Bingfeng Zhou

Papers from this author

VGG-Embedded Adaptive Layer-Normalized Crowd Counting Net with Scale-Shuffling Modules

Dewen Guo, Jie Feng, Bingfeng Zhou

Responsive image

Auto-TLDR; VadaLN: VGG-embedded Adaptive Layer Normalization for Crowd Counting

Slides Poster Similar

Crowd counting is widely used in real-time congestion monitoring and public security. Due to the limited data, many methods have little ability to be generalized because the differences between feature domains are not taken into consideration. We propose VGG-embedded adaptive layer normalization (VadaLN) to filter the features that irrelevant to the counting tasks in order that the counting results should not be affected by the image quality, color or illumination. VadaLN is implemented on the pretrained VGG-16 backbone. There is no additional learning parameters required through our method. VadaLN incoporates the proposed scale-shuffling modules (SSM) to relax the distortions in upsampling operations. Besides, non-aligned training methdology for the estimation of density maps is leveraged by an adversarial contextual loss (ACL) to improve the counting performance. Based on the proposed method, we construct an end-to-end trainable baseline model without bells and whistles, namely VadaLNet, which outperforms several recent state-of-the-art methods on commonly used challenging standard benchmarks. The intermediate scale-shuffled results are combined to formulate a scale-complementary strategy as a more powerful network, namely as VadaLNeSt. We implement VadaLNeSt on standard benchmarks, e.g. ShanghaiTech (Part A & Part B), UCF_CC_50, and UCF_QNRF, to show the superiority of our method.