Svetlana Yanushkevich
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Relatable Clothing: Detecting Visual Relationships between People and Clothing
Thomas Truong, Svetlana Yanushkevich
Auto-TLDR; Relatable Clothing Dataset for ``worn'' and ``unworn'' Classification
Abstract Slides Poster Similar
Detecting visual relationships between people and clothing in an image has been a relatively unexplored problem in the field of computer vision and biometrics. The lack readily available public dataset for ``worn'' and ``unworn'' classification has slowed the development of solutions for this problem. We present the release of the Relatable Clothing Dataset which contains 35287 person-clothing pairs and segmentation masks for the development of ``worn'' and ``unworn'' classification models. Additionally, we propose a novel soft attention unit for performing ``worn'' and ``unworn'' classification using deep neural networks. The proposed soft attention models have an accuracy of upward 98.55% +/- 0.35% on the Relatable Clothing Dataset and demonstrate high generalizable, allowing us to classify unseen articles of clothing such as high visibility vests as ``worn'' or ``unworn''.