGB frames are largely eliminated, so that the AAE is directed to effectively learn key feature representations of the latent space from tremor movements. The ST-AAE was evaluated with both volunteer and clinical data. The volunteer results showed that the ST-AAE improved model performance significantly by 15% increase on accuracy. Leave-one-out (on subjects) cross validation was used to evaluate the accuracy for all the 3068 video segments from 28 volunteers. The weighted average of the AUCs of ROCs is 0.97. The results demonstrated that the ST-AAE model, trained with a small number of subjects, can be generalized well to different subjects. In addition, the model trained only by volunteer data was also evaluated with 32 clinical videos from 9 essential tremor patients, the model predictions correlate well with the clinical ratings: correlation coefficient r = 0.91 and 0.98 for in-person ratings and video watching ratings, respectively.

Leveraging Synthetic Subject Invariant EEG Signals for Zero Calibration BCI

Nik Khadijah Nik Aznan, Amir Atapour-Abarghouei, Stephen Bonner, Jason Connolly, Toby Breckon

Responsive image

Auto-TLDR; SIS-GAN: Subject Invariant SSVEP Generative Adversarial Network for Brain-Computer Interface

Slides Similar

Recently, substantial progress has been made in the area of Brain-Computer Interface (BCI) using modern machine learning techniques to decode and interpret brain signals. While Electroencephalography (EEG) has provided a non-invasive method of interfacing with a human brain, the acquired data is often heavily subject and session dependent. This makes seamless incorporation of such data into real-world applications intractable as the subject and session data variance can lead to long and tedious calibration requirements and cross-subject generalisation issues. Focusing on a Steady State Visual Evoked Potential (SSVEP) classification systems, we propose a novel means of generating highly-realistic synthetic EEG data invariant to any subject, session or other environmental conditions. Our approach, entitled the Subject Invariant SSVEP Generative Adversarial Network (SIS-GAN), produces synthetic EEG data from multiple SSVEP classes using a single network. Additionally, by taking advantage of a fixed-weight pre-trained subject classification network, we ensure that our generative model remains agnostic to subject-specific features and thus produces subject-invariant data that can be applied to new previously unseen subjects. Our extensive experimental evaluation demonstrates the efficacy of our synthetic data, leading to superior performance, with improvements of up to 16% in zero-calibration classification tasks when trained using our subject-invariant synthetic EEG signals.

Data Normalization for Bilinear Structures in High-Frequency Financial Time-Series

Dat Thanh Tran, Juho Kanniainen, Moncef Gabbouj, Alexandros Iosifidis

Responsive image

Auto-TLDR; Bilinear Normalization for Financial Time-Series Analysis and Forecasting

Slides Poster Similar

Financial time-series analysis and forecasting have been extensively studied over the past decades, yet still remain as a very challenging research topic. Since the financial market is inherently noisy and stochastic, a majority of financial time-series of interests are non-stationary, and often obtained from different modalities. This property presents great challenges and can significantly affect the performance of the subsequent analysis/forecasting steps. Recently, the Temporal Attention augmented Bilinear Layer (TABL) has shown great performances in tackling financial forecasting problems. In this paper, by taking into account the nature of bilinear projections in TABL networks, we propose Bilinear Normalization (BiN), a simple, yet efficient normalization layer to be incorporated into TABL networks to tackle potential problems posed by non-stationarity and multimodalities in the input series. Our experiments using a large scale Limit Order Book (LOB) consisting of more than 4 million order events show that BiN-TABL outperforms TABL networks using other state-of-the-arts normalization schemes by a large margin.

Multiple Future Prediction Leveraging Synthetic Trajectories

Lorenzo Berlincioni, Federico Becattini, Lorenzo Seidenari, Alberto Del Bimbo

Responsive image

Auto-TLDR; Synthetic Trajectory Prediction using Markov Chains

Slides Poster Similar

Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.

Adaptive Image Compression Using GAN Based Semantic-Perceptual Residual Compensation

Ruojing Wang, Zitang Sun, Sei-Ichiro Kamata, Weili Chen

Responsive image

Auto-TLDR; Adaptive Image Compression using GAN based Semantic-Perceptual Residual Compensation

Slides Poster Similar

Image compression is a basic task in image processing. In this paper, We present an adaptive image compression algorithm that relies on GAN based semantic-perceptual residual compensation, which is available to offer visually pleasing reconstruction at a low bitrate. Our method adopt an U-shaped encoding and decoding structure accompanied by a well-designed dense residual connection with strip pooling module to improve the original auto-encoder. Besides, we introduce the idea of adversarial learning by introducing a discriminator thus constructed a complete GAN. To improve the coding efficiency, we creatively designed an adaptive semantic-perception residual compensation block based on Grad-CAM algorithm. In the improvement of the quantizer, we embed the method of soft-quantization so as to solve the problem to some extent that back propagation process is irreversible. Simultaneously, we use the latest FLIF lossless compression algorithm and BPG vector compression algorithm to perform deeper compression on the image. More importantly experimental results including PSNR, MS-SSIM demonstrate that the proposed approach outperforms the current state-of-the-art image compression methods.

Mutual Information Based Method for Unsupervised Disentanglement of Video Representation

Aditya Sreekar P, Ujjwal Tiwari, Anoop Namboodiri

Responsive image

Auto-TLDR; MIPAE: Mutual Information Predictive Auto-Encoder for Video Prediction

Slides Poster Similar

Video Prediction is an interesting and challenging task of predicting future frames from a given set context frames that belong to a video sequence. Video prediction models have found prospective applications in Maneuver Planning, Health care, Autonomous Navigation and Simulation. One of the major challenges in future frame generation is due to the high dimensional nature of visual data. In this work, we propose Mutual Information Predictive Auto-Encoder (MIPAE) framework, that reduces the task of predicting high dimensional video frames by factorising video representations into content and low dimensional pose latent variables that are easy to predict. A standard LSTM network is used to predict these low dimensional pose representations. Content and the predicted pose representations are decoded to generate future frames. Our approach leverages the temporal structure of the latent generative factors of a video and a novel mutual information loss to learn disentangled video representations. We also propose a metric based on mutual information gap (MIG) to quantitatively access the effectiveness of disentanglement on DSprites and MPI3D-real datasets. MIG scores corroborate with the visual superiority of frames predicted by MIPAE. We also compare our method quantitatively on evaluation metrics LPIPS, SSIM and PSNR.

Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS

Aditya Sreekar P, Ujjwal Tiwari, Anoop Namboodiri

Responsive image

Auto-TLDR; Mutual Information Estimation from Variational Lower Bounds Using a Critic's Hypothesis Space

Slides Similar

Mutual information (MI) is an information-theoretic measure of dependency between two random variables. Several methods to estimate MI, from samples of two random variables with unknown underlying probability distributions have been proposed in the literature. Recent methods realize parametric probability distributions or critic as a neural network to approximate unknown density ratios. The approximated density ratios are used to estimate different variational lower bounds of MI. While these methods provide reliable estimation when the true MI is low, they produce high variance estimates in cases of high MI. We argue that the high variance characteristic is due to the uncontrolled complexity of the critic's hypothesis space. In support of this argument, we use the data-driven Rademacher complexity of the hypothesis space associated with the critic's architecture to analyse generalization error bound of variational lower bound estimates of MI. In the proposed work, we show that it is possible to negate the high variance characteristics of these estimators by constraining the critic's hypothesis space to Reproducing Hilbert Kernel Space (RKHS), which corresponds to a kernel learned using Automated Spectral Kernel Learning (ASKL). By analysing the aforementioned generalization error bounds, we augment the overall optimisation objective with effective regularisation term. We empirically demonstrate the efficacy of this regularization in enforcing proper bias variance tradeoff on four variational lower bounds, namely NWJ, MINE, JS and SMILE.

Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated Convolution

Renshu Gu, Gaoang Wang, Jenq-Neng Hwang

Responsive image

Auto-TLDR; 3D Human Pose Estimation for Multi-Human Videos with Occlusion

Slides Similar

3D human pose estimation (HPE) is crucial in human behavior analysis, augmented reality/virtual reality (AR/VR) applications, and self-driving industry. Videos that contain multiple potentially occluded people captured from freely moving monocular cameras are very common in real-world scenarios, while 3D HPE for such scenarios is quite challenging, partially because there is a lack of such data with accurate 3D ground truth labels in existing datasets. In this paper, we propose a temporal regression network with a gated convolution module to transform 2D joints to 3D and recover the missing occluded joints in the meantime. A simple yet effective localization approach is further conducted to transform the normalized pose to the global trajectory. To verify the effectiveness of our approach, we also collect a new moving camera multi-human (MMHuman) dataset that includes multiple people with heavy occlusion captured by moving cameras. The 3D ground truth joints are provided by accurate motion capture (MoCap) system. From the experiments on static-camera based Human3.6M data and our own collected moving-camera based data, we show that our proposed method outperforms most state-of-the-art 2D-to-3D pose estimation methods, especially for the scenarios with heavy occlusions.

Signal Generation Using 1d Deep Convolutional Generative Adversarial Networks for Fault Diagnosis of Electrical Machines

Russell Sabir, Daniele Rosato, Sven Hartmann, Clemens Gühmann

Responsive image

Auto-TLDR; Large Dataset Generation from Faulty AC Machines using Deep Convolutional GAN

Slides Poster Similar

AC machines may be subjected to different electrical or mechanical faults during their operation. Fault patterns can be detected in the DC current from the machine’s E-Drive system with the help of Deep or Machine Learning algorithms. However, Deep or Machine Learning algorithms require large amounts of dataset for training and without the availability of a large dataset the algorithms fail to generalize or give their optimal performance. Collecting large amounts of data from faulty machine can be a tedious task. It is expensive and not always possible. In some cases, the machine is completely damaged even before sufficient amount of data can be collected. Also, data collection from defected machine may cause permanent damage to the connected system. Therefore, in this paper the problem of small dataset is tackled by presenting a methodology for large dataset generation by using the well-known generative model, Generative Adversarial Networks (GAN). As an example, the stator open circuit fault in a synchronous machine is considered. DC currents from the machine’s E-Drive system are measured from different healthy and faulty machines and are used for training of two 1d DCGANs (Deep Convolutional GANs), one for the healthy and the other for the current signal from the faulty machine. Conventional GANs are difficult to train, however in this paper, training parameters of 1d DCGAN are tuned which results an improved training process. The performance of generator during the training of 1d DCGAN is evaluated by using the Fréchet Inception Distance (FID) metric. The proposed 1d DCGAN model is said to converge when FID score between the real and generated signal reaches below a certain threshold. The generated signals from the trained 1d DCGAN are further evaluated using the PDF (Probability Density Function), frequency domain analysis and other measures which check for duplication of the real data and their statistical diversity. The trained 1d DCGAN is able to generate DC current signals for building large datasets for the training of Deep or Machine learning models.

Image Representation Learning by Transformation Regression

Xifeng Guo, Jiyuan Liu, Sihang Zhou, En Zhu, Shihao Dong

Responsive image

Auto-TLDR; Self-supervised Image Representation Learning using Continuous Parameter Prediction

Slides Poster Similar

Self-supervised learning is a thriving research direction since it can relieve the burden of human labeling for machine learning by seeking for supervision from data instead of human annotation. Although demonstrating promising performance in various applications, we observe that the existing methods usually model the auxiliary learning tasks as classification tasks with finite discrete labels, leading to insufficient supervisory signals, which in turn restricts the representation quality. In this paper, to solve the above problem and make full use of the supervision from data, we design a regression model to predict the continuous parameters of a group of transformations, i.e., image rotation, translation, and scaling. Surprisingly, this naive modification stimulates tremendous potential from data and the resulting supervisory signal has largely improved the performance of image representation learning. Extensive experiments on four image datasets, including CIFAR10, CIFAR100, STL10, and SVHN, indicate that our proposed algorithm outperforms the state-of-the-art unsupervised learning methods by a large margin in terms of classification accuracy. Crucially, we find that with our proposed training mechanism as an initialization, the performance of the existing state-of-the-art classification deep architectures can be preferably improved.

Hierarchical Mixtures of Generators for Adversarial Learning

Alper Ahmetoğlu, Ethem Alpaydin

Responsive image

Auto-TLDR; Hierarchical Mixture of Generative Adversarial Networks

Slides Similar

Generative adversarial networks (GANs) are deep neural networks that allow us to sample from an arbitrary probability distribution without explicitly estimating the distri- bution. There is a generator that takes a latent vector as input and transforms it into a valid sample from the distribution. There is also a discriminator that is trained to discriminate such fake samples from true samples of the distribution; at the same time, the generator is trained to generate fakes that the discriminator cannot tell apart from the true samples. Instead of learning a global generator, a recent approach involves training multiple generators each responsible from one part of the distribution. In this work, we review such approaches and propose the hierarchical mixture of generators, inspired from the hierarchical mixture of experts model, that learns a tree structure implementing a hierarchical clustering with soft splits in the decision nodes and local generators in the leaves. Since the generators are combined softly, the whole model is continuous and can be trained using gradient-based optimization, just like the original GAN model. Our experiments on five image data sets, namely, MNIST, FashionMNIST, UTZap50K, Oxford Flowers, and CelebA, show that our proposed model generates samples of high quality and diversity in terms of popular GAN evaluation metrics. The learned hierarchical structure also leads to knowledge extraction.

Tackling Contradiction Detection in German Using Machine Translation and End-To-End Recurrent Neural Networks

Maren Pielka, Rafet Sifa, Lars Patrick Hillebrand, David Biesner, Rajkumar Ramamurthy, Anna Ladi, Christian Bauckhage

Responsive image

Auto-TLDR; Contradiction Detection in Natural Language Inference using Recurrent Neural Networks

Slides Poster Similar

Natural Language Inference, and specifically Contradiction Detection, is still an unexplored topic with respect to German text. In this paper, we apply Recurrent Neural Network (RNN) methods to learn contradiction-specific sentence embeddings. Our data set for evaluation is a machine-translated version of the Stanford Natural Language Inference (SNLI) corpus. The results are compared to a baseline using unsupervised vectorization techniques, namely tf-idf and Flair, as well as state-of-the art transformer-based (MBERT) methods. We find that the end-to-end models outperform the models trained on unsupervised embeddings, which makes them the better choice in an empirical use case. The RNN methods also perform superior to MBERT on the translated data set.

Global Feature Aggregation for Accident Anticipation

Mishal Fatima, Umar Karim Khan, Chong Min Kyung

Responsive image

Auto-TLDR; Feature Aggregation for Predicting Accidents in Video Sequences

Slides Similar

Anticipation of accidents ahead of time in autonomous and non-autonomous vehicles aids in accident avoidance. In order to recognize abnormal events such as traffic accidents in a video sequence, it is important that the network takes into account interactions of objects in a given frame. We propose a novel Feature Aggregation (FA) block that refines each object's features by computing a weighted sum of the features of all objects in a frame. We use FA block along with Long Short Term Memory (LSTM) network to anticipate accidents in the video sequences. We report mean Average Precision (mAP) and Average Time-to-Accident (ATTA) on Street Accident (SA) dataset. Our proposed method achieves the highest score for risk anticipation by predicting accidents 0.32 sec and 0.75 sec earlier compared to the best results with Adaptive Loss and dynamic parameter prediction based methods respectively.

Local Facial Attribute Transfer through Inpainting

Ricard Durall, Franz-Josef Pfreundt, Janis Keuper

Responsive image

Auto-TLDR; Attribute Transfer Inpainting Generative Adversarial Network

Slides Poster Similar

The term attribute transfer refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator. In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our Attribute Transfer Inpainting Generative Adversarial Network (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.

Semi-Supervised Generative Adversarial Networks with a Pair of Complementary Generators for Retinopathy Screening

Yingpeng Xie, Qiwei Wan, Hai Xie, En-Leng Tan, Yanwu Xu, Baiying Lei

Responsive image

Auto-TLDR; Generative Adversarial Networks for Retinopathy Diagnosis via Fundus Images

Slides Poster Similar

Several typical types of retinopathy are major causes of blindness. However, early detection of retinopathy is quite not easy since few symptoms are observable in the early stage, attributing to the development of non-mydriatic retinal camera. These camera produces high-resolution retinal fundus images provide the possibility of Computer-Aided-Diagnosis (CAD) via deep learning to assist diagnosing retinopathy. Deep learning algorithms usually rely on a great number of labelled images which are expensive and time-consuming to obtain in the medical imaging area. Moreover, the random distribution of various lesions which often vary greatly in size also brings significant challenges to learn discriminative information from high-resolution fundus image. In this paper, we present generative adversarial networks simultaneously equipped with "good" generator and "bad" generator (GBGANs) to make up for the incomplete data distribution provided by limited fundus images. To improve the generative feasibility of generator, we introduce into pre-trained feature extractor to acquire condensed feature for each fundus image in advance. Experimental results on integrated three public iChallenge datasets show that the proposed GBGANs could fully utilize the available fundus images to identify retinopathy with little label cost.

Generalization Comparison of Deep Neural Networks Via Output Sensitivity

Mahsa Forouzesh, Farnood Salehi, Patrick Thiran

Responsive image

Auto-TLDR; Generalization of Deep Neural Networks using Sensitivity

Slides Similar

Although recent works have brought some insights into the performance improvement of techniques used in state-of-the-art deep-learning models, more work is needed to understand their generalization properties. We shed light on this matter by linking the loss function to the output's sensitivity to its input. We find a rather strong empirical relation between the output sensitivity and the variance in the bias-variance decomposition of the loss function, which hints on using sensitivity as a metric for comparing the generalization performance of networks, without requiring labeled data. We find that sensitivity is decreased by applying popular methods which improve the generalization performance of the model, such as (1) using a deep network rather than a wide one, (2) adding convolutional layers to baseline classifiers instead of adding fully-connected layers, (3) using batch normalization, dropout and max-pooling, and (4) applying parameter initialization techniques.

IDA-GAN: A Novel Imbalanced Data Augmentation GAN

Hao Yang, Yun Zhou

Responsive image

Auto-TLDR; IDA-GAN: Generative Adversarial Networks for Imbalanced Data Augmentation

Slides Poster Similar

Class imbalance is a widely existed and challenging problem in real-world applications such as disease diagnosis, fraud detection, network intrusion detection and so on. Due to the scarce of data, it could significantly deteriorate the accuracy of classification. To address this challenge, we propose a novel Imbalanced Data Augmentation Generative Adversarial Networks (GAN) named IDA-GAN as an augmentation tool to deal with the imbalanced dataset. This is a great challenge because it is hard to train a GAN model under this situation. We overcome this issue by coupling Variational autoencoder along with GAN training. Specifically, we introduce the Variational autoencoder to learn the majority and minority class distributions in the latent space, and use the generative model to utilize each class distribution for the subsequent GAN training. The generative model learns useful features to generate target minority-class samples. By comparing with the state-of-the-art GAN models, the experimental results demonstrate that our proposed IDA-GAN could generate more diverse minority samples with better qualities, and it consistently benefits the imbalanced classification task in terms of several widely-used evaluation metrics on five benchmark datasets: MNIST, Fashion-MNIST, SVHN, CIFAR-10 and GTRSB.

MedZip: 3D Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM)

Omniah Nagoor, Joss Whittle, Jingjing Deng, Benjamin Mora, Mark W. Jones

Responsive image

Auto-TLDR; Recurrent Neural Network for Lossless Medical Image Compression using Long Short-Term Memory

Poster Similar

As scanners produce higher-resolution and more densely sampled images, this raises the challenge of data storage, transmission and communication within healthcare systems. Since the quality of medical images plays a crucial role in diagnosis accuracy, medical imaging compression techniques are desired to reduce scan bitrate while guaranteeing lossless reconstruction. This paper presents a lossless compression method that integrates a Recurrent Neural Network (RNN) as a 3D sequence prediction model. The aim is to learn the long dependencies of the voxel's neighbourhood in 3D using Long Short-Term Memory (LSTM) network then compress the residual error using arithmetic coding. Experiential results reveal that our method obtains a higher compression ratio achieving 15% saving compared to the state-of-the-art lossless compression standards, including JPEG-LS, JPEG2000, JP3D, HEVC, and PPMd. Our evaluation demonstrates that the proposed method generalizes well to unseen modalities CT and MRI for the lossless compression scheme. To the best of our knowledge, this is the first lossless compression method that uses LSTM neural network for 16-bit volumetric medical image compression.

On the Evaluation of Generative Adversarial Networks by Discriminative Models

Amirsina Torfi, Mohammadreza Beyki, Edward Alan Fox

Responsive image

Auto-TLDR; Domain-agnostic GAN Evaluation with Siamese Neural Networks

Slides Poster Similar

Generative Adversarial Networks (GANs) can accurately model complex multi-dimensional data and generate realistic samples. However, due to their implicit estimation of data distributions, their evaluation is a challenging task. The majority of research efforts associated with tackling this issue were validated by qualitative visual evaluation. Such approaches do not generalize well beyond the image domain. Since many of those evaluation metrics are proposed and bound to the vision domain, they are difficult to apply to other domains. Quantitative measures are necessary to better guide the training and comparison of different GANs models. In this work, we leverage Siamese neural networks to propose a domain-agnostic evaluation metric: (1) with a qualitative evaluation that is consistent with human evaluation, (2) that is robust relative to common GAN issues such as mode dropping and invention, and (3) does not require any pretrained classifier. The empirical results in this paper demonstrate the superiority of this method compared to the popular Inception Score and are competitive with the FID score.

Road Network Metric Learning for Estimated Time of Arrival

Yiwen Sun, Kun Fu, Zheng Wang, Changshui Zhang, Jieping Ye

Responsive image

Auto-TLDR; Road Network Metric Learning for Estimated Time of Arrival (RNML-ETA)

Slides Poster Similar

Recently, deep learning have achieved promising results in Estimated Time of Arrival (ETA), which is considered as predicting the travel time from the origin to the destination along a given path. One of the key techniques is to use embedding vectors to represent the elements of road network, such as the links (road segments). However, the embedding suffers from the data sparsity problem that many links in the road network are traversed by too few floating cars even in large ride-hailing platforms like Uber and DiDi. Insufficient data makes the embedding vectors in an under-fitting status, which undermines the accuracy of ETA prediction. To address the data sparsity problem, we propose the Road Network Metric Learning framework for ETA (RNML ETA). It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors. We further propose the triangle loss, a novel loss function to improve the efficiency of metric learning. We validated the effectiveness of RNML-ETA on large scale real-world datasets, by showing that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.

Towards Practical Compressed Video Action Recognition: A Temporal Enhanced Multi-Stream Network

Bing Li, Longteng Kong, Dongming Zhang, Xiuguo Bao, Di Huang, Yunhong Wang

Responsive image

Auto-TLDR; TEMSN: Temporal Enhanced Multi-Stream Network for Compressed Video Action Recognition

Slides Poster Similar

Current compressed video action recognition methods are mainly based on completely received compressed videos. However, in real transmission, the compressed video packets are usually disorderly received and lost due to network jitters or congestion. It is of great significance to recognize actions in early phases with limited packets, e.g. forecasting the potential risks from videos quickly. In this paper, we proposed a Temporal Enhanced Multi-Stream Network (TEMSN) for practical compressed video action recognition. First, we use three compressed modalities as complementary cues and build a multi-stream network to capture the rich information from compressed video packets. Second, we design a temporal enhanced module based on Encoder-Decoder structure applied on each stream to infer the missing packets, and generate more complete action dynamics. Thanks to the rich modalities and temporal enhancement, our approach is able to better modeling the action with limited compressed packets. Experiments on HMDB-51 and UCF-101 dataset validate its effectiveness and efficiency.

Emerging Relation Network and Task Embedding for Multi-Task Regression Problems

Schreiber Jens, Bernhard Sick

Responsive image

Auto-TLDR; A Comparative Study of Multi-Task Learning for Non-linear Time Series Problems

Slides Poster Similar

Multi-Task learning (MTL) provides state-of-the-art results in many applications of computer vision and natural language processing. In contrast to single-task learning (STL), MTL allows for leveraging knowledge between related tasks improving prediction results on all tasks. However, there is a limited number of comparative studies applied to MTL architectures for regression and time series problems taking recent advances of MTL into account. An intriguing, non-linear time-series problem are day ahead forecasts of the expected power generation for renewable power plants. Therefore, the main contribution of this article is a comparative study of the following recent and relevant MTL architectures: Hard-parameter sharing, cross-stitch network, and sluice network (SN). They are compared to a multi-layer peceptron (MLP) model of similar size in an STL setting. As a additional contribution, we provide a simple, yet practical approach to model task specific information through an embedding layer in an MLP, referred to as task embedding. Further, we contribute a new MTL architecture named emerging relation network (ERN), which can be considered as an extension of the SN. For a solar power dataset, the task embedding achieves the best mean improvement with 8.2%. For two wind and one additional solar dataset, the ERN is the best MTL architecture with improvements up to 11.3%.

Cross-Lingual Text Image Recognition Via Multi-Task Sequence to Sequence Learning

Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, Cheng-Lin Liu

Responsive image

Auto-TLDR; Cross-Lingual Text Image Recognition with Multi-task Learning

Slides Poster Similar

This paper considers recognizing texts shown in a source language and translating into a target language, without generating the intermediate source language text image recognition results. We call this problem Cross-Lingual Text Image Recognition (CLTIR). To solve this problem, we propose a multi-task system containing a main task of CLTIR and an auxiliary task of Mono-Lingual Text Image Recognition (MLTIR) simultaneously. Two different sequence to sequence learning methods, a convolution based attention model and a BLSTM model with CTC, are adopted for these tasks respectively. We evaluate the system on a newly collected Chinese-English bilingual movie subtitle image dataset. Experimental results demonstrate the multi-task learning framework performs superiorly in both languages.

Time Series Data Augmentation for Neural Networks by Time Warping with a Discriminative Teacher

Brian Kenji Iwana, Seiichi Uchida

Responsive image

Auto-TLDR; Guided Warping for Time Series Data Augmentation

Slides Poster Similar

Neural networks have become a powerful tool in pattern recognition and part of their success is due to generalization from using large datasets. However, unlike other domains, time series classification datasets are often small. In order to address this problem, we propose a novel time series data augmentation called guided warping. While many data augmentation methods are based on random transformations, guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW, a high-level DTW method based on shape descriptors, to deterministically warp sample patterns. In this way, the time series are mixed by warping the features of a sample pattern to match the time steps of a reference pattern. Furthermore, we introduce a discriminative teacher in order to serve as a directed reference for the guided warping. We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN). The code with an easy to use implementation can be found at https://github.com/uchidalab/time_series_augmentation.

Position-Aware and Symmetry Enhanced GAN for Radial Distortion Correction

Yongjie Shi, Xin Tong, Jingsi Wen, He Zhao, Xianghua Ying, Jinshi Hongbin Zha

Responsive image

Auto-TLDR; Generative Adversarial Network for Radial Distorted Image Correction

Slides Poster Similar

This paper presents a novel method based on the generative adversarial network for radial distortion correction. Instead of generating a corrected image, our generator predicts a pixel flow map to measure the pixel offset between the distorted and corrected image. The quality of the generated pixel flow map and the warped image are judged by the discriminator. As texture far away from the image center has strong distortion, we develop an Adaptive Inverted Foveal layer which can transform the deformation to the intensity of the image to exploit this property. Rotation symmetry enhanced convolution kernels are applied to extract geometric features of different orientations explicitly. These learned features are recalibrated using the Squeeze-and-Excitation block to assign different weights for different directions. Moreover, we construct a first real-world radial distorted image dataset RD600 annotated with ground truth to evaluate our proposed method. We conduct extensive experiments to validate the effectiveness of each part of our framework. The further experiment shows our approach outperforms previous methods in both synthetic and real-world datasets quantitatively and qualitatively.

GAP: Quantifying the Generative Adversarial Set and Class Feature Applicability of Deep Neural Networks

Edward Collier, Supratik Mukhopadhyay

Responsive image

Auto-TLDR; Approximating Adversarial Learning in Deep Neural Networks Using Set and Class Adversaries

Slides Poster Similar

Recent work in deep neural networks has sought to characterize the nature in which a network learns features and how applicable learnt features are to various problem sets. Deep neural network applicability can be split into three sub-problems; set applicability, class applicability, and instance applicability. In this work we seek to quantify the applicability of features learned during adversarial training, focusing specifically on set and class applicability. We apply techniques for measuring applicability to both generators and discriminators trained on various data sets to quantify applicability and better observe how both a generator and a discriminator, and generative models as a whole, learn features during adversarial training.