Improved Residual Networks for Image and Video Recognition

Ionut Cosmin Duta, Li Liu, Fan Zhu, Ling Shao

Responsive image

Auto-TLDR; Residual Networks for Deep Learning

Slides Poster

Residual networks (ResNets) represent a powerful type of convolutional neural network (CNN) architecture, widely adopted and used in various tasks. In this work we propose an improved version of ResNets. Our proposed improvements address all three main components of a ResNet: the flow of information through the network layers, the residual building block, and the projection shortcut. We are able to show consistent improvements in accuracy and learning convergence over the baseline. For instance, on ImageNet dataset, using the ResNet with 50 layers, for top-1 accuracy we can report a 1.19% improvement over the baseline in one setting and around 2% boost in another. Importantly, these improvements are obtained without increasing the model complexity. Our proposed approach allows us to train extremely deep networks, while the baseline shows severe optimization issues. We report results on three tasks over six datasets: image classification (ImageNet, CIFAR-10 and CIFAR-100), object detection (COCO) and video action recognition (Kinetics-400 and Something-Something-v2). In the deep learning era, we establish a new milestone for the depth of a CNN. We successfully train a 404-layer deep CNN on the ImageNet dataset and a 3002-layer network on CIFAR-10 and CIFAR-100, while the baseline is not able to converge at such extreme depths. Code is available at: https://github.com/iduta/iresnet

Similar papers

Dynamic Multi-Path Neural Network

Yingcheng Su, Yichao Wu, Ken Chen, Ding Liang, Xiaolin Hu

Responsive image

Auto-TLDR; Dynamic Multi-path Neural Network

Slides Similar

Although deeper and larger neural networks have achieved better performance, due to overwhelming burden on computation, they cannot meet the demands of deployment on resource-limited devices. An effective strategy to address this problem is to make use of dynamic inference mechanism, which changes the inference path for different samples at runtime. Existing methods only reduce the depth by skipping an entire specific layer, which may lose important information in this layer. In this paper, we propose a novel method called Dynamic Multi-path Neural Network (DMNN), which provides more topology choices in terms of both width and depth on the fly. For better modelling the inference path selection, we further introduce previous state and object category information to guide the training process. Compared to previous dynamic inference techniques, the proposed method is more flexible and easier to incorporate into most modern network architectures. Experimental results on ImageNet and CIFAR-100 demonstrate the superiority of our method on both efficiency and classification accuracy.

Slimming ResNet by Slimming Shortcut

Donggyu Joo, Doyeon Kim, Junmo Kim

Responsive image

Auto-TLDR; SSPruning: Slimming Shortcut Pruning on ResNet Based Networks

Slides Poster Similar

Conventional network pruning methods on convolutional neural networks (CNNs) reduce the number of input or output channels of convolution layers. With these approaches, the channels in the plain network can be pruned without any restrictions. However, in case of the ResNet based networks which have shortcuts (skip connections), the channel slimming of existing pruning methods is limited to the inside of each residual block. Since the number of Flops and parameters are also highly related to the number of channels in the shortcuts, more investigation on pruning channels in shortcuts is required. In this paper, we propose a novel pruning method, Slimming Shortcut Pruning (SSPruning), for pruning channels in shortcuts on ResNet based networks. First, we separate the long shortcut in individual regions that can be pruned independently without considering its long connections. Then, by applying our Importance Learning Gate (ILG) which learns the importance of channels globally regardless of channel type and location (i.e., in the shortcut or inside of the block), we can finally achieve an optimally pruned model. Through various experiments, we have confirmed that our method yields outstanding results when we prune the shortcuts and inside of the block together.

SCA Net: Sparse Channel Attention Module for Action Recognition

Hang Song, Yonghong Song, Yuanlin Zhang

Responsive image

Auto-TLDR; SCA Net: Efficient Group Convolution for Sparse Channel Attention

Slides Poster Similar

Channel attention has shown its great performance recently when it was incorporated into deep convolutional neural networks. However, existing methods usually require extensive computing resources due to their involuted structure, which is hard for 3D CNNs to take full advantage of. In this paper, a lightweight sparse channel attention (SCA) module implemented by efficient group convolution is proposed, which adopts the idea of sparse channel connection and involves much less parameters but brings clear performance gain. Meanwhile, to solve the lack of local channel interaction brought by group convolution, a dominant function called Aggregate-Shuffle-Diverge (ASD) is leveraged to enhance information flow over each group with no additional parameters. We also adjust the existing mainstream 3D CNNs by employing 3D convolution factorization, so as to further reduce the parameters. Our SCA module can be flexibly incorporated into most existing 3D CNNs, all of which can achieve a perfect trade-off between performance and complexity on action recognition task with factorized I3D or 3D ResNet backbone networks. The experimental results also indicate that the resulting network, namely, SCA Net can achieve an outstanding performance on UCF-101 and HMDB-51 datasets.

Efficient-Receptive Field Block with Group Spatial Attention Mechanism for Object Detection

Jiacheng Zhang, Zhicheng Zhao, Fei Su

Responsive image

Auto-TLDR; E-RFB: Efficient-Receptive Field Block for Deep Neural Network for Object Detection

Slides Poster Similar

Object detection has been paid rising attention in computer vision field. Convolutional Neural Networks (CNNs) extract high-level semantic features of images, which directly determine the performance of object detection. As a common solution, embedding integration modules into CNNs can enrich extracted features and thereby improve the performance. However, the instability and inconsistency of internal multiple branches exist in these modules. To address this problem, we propose a novel multibranch module called Efficient-Receptive Field Block (E-RFB), in which multiple levels of features are combined for network optimization. Specifically, by downsampling and increasing depth, the E-RFB provides sufficient RF. Second, in order to eliminate the inconsistency across different branches, a novel spatial attention mechanism, namely, Group Spatial Attention Module (GSAM) is proposed. The GSAM gradually narrows a feature map by channel grouping; thus it encodes the information between spatial and channel dimensions into the final attention heat map. Third, the proposed module can be easily joined in various CNNs to enhance feature representation as a plug-and-play component. With SSD-style detectors, our method halves the parameters of the original detection head and achieves high accuracy on the PASCAL VOC and MS COCO datasets. Moreover, the proposed method achieves superior performance compared with state-of-the-art methods based on similar framework.

Attention As Activation

Yimian Dai, Stefan Oehmcke, Fabian Gieseke, Yiquan Wu, Kobus Barnard

Responsive image

Auto-TLDR; Attentional Activation Units for Convolutional Networks

Slides Similar

Activation functions and attention mechanisms are typically treated as having different purposes and have evolved differently. However, both concepts can be formulated as a non-linear gating function. Inspired by their similarity, we propose a novel type of activation units called attentional activation~(ATAC) units as a unification of activation functions and attention mechanisms. In particular, we propose a local channel attention module for the simultaneous non-linear activation and element-wise feature refinement, which locally aggregates point-wise cross-channel feature contexts. By replacing the well-known rectified linear units by such ATAC units in convolutional networks, we can construct fully attentional networks that perform significantly better with a modest number of additional parameters. We conducted detailed ablation studies on the ATAC units using several host networks with varying network depths to empirically verify the effectiveness and efficiency of the units. Furthermore, we compared the performance of the ATAC units against existing activation functions as well as other attention mechanisms on the CIFAR-10, CIFAR-100, and ImageNet datasets. Our experimental results show that networks constructed with the proposed ATAC units generally yield performance gains over their competitors given a comparable number of parameters.

Attention Pyramid Module for Scene Recognition

Zhinan Qiao, Xiaohui Yuan, Chengyuan Zhuang, Abolfazl Meyarian

Responsive image

Auto-TLDR; Attention Pyramid Module for Multi-Scale Scene Recognition

Slides Poster Similar

The unrestricted open vocabulary and diverse substances of scenery images bring significant challenges to scene recognition. However, most deep learning architectures and attention methods are developed on general-purpose datasets and omit the characteristics of scene data. In this paper, we exploit the attention pyramid module (APM) to tackle the predicament of scene recognition. Our method streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the interdependency among scales, and further assists feature re-calibration as well as aggregation process. APM is extremely light-weighted and can be easily plugged into existing network architectures in a parameter-efficient manner. By simply integrating APM into ResNet-50, we obtain a 3.54\% boost in terms of top-1 accuracy on the benchmark scene dataset. Comprehensive experiments show that APM achieves better performance comparing with state-of-the-art attention methods using significant less computation budget. Code and pre-trained models will be made publicly available.

Second-Order Attention Guided Convolutional Activations for Visual Recognition

Shannan Chen, Qian Wang, Qiule Sun, Bin Liu, Jianxin Zhang, Qiang Zhang

Responsive image

Auto-TLDR; Second-order Attention Guided Network for Convolutional Neural Networks for Visual Recognition

Slides Poster Similar

Recently, modeling deep convolutional activations by the global second-order pooling has shown great advance on visual recognition tasks. However, most of the existing deep second-order statistical models mainly compute second-order statistics of activations of the last convolutional layer as image representations, and they seldom introduce second-order statistics into earlier layers to better fit network topology, thus limiting the representational ability to a certain extent. Motivated by the flexibility of attention blocks that are commonly plugged into intermediate layers of deep convolutional networks (ConvNets), this work makes an attempt to combine deep second-order statistics with attention mechanisms in ConvNets, and further proposes a novel Second-order Attention Guided Network (SoAG-Net) for visual recognition. More specifically, SoAG-Net involves several SoAG modules seemingly inserted into intermediate layers of the network, in which SoAG collects second-order statistics of convolutional activations by polynomial kernel approximation to predict channel-wise attention maps utilized for guiding the learning of convolutional activations through tensor scaling along channel dimension. SoAG improves the nonlinearity of ConvNets and enables ConvNets to fit more complicated distribution of convolutional activations. Experiment results on three commonly used datasets illuminate that SoAG-Net outperforms its counterparts and achieves competitive performance with state-of-the-art models under the same backbone.

Learnable Higher-Order Representation for Action Recognition

Jie Shao, Xiangyang Xue

Responsive image

Auto-TLDR; Learningable Higher-Order Operations for Spatiotemporal Dynamics in Video Recognition

Similar

Capturing spatiotemporal dynamics is an essential topic in video recognition. In this paper, we present learnable higher-order operations as a generic family of building blocks for capturing spatiotemporal dynamics from RGB input video space. Similar to higher-order functions, the weights of higher-order operations are themselves derived from the data with learnable parameters. Classical architectures such as residual learning and network-in-network are first-order operations where weights are directly learned from the data. Higher-order operations make it easier to capture context-sensitive patterns, such as motion. Self-attention models are also higher-order operations, but the attention weights are mostly computed from an affine operation or dot product. The learnable higher-order operations can be more generic and flexible. Experimentally, we show that on the task of video recognition, our higher-order models can achieve results on par with or better than the existing state-of-the-art methods on Something-Something (V1 and V2), Kinetics and Charades datasets.

Region-Based Non-Local Operation for Video Classification

Guoxi Huang, Adrian Bors

Responsive image

Auto-TLDR; Regional-based Non-Local Operation for Deep Self-Attention in Convolutional Neural Networks

Slides Poster Similar

Convolutional Neural Networks (CNNs) model long-range dependencies by deeply stacking convolution operations with small window sizes, which makes the optimizations difficult. This paper presents region-based non-local operation (RNL), a family of self-attention mechanisms, which can directly capture long-range dependencies without a deep stack of local operations. Given an intermediate feature map, our method recalibrates the feature at a position by aggregating information from the neighboring regions of all positions. By combining a channel attention module with the proposed RNL, we design an attention chain, which can be integrated into off-the-shelf CNNs for end-to-end training. We evaluate our method on two video classification benchmarks. The experimental result of our method outperforms other attention mechanisms, and we achieve state-of-the-art performance on Something-Something V1.

Context-Aware Residual Module for Image Classification

Jing Bai, Ran Chen

Responsive image

Auto-TLDR; Context-Aware Residual Module for Image Classification

Slides Poster Similar

Attention module has achieved great success in numerous vision tasks. However, existing visual attention modules generally consider the features of a single-scale, and cannot make full use of their multi-scale contextual information. Meanwhile, the multi-scale spatial feature representation has demonstrated its outstanding performance in a wide range of applications. However, the multi-scale features are always represented in a layer-wise manner, i.e. it is impossible to know their contextual information at a granular level. Focusing on the above issue, a context-aware residual module for image classification is proposed in this paper. It consists of a novel multi-scale channel attention module MSCAM to learn refined channel weights by considering the visual features of its own scale and its surrounding fields, and a multi-scale spatial aware module MSSAM to further capture more spatial information. Either or both of the two modules can be plugged into any CNN-based backbone image classification architecture with a short residual connection to obtain the context-aware enhanced features. The experiments on public image recognition datasets including CIFAR10, CIFAR100,Tiny-ImageNet and ImageNet consistently demonstrate that our proposed modules significantly outperforms a wide-used state-of-the-art methods, e.g., ResNet and the lightweight networks of MobileNet and SqueezeeNet.

Object Detection in the DCT Domain: Is Luminance the Solution?

Benjamin Deguerre, Clement Chatelain, Gilles Gasso

Responsive image

Auto-TLDR; Jpeg Deep: Object Detection Using Compressed JPEG Images

Slides Poster Similar

Object detection in images has reached unprecedented performances. The state-of-the-art methods rely on deep architectures that extract salient features and predict bounding boxes enclosing the objects of interest. These methods essentially run on RGB images. However, the RGB images are often compressed by the acquisition devices for storage purpose and transfer efficiency. Hence, their decompression is required for object detectors. To gain in efficiency, this paper proposes to take advantage of the compressed representation of images to carry out object detection usable in constrained resources conditions. Specifically, we focus on JPEG images and propose a thorough analysis of detection architectures newly designed in regard of the peculiarities of the JPEG norm. This leads to a x1.7 speed up in comparison with a standard RGB-based architecture, while only reducing the detection performance by 5.5%. Additionally, our empirical findings demonstrate that only part of the compressed JPEG information, namely the luminance component, may be required to match detection accuracy of the full input methods. Code is made available at : https://github.com/D3lt4lph4/jpeg_deep.

Revisiting the Training of Very Deep Neural Networks without Skip Connections

Oyebade Kayode Oyedotun, Abd El Rahman Shabayek, Djamila Aouada, Bjorn Ottersten

Responsive image

Auto-TLDR; Optimization of Very Deep PlainNets without shortcut connections with 'vanishing and exploding units' activations'

Slides Poster Similar

Deep neural networks (DNNs) with many layers of feature representations yield state-of-the-art results on several difficult learning tasks. However, optimizing very deep DNNs without shortcut connections known as PlainNets, is a notoriously hard problem. Considering the growing interest in this area, this paper investigates holistically two scenarios that plague the training of very deep PlainNets: (1) the relatively popular challenge of 'vanishing and exploding units' activations', and (2) the less investigated 'singularity' problem, which is studied in details in this paper. In contrast to earlier works that study only the saturation and explosion of units' activations in isolation, this paper harmonizes the inconspicuous coexistence of the aforementioned problems for very deep PlainNets. Particularly, we argue that the aforementioned problems would have to be tackled simultaneously for the successful training of very deep PlainNets. Finally, different techniques that can be employed for tackling the optimization problem are discussed, and a specific combination of simple techniques that allows the successful training of PlainNets having up to 100 layers is demonstrated.

CQNN: Convolutional Quadratic Neural Networks

Pranav Mantini, Shishir Shah

Responsive image

Auto-TLDR; Quadratic Neural Network for Image Classification

Slides Poster Similar

Image classification is a fundamental task in computer vision. A variety of deep learning models based on the Convolutional Neural Network (CNN) architecture have proven to be an efficient solution. Numerous improvements have been proposed over the years, where broader, deeper, and denser networks have been constructed. However, the atomic operation for these models has remained a linear unit (single neuron). In this work, we pursue an alternative dimension by hypothesizing the atomic operation to be performed by a quadratic unit. We construct convolutional layers using quadratic neurons for feature extraction and subsequently use dense layers for classification. We perform analysis to quantify the implication of replacing linear neurons with quadratic units. Results show a keen improvement in classification accuracy with quadratic neurons over linear neurons.

Improving Batch Normalization with Skewness Reduction for Deep Neural Networks

Pak Lun Kevin Ding, Martin Sarah, Baoxin Li

Responsive image

Auto-TLDR; Batch Normalization with Skewness Reduction

Slides Poster Similar

Batch Normalization (BN) is a well-known technique used in training deep neural networks. The main idea behind batch normalization is to normalize the features of the layers ($i.e.$, transforming them to have a mean equal to zero and a variance equal to one). Such a procedure encourages the optimization landscape of the loss function to be smoother, and improve the learning of the networks for both speed and performance. In this paper, we demonstrate that the performance of the network can be improved, if the distributions of the features of the output in the same layer are similar. As normalizing based on mean and variance does not necessarily make the features to have the same distribution, we propose a new normalization scheme: Batch Normalization with Skewness Reduction (BNSR). Comparing with other normalization approaches, BNSR transforms not just only the mean and variance, but also the skewness of the data. By tackling this property of a distribution, we are able to make the output distributions of the layers to be further similar. The nonlinearity of BNSR may further improve the expressiveness of the underlying network. Comparisons with other normalization schemes are tested on the CIFAR-100 and ImageNet datasets. Experimental results show that the proposed approach can outperform other state-of-the-arts that are not equipped with BNSR.

Stage-Wise Neural Architecture Search

Artur Jordão, Fernando Akio Yamada, Maiko Lie, William Schwartz

Responsive image

Auto-TLDR; Efficient Neural Architecture Search for Deep Convolutional Networks

Slides Poster Similar

Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications. These architectures consist of stages, which are sets of layers that operate on representations in the same resolution. It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network. However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time. Thus, significant human effort is necessary to evaluate different trade-offs between depth and performance. To handle this problem, recent works have proposed to automatically design high-performance architectures, mainly by means of neural architecture search (NAS). Current NAS strategies analyze a large set of possible candidate architectures and, hence, require vast computational resources and take many GPUs days. Motivated by this, we propose a NAS approach to efficiently design accurate and low-cost convolutional architectures and demonstrate that an efficient strategy for designing these architectures is to learn the depth stage-by-stage. For this purpose, our approach increases depth incrementally in each stage taking into account its importance, such that stages with low importance are kept shallow while stages with high importance become deeper. We conduct experiments on the CIFAR and different versions of ImageNet datasets, where we show that architectures discovered by our approach achieve better accuracy and efficiency than human-designed architectures. Additionally, we show that architectures discovered on CIFAR-10 can be successfully transferred to large datasets. Compared to previous NAS approaches, our method is substantially more efficient, as it evaluates one order of magnitude fewer models and yields architectures on par with the state-of-the-art.

3D Attention Mechanism for Fine-Grained Classification of Table Tennis Strokes Using a Twin Spatio-Temporal Convolutional Neural Networks

Pierre-Etienne Martin, Jenny Benois-Pineau, Renaud Péteri, Julien Morlier

Responsive image

Auto-TLDR; Attentional Blocks for Action Recognition in Table Tennis Strokes

Slides Poster Similar

The paper addresses the problem of recognition of actions in video with low inter-class variability such as Table Tennis strokes. Two stream, "twin" convolutional neural networks are used with 3D convolutions both on RGB data and optical flow. Actions are recognized by classification of temporal windows. We introduce 3D attention modules and examine their impact on classification efficiency. In the context of the study of sportsmen performances, a corpus of the particular actions of table tennis strokes is considered. The use of attention blocks in the network speeds up the training step and improves the classification scores up to 5% with our twin model. We visualize the impact on the obtained features and notice correlation between attention and player movements and position. Score comparison of state-of-the-art action classification method and proposed approach with attentional blocks is performed on the corpus. Proposed model with attention blocks outperforms previous model without them and our baseline.

A Close Look at Deep Learning with Small Data

Lorenzo Brigato, Luca Iocchi

Responsive image

Auto-TLDR; Low-Complex Neural Networks for Small Data Conditions

Slides Poster Similar

In this work, we perform a wide variety of experiments with different Deep Learning architectures in small data conditions. We show that model complexity is a critical factor when only a few samples per class are available. Differently from the literature, we improve the state of the art using low complexity models. We show that standard convolutional neural networks with relatively few parameters are effective in this scenario. In many of our experiments, low complexity models outperform state-of-the-art architectures. Moreover, we propose a novel network that uses an unsupervised loss to regularize its training. Such architecture either improves the results either performs comparably well to low capacity networks. Surprisingly, experiments show that the dynamic data augmentation pipeline is not beneficial in this particular domain. Statically augmenting the dataset might be a promising research direction while dropout maintains its role as a good regularizer.

Feature-Dependent Cross-Connections in Multi-Path Neural Networks

Dumindu Tissera, Kasun Vithanage, Rukshan Wijesinghe, Kumara Kahatapitiya, Subha Fernando, Ranga Rodrigo

Responsive image

Auto-TLDR; Multi-path Networks for Adaptive Feature Extraction

Slides Poster Similar

Learning a particular task from a dataset, samples in which originate from diverse contexts, is challenging, and usually addressed by deepening or widening standard neural networks. As opposed to conventional network widening, multi-path architectures restrict the quadratic increment of complexity to a linear scale. However, existing multi-column/path networks or model ensembling methods do not consider any feature-dependant allocation of parallel resources, and therefore, tend to learn redundant features. Given a layer in a multi-path network, if we restrict each path to learn a context-specific set of features and introduce a mechanism to intelligently allocate incoming feature maps to such paths, each path can specialize in a certain context, reducing the redundancy and improving the quality of extracted features. This eventually leads to better-optimized usage of parallel resources. To do this, we propose inserting feature-dependant cross-connections between parallel sets of feature maps in successive layers. The weights of these cross-connections are learned based on the input features of the particular layer. Our multi-path networks show improved image recognition accuracy at a similar complexity compared to conventional and state-of-the-art methods for deepening, widening and adaptive feature extracting, in both small and large scale datasets.

Rethinking of Deep Models Parameters with Respect to Data Distribution

Shitala Prasad, Dongyun Lin, Yiqun Li, Sheng Dong, Zaw Min Oo

Responsive image

Auto-TLDR; A progressive stepwise training strategy for deep neural networks

Slides Poster Similar

The performance of deep learning models are driven by various parameters but to tune all of them every time, for every dataset, is a heuristic practice. In this paper, unlike the common practice of decaying the learning rate, we propose a step-wise training strategy where the learning rate and the batch size are tuned based on the dataset size. Here, the given dataset size is progressively increased during the training to boost the network performance without saturating the learning curve, after certain epochs. We conducted extensive experiments on multiple networks and datasets to validate the proposed training strategy. The experimental results proves our hypothesis that the learning rate, the batch size and the data size are interrelated and can improve the network accuracy if an optimal progressive stepwise training strategy is applied. The proposed strategy also the overall training computational cost is reduced.

On the Information of Feature Maps and Pruning of Deep Neural Networks

Mohammadreza Soltani, Suya Wu, Jie Ding, Robert Ravier, Vahid Tarokh

Responsive image

Auto-TLDR; Compressing Deep Neural Models Using Mutual Information

Slides Poster Similar

A technique for compressing deep neural models achieving competitive performance to state-of-the-art methods is proposed. The approach utilizes the mutual information between the feature maps and the output of the model in order to prune the redundant layers of the network. Extensive numerical experiments on both CIFAR-10, CIFAR-100, and Tiny ImageNet data sets demonstrate that the proposed method can be effective in compressing deep models, both in terms of the numbers of parameters and operations. For instance, by applying the proposed approach to DenseNet model with 0.77 million parameters and 293 million operations for classification of CIFAR-10 data set, a reduction of 62.66% and 41.00% in the number of parameters and the number of operations are respectively achieved, while increasing the test error only by less than 1%.

MixTConv: Mixed Temporal Convolutional Kernels for Efficient Action Recognition

Kaiyu Shan, Yongtao Wang, Zhi Tang, Ying Chen, Yangyan Li

Responsive image

Auto-TLDR; Mixed Temporal Convolution for Action Recognition

Slides Poster Similar

To efficiently extract spatiotemporal features of video for action recognition, most state-of-the-art methods integrate 1D temporal convolution into a conventional 2D CNN backbone. However, they all exploit 1D temporal convolution of fixed kernel size (i.e., 3) in the network building block, thus have suboptimal temporal modeling capability to handle both long term and short-term actions. To address this problem, we first investigate the impacts of different kernel sizes for the 1D temporal convolutional filters. Then, we propose a simple yet efficient operation called Mixed Temporal Convolution (MixTConv) in methodology, which consists of multiple depthwise 1D convolutional filters with different kernel sizes. By plugging MixTConv into the conventional 2D CNN backbone ResNet-50, we further propose an efficient and effective network architecture named MSTNet for action recognition, and achieve state-of-the-art results on multiple large-scale benchmarks.

WeightAlign: Normalizing Activations by Weight Alignment

Xiangwei Shi, Yunqiang Li, Xin Liu, Jan Van Gemert

Responsive image

Auto-TLDR; WeightAlign: Normalization of Activations without Sample Statistics

Slides Poster Similar

Batch normalization (BN) allows training very deep networks by normalizing activations by mini-batch sample statistics which renders BN unstable for small batch sizes. Current small-batch solutions such as Instance Norm, Layer Norm, and Group Norm use channel statistics which can be computed even for a single sample. Such methods are less stable than BN as they critically depend on the statistics of a single input sample. To address this problem, we propose a normalization of activation without sample statistics. We present WeightAlign: a method that normalizes the weights by the mean and scaled standard derivation computed within a filter, which normalizes activations without computing any sample statistics. Our proposed method is independent of batch size and stable over a wide range of batch sizes. Because weight statistics are orthogonal to sample statistics, we can directly combine WeightAlign with any method for activation normalization. We experimentally demonstrate these benefits for classification on CIFAR-10, CIFAR-100, ImageNet, for semantic segmentation on PASCAL VOC 2012 and for domain adaptation on Office-31.

Contextual Classification Using Self-Supervised Auxiliary Models for Deep Neural Networks

Sebastian Palacio, Philipp Engler, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Self-Supervised Autogenous Learning for Deep Neural Networks

Slides Poster Similar

Classification problems solved with deep neural networks (DNNs) typically rely on a closed world paradigm, and optimize over a single objective (e.g., minimization of the cross- entropy loss). This setup dismisses all kinds of supporting signals that can be used to reinforce the existence or absence of particular patterns. The increasing need for models that are interpretable by design makes the inclusion of said contextual signals a crucial necessity. To this end, we introduce the notion of Self-Supervised Autogenous Learning (SSAL). A SSAL objective is realized through one or more additional targets that are derived from the original supervised classification task, following architectural principles found in multi-task learning. SSAL branches impose low-level priors into the optimization process (e.g., grouping). The ability of using SSAL branches during inference, allow models to converge faster, focusing on a richer set of class-relevant features. We equip state-of-the-art DNNs with SSAL objectives and report consistent improvements for all of them on CIFAR100 and Imagenet. We show that SSAL models outperform similar state-of-the-art methods focused on contextual loss functions, auxiliary branches and hierarchical priors.

VPU Specific CNNs through Neural Architecture Search

Ciarán Donegan, Hamza Yous, Saksham Sinha, Jonathan Byrne

Responsive image

Auto-TLDR; Efficient Convolutional Neural Networks for Edge Devices using Neural Architecture Search

Slides Poster Similar

The success of deep learning at computer vision tasks has led to an ever-increasing number of applications on edge devices. Often with the use of edge AI hardware accelerators like the Intel Movidius Vision Processing Unit (VPU). Performing computer vision tasks on edge devices is challenging. Many Convolutional Neural Networks (CNNs) are too complex to run on edge devices with limited computing power. This has created large interest in designing efficient CNNs and one promising way of doing this is through Neural Architecture Search (NAS). NAS aims to automate the design of neural networks. NAS can also optimize multiple different objectives together, like accuracy and efficiency, which is difficult for humans. In this paper, we use a differentiable NAS method to find efficient CNNs for VPU that achieves state-of-the-art classification accuracy on ImageNet. Our NAS designed model outperforms MobileNetV2, having almost 1\% higher top-1 accuracy while being 13\% faster on MyriadX VPU. To the best of our knowledge, this is the first time a VPU specific CNN has been designed using a NAS algorithm. Our results also reiterate the fact that efficient networks must be designed for each specific hardware. We show that efficient networks targeted at different devices do not perform as well on the VPU.

ResFPN: Residual Skip Connections in Multi-Resolution Feature Pyramid Networks for Accurate Dense Pixel Matching

Rishav ., René Schuster, Ramy Battrawy, Oliver Wasenmüler, Didier Stricker

Responsive image

Auto-TLDR; Resolution Feature Pyramid Networks for Dense Pixel Matching

Slides Similar

Dense pixel matching is required for many computer vision algorithms such as disparity, optical flow or scene flow estimation. Feature Pyramid Networks (FPN) have proven to be a suitable feature extractor for CNN-based dense matching tasks. FPN generates well localized and semantically strong features at multiple scales. However, the generic FPN is not utilizing its full potential, due to its reasonable but limited localization accuracy. Thus, we present ResFPN – a multiresolution feature pyramid network with multiple residual skip connections, where at any scale, we leverage the information from higher resolution maps for stronger and better localized features. In our ablation study we demonstrate the effectiveness of our novel architecture with clearly higher accuracy than FPN. In addition, we verify the superior accuracy of ResFPN in many different pixel matching applications on established datasets like KITTI, Sintel, and FlyingThings3D.

Norm Loss: An Efficient yet Effective Regularization Method for Deep Neural Networks

Theodoros Georgiou, Sebastian Schmitt, Thomas Baeck, Wei Chen, Michael Lew

Responsive image

Auto-TLDR; Weight Soft-Regularization with Oblique Manifold for Convolutional Neural Network Training

Slides Poster Similar

Convolutional neural network training can suffer from diverse issues like exploding or vanishing gradients, scaling-based weight space symmetry and covariant-shift. In order to address these issues, researchers develop weight regularization methods and activation normalization methods. In this work we propose a weight soft-regularization method based on the Oblique manifold. The proposed method uses a loss function which pushes each weight vector to have a norm close to one, i.e. the weight matrix is smoothly steered toward the so-called Oblique manifold. We evaluate our method on the very popular CIFAR-10, CIFAR-100 and ImageNet 2012 datasets using two state-of-the-art architectures, namely the ResNet and wide-ResNet. Our method introduces negligible computational overhead and the results show that it is competitive to the state-of-the-art and in some cases superior to it. Additionally, the results are less sensitive to hyperparameter settings such as batch size and regularization factor.

MFI: Multi-Range Feature Interchange for Video Action Recognition

Sikai Bai, Qi Wang, Xuelong Li

Responsive image

Auto-TLDR; Multi-range Feature Interchange Network for Action Recognition in Videos

Slides Poster Similar

Short-range motion features and long-range dependencies are two complementary and vital cues for action recognition in videos, but it remains unclear how to efficiently and effectively extract these two features. In this paper, we propose a novel network to capture these two features in a unified 2D framework. Specifically, we first construct a Short-range Temporal Interchange (STI) block, which contains a Channels-wise Temporal Interchange (CTI) module for encoding short-range motion features. Then a Graph-based Regional Interchange (GRI) module is built to present long-range dependencies using graph convolution. Finally, we replace original bottleneck blocks in the ResNet with STI blocks and insert several GRI modules between STI blocks, to form a Multi-range Feature Interchange (MFI) Network. Practically, extensive experiments are conducted on three action recognition datasets (i.e., Something-Something V1, HMDB51, and UCF101), which demonstrate that the proposed MFI network achieves impressive results with very limited computing cost.

Transitional Asymmetric Non-Local Neural Networks for Real-World Dirt Road Segmentation

Yooseung Wang, Jihun Park

Responsive image

Auto-TLDR; Transitional Asymmetric Non-Local Neural Networks for Semantic Segmentation on Dirt Roads

Slides Poster Similar

Understanding images by predicting pixel-level semantic classes is a fundamental task in computer vision and is one of the most important techniques for autonomous driving. Recent approaches based on deep convolutional neural networks have dramatically improved the speed and accuracy of semantic segmentation on paved road datasets, however, dirt roads have yet to be systematically studied. Dirt roads do not contain clear boundaries between drivable and non-drivable regions; and thus, this difficulty must be overcome for the realization of fully autonomous vehicles. The key idea of our approach is to apply lightweight non-local blocks to reinforce stage-wise long-range dependencies in encoder-decoder style backbone networks. Experiments on 4,687 images of a dirt road dataset show that our transitional asymmetric non-local neural networks present a higher accuracy with lower computational costs compared to state-of-the-art models.

Attention Based Pruning for Shift Networks

Ghouthi Hacene, Carlos Lassance, Vincent Gripon, Matthieu Courbariaux, Yoshua Bengio

Responsive image

Auto-TLDR; Shift Attention Layers for Efficient Convolutional Layers

Slides Poster Similar

In many application domains such as computer vision, Convolutional Layers (CLs) are key to the accuracy of deep learning methods. However, it is often required to assemble a large number of CLs, each containing thousands of parameters, in order to reach state-of-the-art accuracy, thus resulting in complex and demanding systems that are poorly fitted to resource-limited devices. Recently, methods have been proposed to replace the generic convolution operator by the combination of a shift operation and a simpler 1x1 convolution. The resulting block, called Shift Layer (SL), is an efficient alternative to CLs in the sense it allows to reach similar accuracies on various tasks with faster computations and fewer parameters. In this contribution, we introduce Shift Attention Layers (SALs), which extend SLs by using an attention mechanism that learns which shifts are the best at the same time the network function is trained. We demonstrate SALs are able to outperform vanilla SLs (and CLs) on various object recognition benchmarks while significantly reducing the number of float operations and parameters for the inference.

NAS-EOD: An End-To-End Neural Architecture Search Method for Efficient Object Detection

Huigang Zhang, Liuan Wang, Jun Sun, Li Sun, Hiromichi Kobashi, Nobutaka Imamura

Responsive image

Auto-TLDR; NAS-EOD: Neural Architecture Search for Object Detection on Edge Devices

Slides Similar

Model efficiency for object detection has become more and more important recently, especially when intelligent mobile devices are more and more convenient and developed today. Current small models for this task is either extended from the models for classification task, or pruned directly on the basis of large models. These pipelines are not task-specific or data-oriented so that their performance are not good enough for users. In this work, we propose a neural architecture search (NAS) method to build a detection model automatically that can perform well on edge devices. Specifically, the proposed method supports the search of not only multi-scale feature network, but also backbone network. This enables us to search out a global optimal model. To the best of our knowledge, it is a first attempt for searching an overall detection model via NAS. Additionally, we add latency information into the main objective during performance estimation, so that the search process can find a final model suitable for edge devices. Experiments on the PASCAL VOC benchmark indicate that the searched model (named NAS-EOD) can get good accuracy even without ImageNet pre-training. When using ImageNet pre-training, our model is superior to state-of-the-art small object detection models.

Learning to Prune in Training via Dynamic Channel Propagation

Shibo Shen, Rongpeng Li, Zhifeng Zhao, Honggang Zhang, Yugeng Zhou

Responsive image

Auto-TLDR; Dynamic Channel Propagation for Neural Network Pruning

Slides Poster Similar

In this paper, we propose a novel network training mechanism called "dynamic channel propagation" to prune the model during the training period. In particular, we pick up a specific group of channels in each convolutional layer to participate in the forward propagation in training time according to the significance level of channel, which is defined as channel utility. The utility values with respect to all selected channels are updated simultaneously with the error back-propagation process and will constantly change. Furthermore, when the training ends, channels with high utility values are retained whereas those with low utility values are discarded. Hence, our proposed method trains and prunes neural networks simultaneously. We empirically evaluate our novel training method on various representative benchmark datasets and advanced convolutional neural network (CNN) architectures, including VGGNet and ResNet. The experiment results verify superior performance and robust effectiveness of our approach.

Enhancing Semantic Segmentation of Aerial Images with Inhibitory Neurons

Ihsan Ullah, Sean Reilly, Michael Madden

Responsive image

Auto-TLDR; Lateral Inhibition in Deep Neural Networks for Object Recognition and Semantic Segmentation

Slides Poster Similar

In a Convolutional Neural Network, each neuron in the output feature map takes input from the neurons in its receptive field. This receptive field concept plays a vital role in today's deep neural networks. However, inspired by neuro-biological research, it has been proposed to add inhibitory neurons outside the receptive field, which may enhance the performance of neural network models. In this paper, we begin with deep network architectures such as VGG and ResNet, and propose an approach to add lateral inhibition in each output neuron to reduce its impact on its neighbours, both in fine-tuning pre-trained models and training from scratch. Our experiments show that notable improvements upon prior baseline deep models can be achieved. A key feature of our approach is that it is easy to add to baseline models; it can be adopted in any model containing convolution layers, and we demonstrate its value in applications including object recognition and semantic segmentation of aerial images, where we show state-of-the-art result on the Aeroscape dataset. On semantic segmentation tasks, our enhancement shows 17.43% higher mIoU than a single baseline model on a single source (the Aeroscape dataset), 13.43% higher performance than an ensemble model on the same single source, and 7.03% higher than an ensemble model on multiple sources (segmentation datasets). Our experiments illustrate the potential impact of using inhibitory neurons in deep learning models, and they also show better results than the baseline models that have standard convolutional layer.

Fast and Efficient Neural Network for Light Field Disparity Estimation

Dizhi Ma, Andrew Lumsdaine

Responsive image

Auto-TLDR; Improving Efficient Light Field Disparity Estimation Using Deep Neural Networks

Slides Poster Similar

As with many imaging tasks, disparity estimation for light fields seems to be well-matched to machine learning approaches. Neural network-based methods can achieve an overall bad pixel rate as low as four percent on the 4D light field benchmark dataset,continued effort to improve accuracy is resulting in diminishing returns. On the other hand, due to the growing importance of mobile and embedded devices, improving the efficiency is emerging as an important problem. In this paper, we improve the efficiency of existing neural net approaches for light field disparity estimation by introducing efficient network blocks, pruning redundant sections of the network and downsampling the resolution of feature vector. To improve performance, we also propose densely sampled epipolar image plane volumes as input. Experiment results show that our approach can achieve similar results compared with state-of-the-art methods while using only one-tenth runtime.

Progressive Gradient Pruning for Classification, Detection and Domain Adaptation

Le Thanh Nguyen-Meidine, Eric Granger, Marco Pedersoli, Madhu Kiran, Louis-Antoine Blais-Morin

Responsive image

Auto-TLDR; Progressive Gradient Pruning for Iterative Filter Pruning of Convolutional Neural Networks

Slides Poster Similar

Although deep neural networks (NNs) have achieved state-of-the-art accuracy in many visual recognition tasks, the growing computational complexity and energy consumption of networks remains an issue, especially for applications on plat-forms with limited resources and requiring real-time processing.Filter pruning techniques have recently shown promising results for the compression and acceleration of convolutional NNs(CNNs). However, these techniques involve numerous steps and complex optimisations because some only prune after training CNNs, while others prune from scratch during training by integrating sparsity constraints or modifying the loss function.In this paper we propose a new Progressive Gradient Pruning(PGP) technique for iterative filter pruning during training. In contrast to previous progressive pruning techniques, it relies on a novel filter selection criterion that measures the change in filter weights, uses a new hard and soft pruning strategy and effectively adapts momentum tensors during the backward propagation pass. Experimental results obtained after training various CNNs on image data for classification, object detection and domain adaptation benchmarks indicate that the PGP technique can achieve a better trade-off between classification accuracy and network (time and memory) complexity than PSFP and other state-of-the-art filter pruning techniques.

Operation and Topology Aware Fast Differentiable Architecture Search

Shahid Siddiqui, Christos Kyrkou, Theocharis Theocharides

Responsive image

Auto-TLDR; EDARTS: Efficient Differentiable Architecture Search with Efficient Optimization

Slides Poster Similar

Differentiable architecture search (DARTS) has gained significant attention amongst neural architecture search approaches due to its effectiveness in finding competitive network architectures with reasonable computational complexity. DARTS' search space however is designed such that even a randomly picked architecture is very competitive and due to the complexity of search architectural building block or cell, it is unclear whether these are certain operations or the cell topology that contributes most to achieving higher final accuracy. In this work, we dissect the DARTS's search space as to understand which components are most effective in producing better architectures. Our experiments show that: (1) Good architectures can be found regardless of the search network depth; (2) Seperable convolution is the most effective operation in the search space; and (3) The cell topology also has substantial effect on the accuracy. Based on these insights, we propose an efficient search approach based referred to as eDARTS, that searches on a pre-specified cell with a good topology with increased attention to important operations using a shallow supernet. Moreover, we propose some optimizations for eDARTS which significantly speed up the search as well as alleviate the well known skip connection aggregation problem of DARTS. eDARTS achieves an error rate of 2.53% on CIFAR-10 using a 3.1M parameters model; while the search cost is less than 30 minutes.

Bidirectional Matrix Feature Pyramid Network for Object Detection

Wei Xu, Yi Gan, Jianbo Su

Responsive image

Auto-TLDR; BMFPN: Bidirectional Matrix Feature Pyramid Network for Object Detection

Slides Poster Similar

Feature pyramids are widely used to improve scale invariance for object detection. Most methods just map the objects to feature maps with relevant square receptive fields, but rarely pay attention to the aspect ratio variation, which is also an important property of object instances. It will lead to a poor match between rectangular objects and assigned features with square receptive fields, thus preventing from accurate recognition and location. Besides, the information propagation among feature layers is sparse, namely, each feature in the pyramid may mainly or only contain single-level information, which is not representative enough for classification and localization sub-tasks. In this paper, Bidirectional Matrix Feature Pyramid Network (BMFPN) is proposed to address these issues. It consists of three modules: Diagonal Layer Generation Module (DLGM), Top-down Module (TDM) and Bottom-up Module (BUM). First, multi-level features extracted by backbone are fed into DLGM to produce the base features. Then these base features are utilized to construct the final feature pyramid through TDM and BUM in series. The receptive fields of the designed feature layers in BMFPN have various scales and aspect ratios. Objects can be correctly assigned to appropriate and representative feature maps with relevant receptive fields depending on its scale and aspect ratio properties. Moreover, TDM and BUM form bidirectional and reticular information flow, which effectively fuses multi level information in top-down and bottom-up manner respectively. To evaluate the effectiveness of our proposed architecture, an end-toend anchor-free detector is designed and trained by integrating BMFPN into FCOS. And the center ness branch in FCOS is modified with our Gaussian center-ness branch (GCB), which brings another slight improvement. Without bells and whistles, our method gains +3.3%, +2.4% and +2.6% AP on MS COCO dataset from baselines with ResNet-50, ResNet-101 and ResNeXt-101 backbones, respectively.

Filtered Batch Normalization

András Horváth, Jalal Al-Afandi

Responsive image

Auto-TLDR; Batch Normalization with Out-of-Distribution Activations in Deep Neural Networks

Slides Poster Similar

It is a common assumption that the activation of different layers in neural networks follow Gaussian distribution. This distribution can be transformed using normalization techniques, such as batch-normalization, increasing convergence speed and improving accuracy. In this paper we would like to demonstrate, that activations do not necessarily follow Gaussian distribution in all layers. Neurons in deeper layers are more and more specific which can result extremely large, out-of-distribution activations. We will demonstrate that one can create more consistent mean and variance values for batch normalization during training by filtering out these activations which can further improve convergence speed and yield higher validation accuracy.

PSDNet: A Balanced Architecture of Accuracy and Parameters for Semantic Segmentation

Yue Liu, Zhichao Lian

Responsive image

Auto-TLDR; Pyramid Pooling Module with SE1Cblock and D2SUpsample Network (PSDNet)

Slides Poster Similar

Abstract—In this paper, we present our Pyramid Pooling Module (PPM) with SE1Cblock and D2SUpsample Network (PSDNet), a novel architecture for accurate semantic segmentation. Started from the known work called Pyramid Scene Parsing Network (PSPNet), PSDNet takes advantage of pyramid pooling structure with channel attention module and feature transform module in Pyramid Pooling Module (PPM). The enhanced PPM with these two components can strengthen context information flowing in the network instead of damaging it. The channel attention module we mentioned is an improved “Squeeze and Excitation with 1D Convolution” (SE1C) block which can explicitly model interrelationship between channels with fewer number of parameters. We propose a feature transform module named “Depth to Space Upsampling” (D2SUpsample) in the PPM which keeps integrity of features by transforming features while interpolating features, at the same time reducing parameters. In addition, we introduce a joint strategy in SE1Cblock which combines two variants of global pooling without increasing parameters. Compared with PSPNet, our work achieves higher accuracy on public datasets with 73.97% mIoU and 82.89% mAcc accuracy on Cityscapes Dataset based on ResNet50 backbone.

E-DNAS: Differentiable Neural Architecture Search for Embedded Systems

Javier García López, Antonio Agudo, Francesc Moreno-Noguer

Responsive image

Auto-TLDR; E-DNAS: Differentiable Architecture Search for Light-Weight Networks for Image Classification

Slides Poster Similar

Designing optimal and light weight networks to fit in resource-limited platforms like mobiles, DSPs or GPUs is a challenging problem with a wide range of interesting applications, {\em e.g.} in embedded systems for autonomous driving. While most approaches are based on manual hyperparameter tuning, there exist a new line of research, the so-called NAS (Neural Architecture Search) methods, that aim to optimize several metrics during the design process, including memory requirements of the network, number of FLOPs, number of MACs (Multiply-ACcumulate operations) or inference latency. However, while NAS methods have shown very promising results, they are still significantly time and cost consuming. In this work we introduce E-DNAS, a differentiable architecture search method, which improves the efficiency of NAS methods in designing light-weight networks for the task of image classification. Concretely, E-DNAS computes, in a differentiable manner, the optimal size of a number of meta-kernels that capture patterns of the input data at different resolutions. We also leverage on the additive property of convolution operations to merge several kernels with different compatible sizes into a single one, reducing thus the number of operations and the time required to estimate the optimal configuration. We evaluate our approach on several datasets to perform classification. We report results in terms of the SoC (System on Chips) metric, typically used in the Texas Instruments TDA2x families for autonomous driving applications. The results show that our approach allows designing low latency architectures significantly faster than state-of-the-art.

Hierarchically Aggregated Residual Transformation for Single Image Super Resolution

Zejiang Hou, Sy Kung

Responsive image

Auto-TLDR; HARTnet: Hierarchically Aggregated Residual Transformation for Multi-Scale Super-resolution

Slides Poster Similar

Visual patterns usually appear at different scales/sizes in natural images. Multi-scale feature representation is of great importance for the single-image super-resolution(SISR) task to reconstruct image objects at different scales.However, such characteristic has been rarely considered by CNN-based SISR methods. In this work, we propose a novel build-ing block, i.e. hierarchically aggregated residual transformation(HART), to achieve multi-scale feature representation in each layer of the network. Within each HART block, we connect multiple convolutions in a hierarchical residual-like manner, which greatly expands the range of effective receptive fields and helps to detect image features at different scales. To theoretically understand the proposed HART block, we recast SISR as an optimal control problem and show that HART effectively approximates the classical4th-order Runge-Kutta method, which has the merit of small local truncation error for solving numerical ordinary differential equation. By cascading the proposed HART blocks, we establish our high-performing HARTnet. Comparedwith existing SR state-of-the-arts (including those in NTIRE2019 SR Challenge leaderboard), the proposed HARTnet demonstrates consistent PSNR/SSIM performance improvements on various benchmark datasets under different degradation models.Moreover, HARTnet can efficiently restore more faithful high-resolution images than comparative SR methods (cf. Figure 1).

Efficient Super Resolution by Recursive Aggregation

Zhengxiong Luo Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, Tieniu Tan

Responsive image

Auto-TLDR; Recursive Aggregation Network for Efficient Deep Super Resolution

Slides Poster Similar

Deep neural networks have achieved remarkable results on image super resolution (SR), but the efficiency problem of deep SR networks is rarely studied. We experimentally find that many sequentially stacked convolutional blocks in nowadays SR networks are far from being fully optimized, which largely damages their overall efficiency. It indicates that comparable or even better results could be achieved with less but sufficiently optimized blocks. In this paper, we try to construct more efficient SR model via the proposed recursive aggregation network (RAN). It recursively aggregates convolutional blocks in different orders, and avoids too many sequentially stacked blocks. In this way, multiple shortcuts are introduced in RAN, and help gradients easier flow to all inner layers, even for very deep SR networks. As a result, all blocks in RAN can be better optimized, thus RAN can achieve better performance with smaller model size than existing methods.

Initialization Using Perlin Noise for Training Networks with a Limited Amount of Data

Nakamasa Inoue, Eisuke Yamagata, Hirokatsu Kataoka

Responsive image

Auto-TLDR; Network Initialization Using Perlin Noise for Image Classification

Slides Poster Similar

We propose a novel network initialization method using Perlin noise for training image classification networks with a limited amount of data. Our main idea is to initialize the network parameters by solving an artificial noise classification problem, where the aim is to classify Perlin noise samples into their noise categories. Specifically, the proposed method consists of two steps. First, it generates Perlin noise samples with category labels defined based on noise complexity. Second, it solves a classification problem, in which network parameters are optimized to classify the generated noise samples. This method produces a reasonable set of initial weights (filters) for image classification. To the best of our knowledge, this is the first work to initialize networks by solving an artificial optimization problem without using any real-world images. Our experiments show that the proposed method outperforms conventional initialization methods on four image classification datasets.

Fast and Accurate Real-Time Semantic Segmentation with Dilated Asymmetric Convolutions

Leonel Rosas-Arias, Gibran Benitez-Garcia, Jose Portillo-Portillo, Gabriel Sanchez-Perez, Keiji Yanai

Responsive image

Auto-TLDR; FASSD-Net: Dilated Asymmetric Pyramidal Fusion for Real-Time Semantic Segmentation

Slides Poster Similar

Recent works have shown promising results applied to real-time semantic segmentation tasks. To maintain fast inference speed, most of the existing networks make use of light decoders, or they simply do not use them at all. This strategy helps to maintain a fast inference speed; however, their accuracy performance is significantly lower in comparison to non-real-time semantic segmentation networks. In this paper, we introduce two key modules aimed to design a high-performance decoder for real-time semantic segmentation for reducing the accuracy gap between real-time and non-real-time segmentation networks. Our first module, Dilated Asymmetric Pyramidal Fusion (DAPF), is designed to substantially increase the receptive field on the top of the last stage of the encoder, obtaining richer contextual features. Our second module, Multi-resolution Dilated Asymmetric (MDA) module, fuses and refines detail and contextual information from multi-scale feature maps coming from early and deeper stages of the network. Both modules exploit contextual information without excessively increasing the computational complexity by using asymmetric convolutions. Our proposed network entitled “FASSD-Net” reaches 78.8% of mIoU accuracy on the Cityscapes validation dataset at 41.1 FPS on full resolution images (1024x2048). Besides, with a light version of our network, we reach 74.1% of mIoU at 133.1 FPS (full resolution) on a single NVIDIA GTX 1080Ti card with no additional acceleration techniques. The source code and pre-trained models are available at https://github.com/GibranBenitez/FASSD-Net.

Can Data Placement Be Effective for Neural Networks Classification Tasks? Introducing the Orthogonal Loss

Brais Cancela, Veronica Bolon-Canedo, Amparo Alonso-Betanzos

Responsive image

Auto-TLDR; Spatial Placement for Neural Network Training Loss Functions

Slides Poster Similar

Traditionally, a Neural Network classification training loss function follows the same principle: minimizing the distance between samples that belong to the same class, while maximizing the distance to the other classes. There are no restrictions on the spatial placement of deep features (last layer input). This paper addresses this issue when dealing with Neural Networks, providing a set of loss functions that are able to train a classifier by forcing the deep features to be projected over a predefined orthogonal basis. Experimental results shows that these `data placement' functions can overcome the training accuracy provided by the classic cross-entropy loss function.

FastSal: A Computationally Efficient Network for Visual Saliency Prediction

Feiyan Hu, Kevin Mcguinness

Responsive image

Auto-TLDR; MobileNetV2: A Convolutional Neural Network for Saliency Prediction

Slides Poster Similar

This paper focuses on the problem of visual saliency prediction, predicting regions of an image that tend to attract human visual attention, under a constrained computational budget. We modify and test various recent efficient convolutional neural network architectures like EfficientNet and MobileNetV2 and compare them with existing state-of-the-art saliency models such as SalGAN and DeepGaze II both in terms of standard accuracy metrics like AUC and NSS, and in terms of the computational complexity and model size. We find that MobileNetV2 makes an excellent backbone for a visual saliency model and can be effective even without a complex decoder. We also show that knowledge transfer from a more computationally expensive model like DeepGaze II can be achieved via pseudo-labelling an unlabelled dataset, and that this approach gives result on-par with many state-of-the-art algorithms with a fraction of the computational cost and model size.

Progressive Splitting and Upscaling Structure for Super-Resolution

Qiang Li, Tao Dai, Shutao Xia

Responsive image

Auto-TLDR; PSUS: Progressive and Upscaling Layer for Single Image Super-Resolution

Slides Poster Similar

Recently, very deep convolutional neural networks (CNNs) have shown great success in single image super-resolution (SISR). Most of these methods focus on the design of network architecture and adopt a sub-pixel convolution layer at the end of network, but few have paid attention to exploring potential representation ability of upscaling layer. Sub-pixel convolution layer aggregates several low resolution (LR) feature maps and builds super-resolution (SR) images in a single step. However, those LR feature maps share similar patterns as they are extracted from a single trunk network. We believe that the mapping relationships between input image and each LR feature map are not consistent. Inspired by this, we propose a novel progressive splitting and upscaling structure, termed PSUS, which generates decoupled feature maps for upscaling layer to get better SR image. Experiments show that our method can not only speed up the convergence, but also achieve considerable improvement on image quality with fewer parameters and lower computational complexity.

ResNet-Like Architecture with Low Hardware Requirements

Elena Limonova, Daniil Alfonso, Dmitry Nikolaev, Vladimir V. Arlazarov

Responsive image

Auto-TLDR; BM-ResNet: Bipolar Morphological ResNet for Image Classification

Slides Poster Similar

One of the most computationally intensive parts in modern recognition systems is an inference of deep neural networks that are used for image classification, segmentation, enhancement, and recognition. The growing popularity of edge computing makes us look for ways to reduce its time for mobile and embedded devices. One way to decrease the neural network inference time is to modify a neuron model to make it more efficient for computations on a specific device. The example of such a model is a bipolar morphological neuron model. The bipolar morphological neuron is based on the idea of replacing multiplication with addition and maximum operations. This model has been demonstrated for simple image classification with LeNet-like architectures [1]. In the paper, we introduce a bipolar morphological ResNet (BM-ResNet) model obtained from a much more complex ResNet architecture by converting its layers to bipolar morphological ones. We apply BM-ResNet to image classification on MNIST and CIFAR-10 datasets with only a moderate accuracy decrease from 99.3% to 99.1% and from 85.3% to 85.1%. We also estimate the computational complexity of the resulting model. We show that for the majority of ResNet layers, the considered model requires 2.1-2.9 times fewer logic gates for implementation and 15-30% lower latency.

A Novel Region of Interest Extraction Layer for Instance Segmentation

Leonardo Rossi, Akbar Karimi, Andrea Prati

Responsive image

Auto-TLDR; Generic RoI Extractor for Two-Stage Neural Network for Instance Segmentation

Slides Poster Similar

Given the wide diffusion of deep neural network architectures for computer vision tasks, several new applications are nowadays more and more feasible. Among them, a particular attention has been recently given to instance segmentation, by exploiting the results achievable by two-stage networks (such as Mask R-CNN or Faster R-CNN), derived from R-CNN. In these complex architectures, a crucial role is played by the Region of Interest (RoI) extraction layer, devoted to extract a coherent subset of features from a single Feature Pyramid Network (FPN) layer attached on top of a backbone. This paper is motivated by the need to overcome to the limitations of existing RoI extractors which select only one (the best) layer from FPN. Our intuition is that all the layers of FPN retain useful information. Therefore, the proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance. A comprehensive ablation study at component level is conducted to find the best set of algorithms and parameters for the GRoIE layer. Moreover, GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks. Therefore, the improvements brought by the use of GRoIE in different state-of-the-art architectures are also evaluated. The proposed layer leads up to gain a 1.1% AP on bounding box detection and 1.7% AP on instance segmentation. The code is publicly available on GitHub repository at https://github.com/IMPLabUniPr/mmdetection-groie