Relatable Clothing: Detecting Visual Relationships between People and Clothing

Thomas Truong, Svetlana Yanushkevich

Responsive image

Auto-TLDR; Relatable Clothing Dataset for ``worn'' and ``unworn'' Classification

Slides Poster

Detecting visual relationships between people and clothing in an image has been a relatively unexplored problem in the field of computer vision and biometrics. The lack readily available public dataset for ``worn'' and ``unworn'' classification has slowed the development of solutions for this problem. We present the release of the Relatable Clothing Dataset which contains 35287 person-clothing pairs and segmentation masks for the development of ``worn'' and ``unworn'' classification models. Additionally, we propose a novel soft attention unit for performing ``worn'' and ``unworn'' classification using deep neural networks. The proposed soft attention models have an accuracy of upward 98.55% +/- 0.35% on the Relatable Clothing Dataset and demonstrate high generalizable, allowing us to classify unseen articles of clothing such as high visibility vests as ``worn'' or ``unworn''.

Similar papers

Hierarchical Head Design for Object Detectors

Shivang Agarwal, Frederic Jurie

Responsive image

Auto-TLDR; Hierarchical Anchor for SSD Detector

Slides Poster Similar

The notion of anchor plays a major role in modern detection algorithms such as the Faster-RCNN or the SSD detector. Anchors relate the features of the last layers of the detector with bounding boxes containing objects in images. Despite their importance, the literature on object detection has not paid real attention to them. The motivation of this paper comes from the observations that (i) each anchor learns to classify and regress candidate objects independently (ii) insufficient examples are available for each anchor in case of small-scale datasets. This paper addresses these questions by proposing a novel hierarchical head for the SSD detector. The new design has the added advantage of no extra weights, as compared to the original design at inference time, while improving detectors performance for small size training sets. Improved performance on PASCAL-VOC and state-of-the-art performance on FlickrLogos-47 validate the method. We also show when the proposed design does not give additional performance gain over the original design.

StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation

Niaz Ahmad, Jongwon Yoon

Responsive image

Auto-TLDR; StrongPose: A bottom-up box-free approach for human pose estimation and action recognition

Slides Poster Similar

Adaptation of deep convolutional neural network has made revolutionary progress in human pose estimation, various applications in recent years have drawn considerable attention. However, prediction and localization of the keypoints in single and multi-person images are a challenging problem. Towards this purpose, we present a bottom-up box-free approach for the task of pose estimation and action recognition. We proposed a StrongPose system model that uses part-based modeling to tackle object-part associations. The model utilizes a convolution network that learns how to detect Strong Keypoints Heat Maps (SKHM) and predict their comparative displacements, enabling us to group keypoints into person pose instances. Further, we produce Body Heat Maps (BHM) with the help of keypoints which allows us to localize the human body in the picture. The StrongPose framework is based on fully-convolutional engineering and permits proficient inference, with runtime basically autonomous of the number of individuals display within the scene. Train and test on COCO data alone, our framework achieves COCO test-dev keypoint average precision of 0.708 using ResNet-101 and 0.725 using ResNet-152, which considerably outperforms all prior bottom-up pose estimation frameworks.

Efficient Grouping for Keypoint Detection

Alexey Sidnev, Ekaterina Krasikova, Maxim Kazakov

Responsive image

Auto-TLDR; Automatic Keypoint Grouping for DeepFashion2 Dataset

Slides Poster Similar

DeepFashion2 dataset raises a new challenge for a keypoint detection task. It contains 13 categories with a different number of keypoints, 294 in total. Direct prediction of all keypoints leads to huge memory consumption, slow training, and inference speed. This paper presents a study of keypoint grouping approach and how it affects performance on the example of CenterNet architecture. We propose a simple and efficient automatic grouping technique and apply it to DeepFashion2 fashion landmark task and MS COCO Human Pose task. It allows reducing memory consumption up to 30%, decreasing inference time up to 30%, and training time up to 26% without compromising accuracy.

A Novel Region of Interest Extraction Layer for Instance Segmentation

Leonardo Rossi, Akbar Karimi, Andrea Prati

Responsive image

Auto-TLDR; Generic RoI Extractor for Two-Stage Neural Network for Instance Segmentation

Slides Poster Similar

Given the wide diffusion of deep neural network architectures for computer vision tasks, several new applications are nowadays more and more feasible. Among them, a particular attention has been recently given to instance segmentation, by exploiting the results achievable by two-stage networks (such as Mask R-CNN or Faster R-CNN), derived from R-CNN. In these complex architectures, a crucial role is played by the Region of Interest (RoI) extraction layer, devoted to extract a coherent subset of features from a single Feature Pyramid Network (FPN) layer attached on top of a backbone. This paper is motivated by the need to overcome to the limitations of existing RoI extractors which select only one (the best) layer from FPN. Our intuition is that all the layers of FPN retain useful information. Therefore, the proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance. A comprehensive ablation study at component level is conducted to find the best set of algorithms and parameters for the GRoIE layer. Moreover, GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks. Therefore, the improvements brought by the use of GRoIE in different state-of-the-art architectures are also evaluated. The proposed layer leads up to gain a 1.1% AP on bounding box detection and 1.7% AP on instance segmentation. The code is publicly available on GitHub repository at https://github.com/IMPLabUniPr/mmdetection-groie

PrivAttNet: Predicting Privacy Risks in Images Using Visual Attention

Chen Zhang, Thivya Kandappu, Vigneshwaran Subbaraju

Responsive image

Auto-TLDR; PrivAttNet: A Visual Attention Based Approach for Privacy Sensitivity in Images

Slides Poster Similar

Visual privacy concerns associated with image sharing is a critical issue that need to be addressed to enable safe and lawful use of online social platforms. Users of social media platforms often suffer from no guidance in sharing sensitive images in public, and often face with social and legal consequences. Given the recent success of visual attention based deep learning methods in measuring abstract phenomena like image memorability, we are motivated to investigate whether visual attention based methods could be useful in measuring psycho-physical phenomena like "privacy sensitivity". In this paper we propose PrivAttNet -- a visual attention based approach, that can be trained end-to-end to estimate the privacy sensitivity of images without explicitly detecting objects and attributes present in the image. We show that our PrivAttNet model outperforms various SOTA and baseline strategies -- a 1.6 fold reduction in $L1-error$ over SOTA and 7%--10% improvement in Spearman-rank correlation between the predicted and ground truth sensitivity scores. Additionally, the attention maps from PrivAttNet are found to be useful in directing the users to the regions that are responsible for generating the privacy risk score.

Triplet-Path Dilated Network for Detection and Segmentation of General Pathological Images

Jiaqi Luo, Zhicheng Zhao, Fei Su, Limei Guo

Responsive image

Auto-TLDR; Triplet-path Network for One-Stage Object Detection and Segmentation in Pathological Images

Slides Similar

Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.

End-To-End Deep Learning Methods for Automated Damage Detection in Extreme Events at Various Scales

Yongsheng Bai, Alper Yilmaz, Halil Sezen

Responsive image

Auto-TLDR; Robust Mask R-CNN for Crack Detection in Extreme Events

Slides Poster Similar

Robust Mask R-CNN (Mask Regional Convolutional Neural Network) methods are proposed and tested for automatic detection of cracks on structures or their components that may be damaged during extreme events, such as earth-quakes. We curated a new dataset with 2,021 labeled images for training and validation and aimed to find end-to-end deep neural networks for crack detection in the field. With data augmentation and parameters fine-tuning, Path Aggregation Network (PANet) with spatial attention mechanisms and High-resolution Network (HRNet) are introduced into Mask R-CNNs. The tests on three public datasets with low- or high-resolution images demonstrate that the proposed methods can achieve a big improvement over alternative networks, so the proposed method may be sufficient for crack detection for a variety of scales in real applications.

Construction Worker Hardhat-Wearing Detection Based on an Improved BiFPN

Chenyang Zhang, Zhiqiang Tian, Jingyi Song, Yaoyue Zheng, Bo Xu

Responsive image

Auto-TLDR; A One-Stage Object Detection Method for Hardhat-Wearing in Construction Site

Slides Poster Similar

Work in the construction site is considered to be one of the occupations with the highest safety risk factor. Therefore, safety plays an important role in construction site. One of the most fundamental safety rules in construction site is to wear a hardhat. To strengthen the safety of the construction site, most of the current methods use multi-stage method for hardhat-wearing detection. These methods have limitations in terms of adaptability and generalizability. In this paper, we propose a one-stage object detection method based on convolutional neural network. We present a multi-scale strategy that selects the high-resolution feature maps of DarkNet-53 to effectively identify small-scale hardhats. In addition, we propose an improved weighted bi-directional feature pyramid network (BiFPN), which could fuse more semantic features from more scales. The proposed method can not only detect hardhat-wearing, but also identify the color of the hardhat. Experimental results show that the proposed method achieves a mAP of 87.04%, which outperforms several state-of-the-art methods on a public dataset.

FashionGraph: Understanding Fashion Data Using Scene Graph Generation

Shabnam Sadegharmaki, Marc A. Kastner, Shin'Ichi Satoh

Responsive image

Auto-TLDR; Exploiting Scene Graph Knowledge for Fashion Applications

Poster Similar

Fashion analysis is an attractive domain for vision research due to its direct applications in e-commerce contexts. However, fashion datasets are commonly rather demanding, as both objects and attributes tend to be fine-grained and thus result in very long-tailed datasets. Furthermore, relationships between objects and attributes are often dense, but are crucial for the performance of fashion applications. In this paper, we propose to generate scene graphs for existing fashion datasets. By detecting relationships between fashion objects, their parts, and their attributes we gain a better understanding of the scenes. As no current fashion dataset provides scene graphs, we generate relationships between fashion objects from existing annotations. The output is post-processed and filtered to generate a meaningful scene graph for each image. In the experiments we can show existing applications like image retrieval benefiting from the scene graph understanding. We first evaluate the accuracy of the generated scene graphs. Then, we employ scene graphs to fashion image retrieval in order to showcase their performance in real applications. The results show various benefits for fashion applications by exploiting scene graph knowledge. The sources and model for the proposed method will be made available after publication.

The DeepScoresV2 Dataset and Benchmark for Music Object Detection

Lukas Tuggener, Yvan Putra Satyawan, Alexander Pacha, Jürgen Schmidhuber, Thilo Stadelmann

Responsive image

Auto-TLDR; DeepScoresV2: an extended version of the DeepScores dataset for optical music recognition

Slides Poster Similar

In this paper, we present DeepScoresV2, an extended version of the DeepScores dataset for optical music recognition (OMR). We improve upon the original DeepScores dataset by providing much more detailed annotations, namely (a) annotations for 135 classes including fundamental symbols of non-fixed size and shape, increasing the number of annotated symbols by 23%; (b) oriented bounding boxes; (c) higher-level rhythm and pitch information (onset beat for all symbols and line position for noteheads); and (d) a compatibility mode for easy use in conjunction with the MUSCIMA++ dataset for OMR on handwritten documents. These additions open up the potential for future advancement in OMR research. Additionally, we release two state-of-the-art baselines for DeepScoresV2 based on Faster R-CNN and the Deep Watershed Detector. An analysis of the baselines shows that regular orthogonal bounding boxes are unsuitable for objects which are long, small, and potentially rotated, such as ties and beams, which demonstrates the need for detection algorithms that naturally incorporate object angles. Dataset, code and pre-trained models, as well as user instructions, are publicly available at https://tuggeluk.github.io/dsv2_preview/

SyNet: An Ensemble Network for Object Detection in UAV Images

Berat Mert Albaba, Sedat Ozer

Responsive image

Auto-TLDR; SyNet: Combining Multi-Stage and Single-Stage Object Detection for Aerial Images

Poster Similar

Recent advances in camera equipped drone applications and their widespread use increased the demand on vision based object detection algorithms for aerial images. Object detection process is inherently a challenging task as a generic computer vision problem, however, since the use of object detection algorithms on UAVs (or on drones) is relatively a new area, it remains as a more challenging problem to detect objects in aerial images. There are several reasons for that including: (i) the lack of large drone datasets including large object variance, (ii) the large orientation and scale variance in drone images when compared to the ground images, and (iii) the difference in texture and shape features between the ground and the aerial images. Deep learning based object detection algorithms can be classified under two main categories: (a) single-stage detectors and (b) multi-stage detectors. Both single-stage and multi-stage solutions have their advantages and disadvantages over each other. However, a technique to combine the good sides of each of those solutions could yield even a stronger solution than each of those solutions individually. In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one with the motivation of decreasing the high false negative rate of multi-stage detectors and increasing the quality of the single-stage detector proposals. As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy. We report the state of the art results obtained by our proposed solution on two different datasets: namely MS-COCO and visDrone with \%52.1 $mAP_{IoU = 0.75}$ is obtained on MS-COCO $val2017$ dataset and \%26.2 $mAP_{IoU = 0.75}$ is obtained on VisDrone $test-set$. Our code is available at: https://github.com/mertalbaba/SyNet}{https://github.com/mer talbaba/SyNet

Relevance Detection in Cataract Surgery Videos by Spatio-Temporal Action Localization

Negin Ghamsarian, Mario Taschwer, Doris Putzgruber, Stephanie. Sarny, Klaus Schoeffmann

Responsive image

Auto-TLDR; relevance-based retrieval in cataract surgery videos

Slides Similar

In cataract surgery, the operation is performed with the help of a microscope. Since the microscope enables watching real-time surgery by up to two people only, a major part of surgical training is conducted using the recorded videos. To optimize the training procedure with the video content, the surgeons require an automatic relevance detection approach. In addition to relevance-based retrieval, these results can be further used for skill assessment and irregularity detection in cataract surgery videos. In this paper, a three-module framework is proposed to detect and classify the relevant phase segments in cataract videos. Taking advantage of an idle frame recognition network, the video is divided into idle and action segments. To boost the performance in relevance detection Mask R-CNN is utilized to detect the cornea in each frame where the relevant surgical actions are conducted. The spatio-temporal localized segments containing higher-resolution information about the pupil texture and actions, and complementary temporal information from the same phase are fed into the relevance detection module. This module consists of four parallel recurrent CNNs being responsible to detect four relevant phases that have been defined with medical experts. The results will then be integrated to classify the action phases as irrelevant or one of four relevant phases. Experimental results reveal that the proposed approach outperforms static CNNs and different configurations of feature-based and end-to-end recurrent networks.

Detecting Objects with High Object Region Percentage

Fen Fang, Qianli Xu, Liyuan Li, Ying Gu, Joo-Hwee Lim

Responsive image

Auto-TLDR; Faster R-CNN for High-ORP Object Detection

Slides Poster Similar

Object shape is a subtle but important factor for object detection. It has been observed that the object-region-percentage (ORP) can be utilized to improve detection accuracy for elongated objects, which have much lower ORPs than other types of objects. In this paper, we propose an approach to improve the detection performance for objects whose ORPs are relatively higher.To address the problem of high-ORP object detection, we propose a method consisting of three steps. First, we adjust the ground truth bounding boxes of high-ORP objects to an optimal range. Second, we train an object detector, Faster R-CNN, based on adjusted bounding boxes to achieve high recall. Finally, we train a DCNN to learn the adjustment ratios towards four directions and adjust detected bounding boxes of objects to get better localization for higher precision. We evaluate the effectiveness of our method on 12 high-ORP objects in COCO and 8 objects in a proprietary gearbox dataset. The experimental results show that our method can achieve state-of-the-art performance on these objects while costing less resources in training and inference stages.

Image-Based Table Cell Detection: A New Dataset and an Improved Detection Method

Dafeng Wei, Hongtao Lu, Yi Zhou, Kai Chen

Responsive image

Auto-TLDR; TableCell: A Semi-supervised Dataset for Table-wise Detection and Recognition

Slides Poster Similar

The topic of table detection and recognition has been spotlighted in recent years, however, the latest works only aim at the coarse scene in table-wise detection. In this paper, we present TableCell, a new image-based dataset which contains 5262 samples with 170K high precision cell-wised annotations based on a novel semi-supervised method.. Several classical deep learning detection models are evaluated to build a strong baseline using the proposed dataset. Furthermore, we come up with an efficient table projection method to facilitate capturing long-range global feature, which consists of row projection and column projection. Experiments demonstrate that our proposed method improves the accuracy of table detection. Our dataset and code will be made available at https://github.com/weidafeng/TableCell upon publication.

EAGLE: Large-Scale Vehicle Detection Dataset in Real-World Scenarios Using Aerial Imagery

Seyed Majid Azimi, Reza Bahmanyar, Corentin Henry, Kurz Franz

Responsive image

Auto-TLDR; EAGLE: A Large-Scale Dataset for Multi-class Vehicle Detection with Object Orientation Information in Airborne Imagery

Slides Similar

Multi-class vehicle detection from airborne imagery with orientation estimation is an important task in the near and remote vision domains with applications in traffic monitoring and disaster management. In the last decade, we have witnessed significant progress in object detection in ground imagery, but it is still in its infancy in airborne imagery, mostly due to the scarcity of diverse and large-scale datasets. Despite being a useful tool for different applications, current airborne datasets only partially reflect the challenges of real-world scenarios. To address this issue, we introduce EAGLE (oriEnted object detection using Aerial imaGery in real-worLd scEnarios), a large-scale dataset for multi-class vehicle detection with object orientation information in aerial imagery. It features high-resolution aerial images composed of different real-world situations with a wide variety of camera sensor, resolution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion, and camera angle. The annotation was done by airborne imagery experts with small- and large-vehicle classes. EAGLE contains 215,986 instances annotated with oriented bounding boxes defined by four points and orientation, making it by far the largest dataset to date in this task. It also supports researches on the haze and shadow removal as well as super-resolution and in-painting applications. We define three tasks: detection by (1) horizontal bounding boxes, (2) rotated bounding boxes, and (3) oriented bounding boxes. We carried out several experiments to evaluate several state-of-the-art methods in object detection on our dataset to form a baseline. Experiments show that the EAGLE dataset accurately reflects real-world situations and correspondingly challenging applications. The dataset will be made publicly available.

Mutually Guided Dual-Task Network for Scene Text Detection

Mengbiao Zhao, Wei Feng, Fei Yin, Xu-Yao Zhang, Cheng-Lin Liu

Responsive image

Auto-TLDR; A dual-task network for word-level and line-level text detection

Slides Similar

Scene text detection has been studied extensively. Existing methods detect either words or text lines and use either word-level or line-level annotated data for training. In this paper, we propose a dual-task network that can perform word-level and line-level text detection simultaneously and use training data of both levels of annotation to boost the performance. The dual-task network has two detection heads for word-level and line-level text detection, respectively. Then we propose a mutual guidance scheme for the joint training of the two tasks with two modules: line filtering module utilizes the output of the text line detector to filter out the non-text regions for the word detector, and word enhancing module provides prior positions of words for the text line detector depending on the output of the word detector. Experimental results of word-level and line-level text detection demonstrate the effectiveness of the proposed dual-task network and mutual guidance scheme, and the results of our method are competitive with state-of-the-art methods.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Classify Breast Histopathology Images with Ductal Instance-Oriented Pipeline

Beibin Li, Ezgi Mercan, Sachin Mehta, Stevan Knezevich, Corey Arnold, Donald Weaver, Joann Elmore, Linda Shapiro

Responsive image

Auto-TLDR; DIOP: Ductal Instance-Oriented Pipeline for Diagnostic Classification

Slides Poster Similar

In this study, we propose the Ductal Instance-Oriented Pipeline (DIOP) that contains a duct-level instance segmentation model, a tissue-level semantic segmentation model, and three-levels of features for diagnostic classification. Based on recent advancements in instance segmentation and the Mask R-CNN model, our duct-level segmenter tries to identify each ductal individual inside a microscopic image; then, it extracts tissue-level information from the identified ductal instances. Leveraging three levels of information obtained from these ductal instances and also the histopathology image, the proposed DIOP outperforms previous approaches (both feature-based and CNN-based) in all diagnostic tasks; for the four-way classification task, the DIOP achieves comparable performance to general pathologists in this unique dataset. The proposed DIOP only takes a few seconds to run in the inference time, which could be used interactively on most modern computers. More clinical explorations are needed to study the robustness and generalizability of this system in the future.

Siamese Dynamic Mask Estimation Network for Fast Video Object Segmentation

Dexiang Hong, Guorong Li, Kai Xu, Li Su, Qingming Huang

Responsive image

Auto-TLDR; Siamese Dynamic Mask Estimation for Video Object Segmentation

Slides Poster Similar

Video object segmentation(VOS) has been a fundamental topic in recent years, and many deep learning-based methods have achieved state-of-the-art performance on multiple benchmarks. However, most of these methods rely on pixel-level matching between the template and the searched frames on the whole image while the targets only occupy a small region. Calculating on the entire image brings lots of additional computation cost. Besides, the whole image may contain some distracting information resulting in many false-positive matching points. To address this issue, motivated by one-stage instance object segmentation methods, we propose an efficient siamese dynamic mask estimation network for fast video object segmentation. The VOS is decoupled into two tasks, i.e. mask feature learning and dynamic kernel prediction. The former is responsible for learning high-quality features to preserve structural geometric information, and the latter learns a dynamic kernel which is used to convolve with the mask feature to generate a mask output. We use Siamese neural network as a feature extractor and directly predict masks after correlation. In this way, we can avoid using pixel-level matching, making our framework more simple and efficient. Experiment results on DAVIS 2016 /2017 datasets show that our proposed methods can run at 35 frames per second on NVIDIA RTX TITAN while preserving competitive accuracy.

Question-Agnostic Attention for Visual Question Answering

Moshiur R Farazi, Salman Hameed Khan, Nick Barnes

Responsive image

Auto-TLDR; Question-Agnostic Attention for Visual Question Answering

Slides Poster Similar

Visual Question Answering (VQA) models employ attention mechanisms to discover image locations that are most relevant for answering a specific question. For this purpose, several multimodal fusion strategies have been proposed, ranging from relatively simple operations (e.g., linear sum) to more complex ones (e.g., Block). The resulting multimodal representations define an intermediate feature space for capturing the interplay between visual and semantic features, that is helpful in selectively focusing on image content. In this paper, we propose a question-agnostic attention mechanism that is complementary to the existing question-dependent attention mechanisms. Our proposed model parses object instances to obtain an `object map' and applies this map on the visual features to generate Question-Agnostic Attention (QAA) features. In contrast to question-dependent attention approaches that are learned end-to-end, the proposed QAA does not involve question-specific training, and can be easily included in almost any existing VQA model as a generic light-weight pre-processing step, thereby adding minimal computation overhead for training. Further, when used in complement with the question-dependent attention, the QAA allows the model to focus on the regions containing objects that might have been overlooked by the learned attention representation. Through extensive evaluation on VQAv1, VQAv2 and TDIUC datasets, we show that incorporating complementary QAA allows state-of-the-art VQA models to perform better, and provides significant boost to simplistic VQA models, enabling them to performance on par with highly sophisticated fusion strategies.

Iterative Bounding Box Annotation for Object Detection

Bishwo Adhikari, Heikki Juhani Huttunen

Responsive image

Auto-TLDR; Semi-Automatic Bounding Box Annotation for Object Detection in Digital Images

Slides Poster Similar

Manual annotation of bounding boxes for object detection in digital images is tedious, and time and resource consuming. In this paper, we propose a semi-automatic method for efficient bounding box annotation. The method trains the object detector iteratively on small batches of labeled images and learns to propose bounding boxes for the next batch, after which the human annotator only needs to correct possible errors. We propose an experimental setup for simulating the human actions and use it for comparing different iteration strategies, such as the order in which the data is presented to the annotator. We experiment on our method with three datasets and show that it can reduce the human annotation effort significantly, saving up to 75% of total manual annotation work.

IPT: A Dataset for Identity Preserved Tracking in Closed Domains

Thomas Heitzinger, Martin Kampel

Responsive image

Auto-TLDR; Identity Preserved Tracking Using Depth Data for Privacy and Privacy

Slides Poster Similar

We present a public dataset for Identity Preserved Tracking (IPT) consisting of sequences of depth data recorded using an Orbbec Astra depth sensor. The dataset features sequences in ten different locations with a high amount of background variation and is designed to be applicable to a wide range of tasks. Its labeling is versatile, allowing for tracking in either 3d space or image coordinates. Next to frame-by-frame 3d and inferred bounding box labeling we provide supplementary annotation of camera poses and room layouts, split in multiple semantically distinct categories. Intended use-cases are applications where both a high level understanding of scene understanding and privacy are central points of consideration, such as active and assisted living (AAL), security and industrial safety. Compared to similar public datasets IPT distinguishes itself with its sequential data format, 3d instance labeling and room layout annotation. We present baseline object detection results in image coordinates using a YOLOv3 network architecture and implement a background model suitable for online tracking applications to increase detection accuracy. Additionally we propose a novel volumetric non-maximum suppression (V-NMS) approach, taking advantage of known room geometry. Last we provide baseline person tracking results utilizing Multiple Object Tracking Challenge (MOTChallenge) evaluation metrics of the CVPR19 benchmark.

RescueNet: Joint Building Segmentation and Damage Assessment from Satellite Imagery

Rohit Gupta, Mubarak Shah

Responsive image

Auto-TLDR; RescueNet: End-to-End Building Segmentation and Damage Classification for Humanitarian Aid and Disaster Response

Slides Poster Similar

Accurate and fine-grained information about the extent of damage to buildings is essential for directing Humanitarian Aid and Disaster Response (HADR) operations in the immediate aftermath of any natural calamity. In recent years, satellite and UAV (drone) imagery has been used for this purpose, sometimes aided by computer vision algorithms. Existing Computer Vision approaches for building damage assessment typically rely on a two stage approach, consisting of building detection using an object detection model, followed by damage assessment through classification of the detected building tiles. These multi-stage methods are not end-to-end trainable, and suffer from poor overall results. We propose RescueNet, a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to end. In order to to model the composite nature of this problem, we propose a novel localization aware loss function, which consists of a Binary Cross Entropy loss for building segmentation, and a foreground only selective Categorical Cross-Entropy loss for damage classification, and show significant improvement over the widely used Cross-Entropy loss. RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods and achieves generalization across varied geographical regions and disaster types.

Small Object Detection by Generative and Discriminative Learning

Yi Gu, Jie Li, Chentao Wu, Weijia Jia, Jianping Chen

Responsive image

Auto-TLDR; Generative and Discriminative Learning for Small Object Detection

Slides Poster Similar

With the development of deep convolutional neural networks (CNNs), the object detection accuracy has been greatly improved. But the performance of small object detection is still far from satisfactory, mainly because small objects are so tiny that the information contained in the feature map is limited. Existing methods focus on improving classification accuracy but still suffer from the limitation of bounding box prediction. To solve this issue, we propose a detection framework by generative and discriminative learning. First, a reconstruction generator network is designed to reconstruct the mapping from low frequency to high frequency for anchor box prediction. Then, a detector module extracts the regions of interest (ROIs) from generated results and implements a RoI-Head to predict object category and refine bounding box. In order to guide the reconstructed image related to the corresponding one, a discriminator module is adopted to tell from the generated result and the original image. Extensive evaluations on the challenging MS-COCO dataset demonstrate that our model outperforms most state-of-the-art models in detecting small objects, especially the reconstruction module improves the average precision for small object (APs) by 7.7%.

Using Scene Graphs for Detecting Visual Relationships

Anurag Tripathi, Siddharth Srivastava, Brejesh Lall, Santanu Chaudhury

Responsive image

Auto-TLDR; Relationship Detection using Context Aligned Scene Graph Embeddings

Slides Poster Similar

In this paper we solve the problem of detecting relationships between pairs of objects in an image. We develop spatially aware word embeddings using scene graphs and use joint feature representations containing visual, spatial and semantic embeddings from the input images to train a deep network on the task of relationship detection. Further, we propose to utilize context aligned scene graph embeddings from the train set, without requiring explicit availability of scene graphs at test time. We show that the proposed method outperforms the state-of-the-art methods for predicate detection and provides competing results on relationship detection. We also show the generalization ability of the proposed method by performing predictions under zero shot settings. Further, we also provide an exhaustive empirical evaluation on each component of the proposed network.

MEG: Multi-Evidence GNN for Multimodal Semantic Forensics

Ekraam Sabir, Ayush Jaiswal, Wael Abdalmageed, Prem Natarajan

Responsive image

Auto-TLDR; Scalable Image Repurposing Detection with Graph Neural Network Based Model

Slides Poster Similar

Image repurposing is a category of fake news where a digitally unmanipulated image is misrepresented by means of its accompanying metadata such as captions, location, etc., where the image and accompanying metadata together comprise a multimedia package. The problem setup is to authenticate a query multimedia package using a reference dataset of potentially related packages as evidences. Existing methods are limited to using a single evidence (retrieved package), which ignores potential performance improvement from the use of multiple evidences. In this work, we introduce a novel graph neural network based model for image repurposing detection, which effectively utilizes multiple retrieved packages as evidences and is scalable with the number of evidences. We compare the scalability and performance of our model against existing methods. Experimental results show that the proposed model outperforms existing state-of-the-art for image repurposing detection with an error reduction of up to 25%.

RLST: A Reinforcement Learning Approach to Scene Text Detection Refinement

Xuan Peng, Zheng Huang, Kai Chen, Jie Guo, Weidong Qiu

Responsive image

Auto-TLDR; Saccadic Eye Movements and Peripheral Vision for Scene Text Detection using Reinforcement Learning

Slides Poster Similar

Within the research of scene text detection, some previous work has already achieved significant accuracy and efficiency. However, most of the work was generally done without considering about the implicit relationship between detection and eye movements. In this paper, we propose a new method for scene text detection especially for its refinement based on reinforcement learning. The idea of this method is inspired by Saccadic Eye Movements and Peripheral Vision. A saccade makes it possible for humans to orient the gaze to the location where a visual object has appeared. Peripheral vision gathers visual information of surroundings which provides supplement to foveal vision during gazing. We propose a simple pipeline, imitating the way human eyes do a saccade and collect peripheral information, to locate scene text roughly and to refine multi-scale vision field iteratively using reinforcement learning. For both training and evaluation, we use ICDAR2015 Challenge 4 dataset as a base and design several criteria to measure the feasibility of our work.

MFPP: Morphological Fragmental Perturbation Pyramid for Black-Box Model Explanations

Qing Yang, Xia Zhu, Jong-Kae Fwu, Yun Ye, Ganmei You, Yuan Zhu

Responsive image

Auto-TLDR; Morphological Fragmental Perturbation Pyramid for Explainable Deep Neural Network

Slides Poster Similar

Deep neural networks (DNNs) have recently been applied and used in many advanced and diverse tasks, such as medical diagnosis, automatic driving, etc. Due to the lack of transparency of the deep models, DNNs are often criticized for their prediction that cannot be explainable by human. In this paper, we propose a novel Morphological Fragmental Perturbation Pyramid (MFPP) method to solve the Explainable AI problem. In particular, we focus on the black-box scheme, which can identify the input area responsible for the output of the DNN without having to understand the internal architecture of the DNN. In the MFPP method, we divide the input image into multi-scale fragments and randomly mask out fragments as perturbation to generate a saliency map, which indicates the significance of each pixel for the prediction result of the black box model. Compared with the existing input sampling perturbation method, the pyramid structure fragment has proved to be more effective. It can better explore the morphological information of the input image to match its semantic information, and does not need any value inside the DNN. We qualitatively and quantitatively prove that MFPP meets and exceeds the performance of state-of-the-art (SOTA) black-box interpretation method on multiple DNN models and datasets.

CDeC-Net: Composite Deformable Cascade Network for Table Detection in Document Images

Madhav Agarwal, Ajoy Mondal, C. V. Jawahar

Responsive image

Auto-TLDR; CDeC-Net: An End-to-End Trainable Deep Network for Detecting Tables in Document Images

Slides Similar

Localizing page elements/objects such as tables, figures, equations, etc. is the primary step in extracting information from document images. We propose a novel end-to-end trainable deep network, (CDeC-Net) for detecting tables present in the documents. The proposed network consists of a multistage extension of Mask R-CNN with a dual backbone having deformable convolution for detecting tables varying in scale with high detection accuracy at higher IoU threshold. We empirically evaluate CDeC-Net on all the publicly available benchmark datasets— ICDAR-2013, ICDAR-2017, ICDAR-2019, UNLV, Marmot, PubLayNet, TableBank, and IIIT-AR-13K —with extensive experiments. Our solution has three important properties:(i) a single trained model CDeC-Net‡ performs well across all the popular benchmark datasets; (ii) we report excellent performances across multiple, including higher, thresholds of IoU; (iii) by following the same protocol of the recent papers for each of the benchmarks, we consistently demonstrate the superior quantitative performance. Our code and models will be publicly released for enabling reproducibility of the results.

Real Time Fencing Move Classification and Detection at Touch Time During a Fencing Match

Cem Ekin Sunal, Chris G. Willcocks, Boguslaw Obara

Responsive image

Auto-TLDR; Fencing Body Move Classification and Detection Using Deep Learning

Slides Similar

Fencing is a fast-paced sport played with swords which are Epee, Foil, and Saber. However, such fast-pace can cause referees to make wrong decisions. Review of slow-motion camera footage in tournaments helps referees’ decision making, but it interrupts the match and may not be available for every organization. Motivated by the need for better decision making, analysis, and availability, we introduce the first fully-automated deep learning classification and detection system for fencing body moves at the moment a touch is made. This is an important step towards creating a fencing analysis system, with player profiling and decision tools that will benefit the fencing community. The proposed architecture combines You Only Look Once version three (YOLOv3) with a ResNet-34 classifier, trained on ImageNet settings to obtain 83.0\% test accuracy on the fencing moves. These results are exciting development in the sport, providing immediate feedback and analysis along with accessibility, hence making it a valuable tool for trainers and fencing match referees.

Simple Multi-Resolution Representation Learning for Human Pose Estimation

Trung Tran Quang, Van Giang Nguyen, Daeyoung Kim

Responsive image

Auto-TLDR; Multi-resolution Heatmap Learning for Human Pose Estimation

Slides Poster Similar

Human pose estimation - the process of recognizing human keypoints in a given image - is one of the most important tasks in computer vision and has a wide range of applications including movement diagnostics, surveillance, or self-driving vehicle. The accuracy of human keypoint prediction is increasingly improved thanks to the burgeoning development of deep learning. Most existing methods solved human pose estimation by generating heatmaps in which the ith heatmap indicates the location confidence of the ith keypoint. In this paper, we introduce novel network structures referred to as multi-resolution representation learning for human keypoint prediction. At different resolutions in the learning process, our networks branch off and use extra layers to learn heatmap generation. We firstly consider the architectures for generating the multi-resolution heatmaps after obtaining the lowest-resolution feature maps. Our second approach allows learning during the process of feature extraction in which the heatmaps are generated at each resolution of the feature extractor. The first and second approaches are referred to as multi-resolution heatmap learning and multi-resolution feature map learning respectively. Our architectures are simple yet effective, achieving good performance. We conducted experiments on two common benchmarks for human pose estimation: MS-COCO and MPII dataset.

Semantics to Space(S2S): Embedding Semantics into Spatial Space for Zero-Shot Verb-Object Query Inferencing

Sungmin Eum, Heesung Kwon

Responsive image

Auto-TLDR; Semantics-to-Space: Deep Zero-Shot Learning for Verb-Object Interaction with Vectors

Slides Poster Similar

We present a novel deep zero-shot learning (ZSL) model for inferencing human-object-interaction with verb-object (VO) query. While the previous two-stream ZSL approaches only use the semantic/textual information to be fed into the query stream, we seek to incorporate and embed the semantics into the visual representation stream as well. Our approach is powered by Semantics-to-Space (S2S) architecture where semantics derived from the residing objects are embedded into a spatial space of the visual stream. This architecture allows the co-capturing of the semantic attributes of the human and the objects along with their location/size/silhouette information. To validate, we have constructed a new dataset, Verb-Transferability 60 (VT60). VT60 provides 60 different VO pairs with overlapping verbs tailored for testing two-stream ZSL approaches with VO query. Experimental evaluations show that our approach not only outperforms the state-of-the-art, but also shows the capability of consistently improving performance regardless of which ZSL baseline architecture is used.

Superpixel-Based Refinement for Object Proposal Generation

Christian Wilms, Simone Frintrop

Responsive image

Auto-TLDR; Superpixel-based Refinement of AttentionMask for Object Segmentation

Slides Poster Similar

Precise segmentation of objects is an important problem in tasks like class-agnostic object proposal generation or instance segmentation. Deep learning-based systems usually generate segmentations of objects based on coarse feature maps, due to the inherent downsampling in CNNs. This leads to segmentation boundaries not adhering well to the object boundaries in the image. To tackle this problem, we introduce a new superpixel-based refinement approach on top of the state-of-the-art object proposal system AttentionMask. The refinement utilizes superpixel pooling for feature extraction and a novel superpixel classifier to determine if a high precision superpixel belongs to an object or not. Our experiments show an improvement of up to 26.0% in terms of average recall compared to original AttentionMask. Furthermore, qualitative and quantitative analyses of the segmentations reveal significant improvements in terms of boundary adherence for the proposed refinement compared to various deep learning-based state-of-the-art object proposal generation systems.

Detective: An Attentive Recurrent Model for Sparse Object Detection

Amine Kechaou, Manuel Martinez, Monica Haurilet, Rainer Stiefelhagen

Responsive image

Auto-TLDR; Detective: An attentive object detector that identifies objects in images in a sequential manner

Slides Poster Similar

In this work, we present Detective – an attentive object detector that identifies objects in images in a sequential manner. Our network is based on an encoder-decoder architecture, where the encoder is a convolutional neural network, and the decoder is a convolutional recurrent neural network coupled with an attention mechanism. At each iteration, our decoder focuses on the relevant parts of the image using an attention mechanism, and then estimates the object’s class and the bounding box coordinates. Current object detection models generate dense predictions and rely on post-processing to remove duplicate predictions. Detective is a sparse object detector that generates a single bounding box per object instance. However, training a sparse object detector is challenging, as it requires the model to reason at the instance level and not just at the class and spatial levels. We propose a training mechanism based on the Hungarian Algorithm and a loss that balances the localization and classification tasks. This allows Detective to achieve promising results on the PASCAL VOC object detection dataset. Our experiments demonstrate that sparse object detection is possible and has a great potential for future developments in applications where the order of the objects to be predicted is of interest.

Automatically Gather Address Specific Dwelling Images Using Google Street View

Salman Khan, Carl Salvaggio

Responsive image

Auto-TLDR; Automatic Address Specific Dwelling Image Collection Using Google Street View Data

Slides Poster Similar

Exciting research is being conducted using Google’s street view imagery. Researchers can have access to training data that allows CNN training for topics ranging from assessing neighborhood environments to estimating the age of a building. However, due to the uncontrolled nature of imagery available via Google’s Street View API, data collection can be lengthy and tedious. In an effort to help researchers gather address specific dwelling images efficiently, we developed an innovative and novel way of automatically performing this task. It was accomplished by exploiting Google’s publicly available platform with a combination of 3 separate network types and postprocessing techniques. Our uniquely developed NMS technique helped achieve 99.4%, valid, address specific dwelling images.

Vision-Based Layout Detection from Scientific Literature Using Recurrent Convolutional Neural Networks

Huichen Yang, William Hsu

Responsive image

Auto-TLDR; Transfer Learning for Scientific Literature Layout Detection Using Convolutional Neural Networks

Slides Poster Similar

We present an approach for adapting convolutional neural networks for object recognition and classification to scientific literature layout detection (SLLD), a shared subtask of several information extraction problems. Scientific publications contain multiple types of information sought by researchers in various disciplines, organized into an abstract, bibliography, and sections documenting related work, experimental methods, and results; however, there is no effective way to extract this information due to their diverse layout. In this paper, we present a novel approach to developing an end-to-end learning framework to segment and classify major regions of a scientific document. We consider scientific document layout analysis as an object detection task over digital images, without any additional text features that need to be added into the network during the training process. Our technical objective is to implement transfer learning via fine-tuning of pre-trained networks and thereby demonstrate that this deep learning architecture is suitable for tasks that lack very large document corpora for training. As part of the experimental test bed for empirical evaluation of this approach, we created a merged multi-corpus data set for scientific publication layout detection tasks. Our results show good improvement with fine-tuning of a pre-trained base network using this merged data set, compared to the baseline convolutional neural network architecture.

Early Wildfire Smoke Detection in Videos

Taanya Gupta, Hengyue Liu, Bir Bhanu

Responsive image

Auto-TLDR; Semi-supervised Spatio-Temporal Video Object Segmentation for Automatic Detection of Smoke in Videos during Forest Fire

Poster Similar

Recent advances in unmanned aerial vehicles and camera technology have proven useful for the detection of smoke that emerges above the trees during a forest fire. Automatic detection of smoke in videos is of great interest to Fire department. To date, in most parts of the world, the fire is not detected in its early stage and generally it turns catastrophic. This paper introduces a novel technique that integrates spatial and temporal features in a deep learning framework using semi-supervised spatio-temporal video object segmentation and dense optical flow. However, detecting this smoke in the presence of haze and without the labeled data is difficult. Considering the visibility of haze in the sky, a dark channel pre-processing method is used that reduces the amount of haze in video frames and consequently improves the detection results. Online training is performed on a video at the time of testing that reduces the need for ground-truth data. Tests using the publicly available video datasets show that the proposed algorithms outperform previous work and they are robust across different wildfire-threatened locations.

Enhancing Semantic Segmentation of Aerial Images with Inhibitory Neurons

Ihsan Ullah, Sean Reilly, Michael Madden

Responsive image

Auto-TLDR; Lateral Inhibition in Deep Neural Networks for Object Recognition and Semantic Segmentation

Slides Poster Similar

In a Convolutional Neural Network, each neuron in the output feature map takes input from the neurons in its receptive field. This receptive field concept plays a vital role in today's deep neural networks. However, inspired by neuro-biological research, it has been proposed to add inhibitory neurons outside the receptive field, which may enhance the performance of neural network models. In this paper, we begin with deep network architectures such as VGG and ResNet, and propose an approach to add lateral inhibition in each output neuron to reduce its impact on its neighbours, both in fine-tuning pre-trained models and training from scratch. Our experiments show that notable improvements upon prior baseline deep models can be achieved. A key feature of our approach is that it is easy to add to baseline models; it can be adopted in any model containing convolution layers, and we demonstrate its value in applications including object recognition and semantic segmentation of aerial images, where we show state-of-the-art result on the Aeroscape dataset. On semantic segmentation tasks, our enhancement shows 17.43% higher mIoU than a single baseline model on a single source (the Aeroscape dataset), 13.43% higher performance than an ensemble model on the same single source, and 7.03% higher than an ensemble model on multiple sources (segmentation datasets). Our experiments illustrate the potential impact of using inhibitory neurons in deep learning models, and they also show better results than the baseline models that have standard convolutional layer.

Object Detection Model Based on Scene-Level Region Proposal Self-Attention

Yu Quan, Zhixin Li, Canlong Zhang, Huifang Ma

Responsive image

Auto-TLDR; Exploiting Semantic Informations for Object Detection

Slides Poster Similar

The improvement of object detection performance is mostly focused on the extraction of local information near the region of interest in the image, which results in detection performance in this area being unable to achieve the desired effect. First, a depth-wise separable convolution network(D_SCNet-127 R-CNN) is built on the backbone network. Considering the importance of scene and semantic informations for visual recognition, the feature map is sent into the branch of the semantic segmentation module, region proposal network module, and the region proposal self-attention module to build the network of scene-level and region proposal self-attention module. Second, a deep reinforcement learning was utilized to achieve accurate positioning of border regression, and the calculation speed of the whole model was improved through implementing a light-weight head network. This model can effectively solve the limitation of feature extraction in traditional object detection and obtain more comprehensive detailed features. The experimental verification on MSCOCO17, VOC12, and Cityscapes datasets shows that the proposed method has good validity and scalability.

Improving Robotic Grasping on Monocular Images Via Multi-Task Learning and Positional Loss

William Prew, Toby Breckon, Magnus Bordewich, Ulrik Beierholm

Responsive image

Auto-TLDR; Improving grasping performance from monocularcolour images in an end-to-end CNN architecture with multi-task learning

Slides Poster Similar

In this paper we introduce two methods of improv-ing real-time objecting grasping performance from monocularcolour images in an end-to-end CNN architecture. The first isthe addition of an auxiliary task during model training (multi-task learning). Our multi-task CNN model improves graspingperformance from a baseline average of 72.04% to 78.14% onthe large Jacquard grasping dataset when performing a supple-mentary depth reconstruction task. The second is introducinga positional loss function that emphasises loss per pixel forsecondary parameters (gripper angle and width) only on points ofan object where a successful grasp can take place. This increasesperformance from a baseline average of 72.04% to 78.92% aswell as reducing the number of training epochs required. Thesemethods can be also performed in tandem resulting in a furtherperformance increase to 79.12%, while maintaining sufficientinference speed to enable processing at 50FPS

P2 Net: Augmented Parallel-Pyramid Net for Attention Guided Pose Estimation

Luanxuan Hou, Jie Cao, Yuan Zhao, Haifeng Shen, Jian Tang, Ran He

Responsive image

Auto-TLDR; Parallel-Pyramid Net with Partial Attention for Human Pose Estimation

Slides Poster Similar

The target of human pose estimation is to determine the body parts and joint locations of persons in the image. Angular changes, motion blur and occlusion etc. in the natural scenes make this task challenging, while some joints are more difficult to be detected than others. In this paper, we propose an augmented Parallel-Pyramid Net (P^2Net) with an partial attention module. During data preprocessing, we proposed a differentiable auto data augmentation (DA^2) method in which sequences of data augmentations are formulated as a trainable and operational Convolution Neural Network (CNN) component. DA^2 improves the training efficiency and effectiveness. A parallel pyramid structure is followed to compensate the information loss introduced by the network. For the information loss problem in the backbone network, we optimize the backbone network by adopting a new parallel structure without increasing the overall computational complexity. To further refine the predictions after completion of global predictions, an Partial Attention Module (PAM) is defined to extract weighted features from different scale feature maps generated by the parallel pyramid structure. Compared with the traditional up-sampling refining, PAM can better capture the relationship between channels. Experiments corroborate the effectiveness of our proposed method. Notably, our method achieves the best performance on the challenging MSCOCO and MPII datasets.

Neural Compression and Filtering for Edge-assisted Real-time Object Detection in Challenged Networks

Yoshitomo Matsubara, Marco Levorato

Responsive image

Auto-TLDR; Deep Neural Networks for Remote Object Detection Using Edge Computing

Slides Poster Similar

The edge computing paradigm places compute-capable devices - edge servers - at the network edge to assist mobile devices in executing data analysis tasks. Intuitively, offloading compute-intense tasks to edge servers can reduce their execution time. However, poor conditions of the wireless channel connecting the mobile devices to the edge servers may degrade the overall capture-to-output delay achieved by edge offloading. Herein, we focus on edge computing supporting remote object detection by means of Deep Neural Networks (DNN), and develop a framework to reduce the amount of data transmitted over the wireless link. The core idea we propose builds on recent approaches splitting DNNs into sections - namely head and tail models - executed by the mobile device and edge server, respectively. The wireless link, then, is used to transport the output of the last layer of the head model to the edge server, instead of the DNN input. Most prior work focuses on classification tasks and leaves the DNN structure unaltered. Herein, we focus on DNNs for three different object detection tasks, which present a much more convoluted structure, and modify the architecture of the network to: (i) achieve in-network compression by introducing a bottleneck layer in the early layers on the head model, and (ii) prefilter pictures that do not contain objects of interest using a convolutional neural network. Results show that the proposed technique represents an effective intermediate option between local and edge computing in a parameter region where these extreme point solutions fail to provide satisfactory performance.

FeatureNMS: Non-Maximum Suppression by Learning Feature Embeddings

Niels Ole Salscheider

Responsive image

Auto-TLDR; FeatureNMS: Non-Maximum Suppression for Multiple Object Detection

Slides Poster Similar

Most state of the art object detectors output multiple detections per object. The duplicates are removed in a post-processing step called Non-Maximum Suppression. Classical Non-Maximum Suppression has shortcomings in scenes that contain objects with high overlap: The idea of this heuristic is that a high bounding box overlap corresponds to a high probability of having a duplicate. We propose FeatureNMS to solve this problem. FeatureNMS recognizes duplicates not only based on the intersection over union between bounding boxes, but also based on the difference of feature vectors. These feature vectors can encode more information like visual appearance. Our approach outperforms classical NMS and derived approaches and achieves state of the art performance.

Multi-View Object Detection Using Epipolar Constraints within Cluttered X-Ray Security Imagery

Brian Kostadinov Shalon Isaac-Medina, Chris G. Willcocks, Toby Breckon

Responsive image

Auto-TLDR; Exploiting Epipolar Constraints for Multi-View Object Detection in X-ray Security Images

Slides Poster Similar

Automatic detection for threat object items is an increasing emerging area of future application in X-ray security imagery. Although modern X-ray security scanners can provide two or more views, the integration of such object detectors across the views has not been widely explored with rigour. Therefore, we investigate the application of geometric constraints using the epipolar nature of multi-view imagery to improve object detection performance. Furthermore, we assume that images come from uncalibrated views, such that a method to estimate the fundamental matrix using ground truth bounding box centroids from multiple view object detection labels is proposed. In addition, detections are given a score based on its similarity with respect to the distribution of the error of the epipolar estimation. This score is used as confidence weights for merging duplicated predictions using non-maximum suppression. Using a standard object detector (YOLOv3), our technique increases the average precision of detection by 2.8% on a dataset composed of firearms, laptops, knives and cameras. These results indicate that the integration of images at different views significantly improves the detection performance of threat items of cluttered X-ray security images.

A Systematic Investigation on Deep Architectures for Automatic Skin Lesions Classification

Pierluigi Carcagni, Marco Leo, Andrea Cuna, Giuseppe Celeste, Cosimo Distante

Responsive image

Auto-TLDR; RegNet: Deep Investigation of Convolutional Neural Networks for Automatic Classification of Skin Lesions

Slides Poster Similar

Computer vision-based techniques are more and more employed in healthcare and medical fields nowadays in order, principally, to be as a support to the experienced medical staff to help them to make a quick and correct diagnosis. One of the hot topics in this arena concerns the automatic classification of skin lesions. Several promising works exist about it, mainly leveraging Convolutional Neural Networks (CNN), but proposed pipeline mainly rely on complex data preprocessing and there is no systematic investigation about how available deep models can actually reach the accuracy needed for real applications. In order to overcome these drawbacks, in this work, an end-to-end pipeline is introduced and some of the most recent Convolutional Neural Networks (CNNs) architectures are included in it and compared on the largest common benchmark dataset recently introduced. To this aim, for the first time in this application context, a new network design paradigm, namely RegNet, has been exploited to get the best models among a population of configurations. The paper introduces a threefold level of contribution and novelty with respect the previous literature: the deep investigation of several CNN architectures driving to a consistent improvement of the lesions recognition accuracy, the exploitation of a new network design paradigm able to study the behavior of populations of models and a deep discussion about pro and cons of each analyzed method paving the path towards new research lines.

Improved Residual Networks for Image and Video Recognition

Ionut Cosmin Duta, Li Liu, Fan Zhu, Ling Shao

Responsive image

Auto-TLDR; Residual Networks for Deep Learning

Slides Poster Similar

Residual networks (ResNets) represent a powerful type of convolutional neural network (CNN) architecture, widely adopted and used in various tasks. In this work we propose an improved version of ResNets. Our proposed improvements address all three main components of a ResNet: the flow of information through the network layers, the residual building block, and the projection shortcut. We are able to show consistent improvements in accuracy and learning convergence over the baseline. For instance, on ImageNet dataset, using the ResNet with 50 layers, for top-1 accuracy we can report a 1.19% improvement over the baseline in one setting and around 2% boost in another. Importantly, these improvements are obtained without increasing the model complexity. Our proposed approach allows us to train extremely deep networks, while the baseline shows severe optimization issues. We report results on three tasks over six datasets: image classification (ImageNet, CIFAR-10 and CIFAR-100), object detection (COCO) and video action recognition (Kinetics-400 and Something-Something-v2). In the deep learning era, we establish a new milestone for the depth of a CNN. We successfully train a 404-layer deep CNN on the ImageNet dataset and a 3002-layer network on CIFAR-10 and CIFAR-100, while the baseline is not able to converge at such extreme depths. Code is available at: https://github.com/iduta/iresnet

Hybrid Cascade Point Search Network for High Precision Bar Chart Component Detection

Junyu Luo, Jinpeng Wang, Chin-Yew Lin

Responsive image

Auto-TLDR; Object Detection of Chart Components in Chart Images Using Point-based and Region-Based Object Detection Framework

Slides Poster Similar

Charts are commonly used for data visualization. One common form of chart distribution is in its image form. To enable machine comprehension of chart images, precise detection of chart components in chart images is a critical step. Existing image object detection methods do not perform well in chart component detection which requires high boundary detection precision. And traditional rule-based approaches lack enough generalization ability. In order to address this problem, we design a novel two-stage object detection framework that combines point-based and region-based ideas, by simulating the process that human creating bounding boxes for objects. The experiment on our labeled ChartDet dataset shows our method greatly improves the performance of chart object detection. We further extend our method to a general object detection task and get comparable performance.

Semantic Object Segmentation in Cultural Sites Using Real and Synthetic Data

Francesco Ragusa, Daniele Di Mauro, Alfio Palermo, Antonino Furnari, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Exploiting Synthetic Data for Object Segmentation in Cultural Sites

Slides Poster Similar

We consider the problem of object segmentation in cultural sites. Since collecting and labeling large datasets of real images is challenging, we investigate whether the use of synthetic images can be useful to achieve good segmentation performance on real data. To perform the study, we collected a new dataset comprising both real and synthetic images of 24 artworks in a cultural site. The synthetic images have been automatically generated from the 3D model of the considered cultural site using a tool developed for that purpose. Real and synthetic images have been labeled for the task of semantic segmentation of artworks. We compare three different approaches to perform object segmentation exploiting real and synthetic data. The experimental results point out that the use of synthetic data helps to improve the performances of segmentation algorithms when tested on real images. Satisfactory performance is achieved exploiting semantic segmentation together with image-to-image translation and including a small amount of real data during training. To encourage research on the topic, we publicly release the proposed dataset at the following url: https://iplab.dmi.unict.it/EGO-CH-OBJ-SEG/.