Riccardo Leonardi
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
2D Discrete Mirror Transform for Image Non-Linear Approximation
Alessandro Gnutti, Fabrizio Guerrini, Riccardo Leonardi
Auto-TLDR; Discrete Mirror Transform (DMT)
Abstract Slides Poster Similar
In this paper, a new 2D transform named Discrete Mirror Transform (DMT) is presented. The DMT is computed by decomposing a signal into its even and odd parts around an optimal location in a given direction so that the signal energy is maximally split between the two components. After minimizing the information required to regenerate the original signal by removing redundant structures, the process is iterated leading the signal energy to distribute into a continuously smaller set of coefficients. The DMT can be displayed as a binary tree, where each node represents the single (even or odd) signal derived from the decomposition in the previous level. An optimized version of the DMT (ODMT) is also introduced, by exploiting the possibility to choose different directions at which performing the decomposition. Experimental simulations have been carried out in order to test the sparsity properties of the DMT and ODMT when applied on images: referring to both transforms, the results show a superior performance with respect to the popular Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) in terms of non-linear approximation.