Single-Modal Incremental Terrain Clustering from Self-Supervised Audio-Visual Feature Learning

Reina Ishikawa, Ryo Hachiuma, Akiyoshi Kurobe, Hideo Saito

Responsive image

Auto-TLDR; Multi-modal Variational Autoencoder for Terrain Type Clustering

Slides Poster Similar

The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices. Sensors, such as RGB cameras, depth sensors, vibration sensors, and microphones, are used as the multi-modal data. Many studies have explored ways to use them, especially in the robotics field. Some papers have successfully introduced single-modal or multi-modal methods. However, in practice, robots can be faced with extreme conditions; microphones do not work well in the crowded scenes, and an RGB camera cannot capture terrains well in the dark. In this paper, we present a novel framework using the multi-modal variational autoencoder and the Gaussian mixture model clustering algorithm on image data and audio data for terrain type clustering. Our method enables the terrain type clustering even if one of the modalities (either image or audio) is missing at the test-time. We evaluated the clustering accuracy with a conventional multi-modal terrain type clustering method and we conducted ablation studies to show the effectiveness of our approach.

Incorporating a Graph-Matching Algorithm into a Muscle Mechanics Model

Jose Luis Santacruz Muñoz, Francesc Serratosa

Responsive image

Auto-TLDR; Recomputing the Mesh Grid for Differential Models of the Muscle Mechanics

Slides Poster Similar

Differential models for the simulation of the muscle mechanics are based on iteratively updating a mesh grid and deducing its new state through a finite element model. Models usually assume that the mesh grid is almost regular, and this makes a degradation of the simulation accuracy in long simulation sequences, since the mesh tends to be less regular when the number of iterations increases. We present a model that has the aim of reducing this accuracy degradation. It is based on recomputing the mesh grid returned by the model in each iteration through the concept of graph matching. The new model is currently in use to analyse the dynamics of the human heart when some pressure is applied to it. The final goal of the project (which is not shown in this paper) is to deduce the optimal position and strength pressure applied to the heart that increases the chance of reviving it with the minimum tissue damage. Experimental validation shows our model returns a higher accuracy of the muscle position through some iterations than classical differential models with an insignificant increase of runtime. Thus, it is worth recomputing the mesh grid since the simulation accuracy drastically increases at the expense of a low runtime increase.

Multi-Task Learning for Calorie Prediction on a Novel Large-Scale Recipe Dataset Enriched with Nutritional Information

Robin Ruede, Verena Heusser, Lukas Frank, Monica Haurilet, Alina Roitberg, Rainer Stiefelhagen

Responsive image

Auto-TLDR; Pic2kcal: Learning Food Recipes from Images for Calorie Estimation

Slides Poster Similar

A rapidly growing amount of content posted online, such as food recipes, opens doors to new exciting applications at the intersection of vision and language. In this work, we aim to estimate the calorie amount of a meal directly from an image by learning from recipes people have published on the Internet, thus skipping time-consuming manual data annotation. Since there are few large-scale publicly available datasets captured in unconstrained environments, we propose the pic2kcal benchmark comprising 308,000 images from over 70,000 recipes including photographs, ingredients and instructions. To obtain nutritional information of the ingredients and automatically determine the ground-truth calorie value, we match the items in the recipes with structured information from a food item database. We evaluate various neural networks for regression of the calorie quantity and extend them with the multi-task paradigm. Our learning procedure combines the calorie estimation with prediction of proteins, carbohydrates, and fat amounts as well as a multi-label ingredient classification. Our experiments demonstrate clear benefits of multi-task learning for calorie estimation, surpassing the single-task calorie regression by 9.9%. To encourage further research on this task, we make the code for generating the dataset and the models publicly available.

Scene Text Detection with Selected Anchors

Anna Zhu, Hang Du, Shengwu Xiong

Responsive image

Auto-TLDR; AS-RPN: Anchor Selection-based Region Proposal Network for Scene Text Detection

Slides Poster Similar

Object proposal technique with dense anchoring scheme for scene text detection were applied frequently to achieve high recall. It results in the significant improvement in accuracy but waste of computational searching, regression and classification. In this paper, we propose an anchor selection-based region proposal network (AS-RPN) using effective selected anchors instead of dense anchors to extract text proposals. The center, scales, aspect ratios and orientations of anchors are learnable instead of fixing, which leads to high recall and greatly reduced numbers of anchors. By replacing the anchor-based RPN in Faster RCNN, the AS-RPN-based Faster RCNN can achieve comparable performance with previous state-of-the-art text detecting approaches on standard benchmarks, including COCO-Text, ICDAR2013, ICDAR2015 and MSRA-TD500 when using single-scale and single model (ResNet50) testing only.

Exploring the Ability of CNNs to Generalise to Previously Unseen Scales Over Wide Scale Ranges

Ylva Jansson, Tony Lindeberg

Responsive image

Auto-TLDR; A theoretical analysis of invariance and covariance properties of scale channel networks

Slides Poster Similar

The ability to handle large scale variations is crucial for many real world visual tasks. A straightforward approach to handling scale in a deep neural network is to process multiple rescaled image copies in a set of scale channels (subnetworks). Scale invariance can then, in principle, be achieved by using weight sharing between the scale channels together with max or average pooling over the outputs from the scale channels. The ability of such scale channel networks to generalise to scales not present in the training set over significant scale ranges has, however, not previously been explored. We, therefore, present a theoretical analysis of invariance and covariance properties of scale channel networks and perform an experimental evaluation of the ability of different types of scale channel networks to generalise to previously unseen scales. We identify limitations of previous approaches and propose a new type of foveated scale channel architecture, where the scale channels process increasingly larger parts of the image with decreasing resolution. Our proposed FovMax and FovAvg networks perform almost identically over a scale range of 8 also when training on single scale training data and give improvements in the small sample regime.

5D Light Field Synthesis from a Monocular Video

Kyuho Bae, Andre Ivan, Hajime Nagahara, In Kyu Park

Responsive image

Auto-TLDR; Synthesis of Light Field Video from Monocular Video using Deep Learning

Slides Similar

Commercially available light field cameras have difficulty in capturing 5D (4D + time) light field videos. They can only capture still light filed images or are excessively expensive for normal users to capture the light field video. To tackle this problem, we propose a deep learning-based method for synthesizing a light field video from a monocular video. We propose a new synthetic light field video dataset that renders photorealistic scenes using Unreal Engine because no light field video dataset is available. The proposed deep learning framework synthesizes the light field video with a full set (9x9) of sub-aperture images from a normal monocular video. The proposed network consists of three sub-networks, namely, feature extraction, 5D light field video synthesis, and temporal consistency refinement. Experimental results show that our model can successfully synthesize the light field video for synthetic and real scenes and outperforms the previous frame-by-frame method quantitatively and qualitatively.

Learning Disentangled Representations for Identity Preserving Surveillance Face Camouflage

Jingzhi Li, Lutong Han, Hua Zhang, Xiaoguang Han, Jingguo Ge, Xiaochu Cao

Responsive image

Auto-TLDR; Individual Face Privacy under Surveillance Scenario with Multi-task Loss Function

Poster Similar

In this paper, we focus on protecting the person face privacy under the surveillance scenarios, whose goal is to change the visual appearances of faces while keep them to be recognizable by current face recognition systems. This is a challenging problem as that we should retain the most important structures of captured facial images, while alter the salient facial regions to protect personal privacy. To address this problem, we introduce a novel individual face protection model, which can camouflage the face appearance from the perspective of human visual perception and preserve the identity features of faces used for face authentication. To that end, we develop an encoder-decoder network architecture that can separately disentangle the person feature representation into an appearance code and an identity code. Specifically, we first randomly divide the face image into two groups, the source set and the target set, where the source set is used to extract the identity code and the target set provides the appearance code. Then, we recombine the identity and appearance codes to synthesize a new face, which has the same identity with the source subject. Finally, the synthesized faces are used to replace the original face to protect the privacy of individual. Furthermore, our model is trained end-to-end with a multi-task loss function, which can better preserve the identity and stabilize the training loss. Experiments conducted on Cross-Age Celebrity dataset demonstrate the effectiveness of our model and validate our superiority in terms of visual quality and scalability.

Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents

Manuel Carbonell, Pau Riba, Mauricio Villegas, Alicia Fornés, Josep Llados

Responsive image

Auto-TLDR; Graph Neural Network for Entity Recognition and Relation Extraction in Semi-Structured Documents

Slides Similar

The use of administrative documents to communicate and leave record of business information requires of methods able to automatically extract and understand the content from such documents in a robust and efficient way. In addition, the semi-structured nature of these reports is specially suited for the use of graph-based representations which are flexible enough to adapt to the deformations from the different document templates. Moreover, Graph Neural Networks provide the proper methodology to learn relations among the data elements in these documents. In this work we study the use of Graph Neural Network architectures to tackle the problem of entity recognition and relation extraction in semi-structured documents. Our approach achieves state of the art results on the three tasks involved in the process. Moreover, the experimentation with two datasets of different nature demonstrates the good generalization ability of our approach.

Channel-Wise Dense Connection Graph Convolutional Network for Skeleton-Based Action Recognition

Michael Lao Banteng, Zhiyong Wu

Responsive image

Auto-TLDR; Two-stream channel-wise dense connection GCN for human action recognition

Slides Poster Similar

Skeleton-based action recognition task has drawn much attention for many years. Graph Convolutional Network (GCN) has proved its effectiveness in this task. However, how to improve the model's robustness to different human actions and how to make effective use of features produced by the network are main topics needed to be further explored. Human actions are time series sequence, meaning that temporal information is a key factor to model the representation of data. The ranges of body parts involved in small actions (e.g. raise a glass or shake head) and big actions (e.g. walking or jumping) are diverse. It's crucial for the model to generate and utilize more features that can be adaptive to a wider range of actions. Furthermore, feature channels are specific with the action class, the model needs to weigh their importance and pay attention to more related ones. To address these problems, in this work, we propose a two-stream channel-wise dense connection GCN (2s-CDGCN). Specifically, the skeleton data was extracted and processed into spatial and temporal information for better feature representation. A channel-wise attention module was used to select and emphasize the more useful features generated by the network. Moreover, to ensure maximum information flow, dense connection was introduced to the network structure, which enables the network to reuse the skeleton features and generate more information adaptive and related to different human actions. Our model has shown its ability to improve the accuracy of human action recognition task on two large datasets, NTU-RGB+D and Kinetics. Extensive evaluations were conducted to prove the effectiveness of our model.

Compact CNN Structure Learning by Knowledge Distillation

Waqar Ahmed, Andrea Zunino, Pietro Morerio, Vittorio Murino

Responsive image

Auto-TLDR; Knowledge Distillation for Compressing Deep Convolutional Neural Networks

Slides Poster Similar

The concept of compressing deep Convolutional Neural Networks (CNNs) is essential to use limited computation, power, and memory resources on embedded devices. However, existing methods achieve this objective at the cost of a drop in inference accuracy in computer vision tasks. To address such a drawback, we propose a framework that leverages knowledge distillation along with customizable block-wise optimization to learn a lightweight CNN structure while preserving better control over the compression-performance tradeoff. Considering specific resource constraints, e.g., floating-point operations per second (FLOPs) or model-parameters, our method results in a state of the art network compression while being capable of achieving better inference accuracy. In a comprehensive evaluation, we demonstrate that our method is effective, robust, and consistent with results over a variety of network architectures and datasets, at negligible training overhead. In particular, for the already compact network MobileNet_v2, our method offers up to 2x and 5.2x better model compression in terms of FLOPs and model-parameters, respectively, while getting 1.05% better model performance than the baseline network.

Identity-Aware Facial Expression Recognition in Compressed Video

Xiaofeng Liu, Linghao Jin, Xu Han, Jun Lu, Jonghye Woo, Jane You

Responsive image

Auto-TLDR; Exploring Facial Expression Representation in Compressed Video with Mutual Information Minimization

Slides Similar

This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a novel collaborative min-min game for mutual information (MI) minimization in latent space. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$\times$ faster inference with compressed data.

Robust Lexicon-Free Confidence Prediction for Text Recognition

Qi Song, Qianyi Jiang, Rui Zhang, Xiaolin Wei

Responsive image

Auto-TLDR; Confidence Measurement for Optical Character Recognition using Single-Input Multi-Output Network

Slides Poster Similar

Benefiting from the success of deep learning, Optical Character Recognition (OCR) is booming in recent years. As we all know, the text recognition results are vulnerable to slight perturbation in input images, thus a method for measuring how reliable the results are is crucial. In this paper, we present a novel method for confidence measurement given a text recognition result, which can be embedded in any text recognizer with little overheads. Our method consists of two stages with a coarse-to-fine style. The first stage generates multiple candidates for voting coarse scores by a Single-Input Multi-Output network (SIMO). The second stage calculates a refined confidence score referred by the voting result and the conditional probabilities of the Top-1 probable recognition sequence. Highly competitive performance is achieved on several standard benchmarks validates the efficiency and effectiveness of the proposed method. Moreover, it can be adopted in both Latin and non-Latin languages.

Improved Residual Networks for Image and Video Recognition

Ionut Cosmin Duta, Li Liu, Fan Zhu, Ling Shao

Responsive image

Auto-TLDR; Residual Networks for Deep Learning

Slides Poster Similar

Residual networks (ResNets) represent a powerful type of convolutional neural network (CNN) architecture, widely adopted and used in various tasks. In this work we propose an improved version of ResNets. Our proposed improvements address all three main components of a ResNet: the flow of information through the network layers, the residual building block, and the projection shortcut. We are able to show consistent improvements in accuracy and learning convergence over the baseline. For instance, on ImageNet dataset, using the ResNet with 50 layers, for top-1 accuracy we can report a 1.19% improvement over the baseline in one setting and around 2% boost in another. Importantly, these improvements are obtained without increasing the model complexity. Our proposed approach allows us to train extremely deep networks, while the baseline shows severe optimization issues. We report results on three tasks over six datasets: image classification (ImageNet, CIFAR-10 and CIFAR-100), object detection (COCO) and video action recognition (Kinetics-400 and Something-Something-v2). In the deep learning era, we establish a new milestone for the depth of a CNN. We successfully train a 404-layer deep CNN on the ImageNet dataset and a 3002-layer network on CIFAR-10 and CIFAR-100, while the baseline is not able to converge at such extreme depths. Code is available at: https://github.com/iduta/iresnet

Vacant Parking Space Detection Based on Task Consistency and Reinforcement Learning

Manh Hung Nguyen, Tzu-Yin Chao, Ching-Chun Huang

Responsive image

Auto-TLDR; Vacant Space Detection via Semantic Consistency Learning

Slides Poster Similar

In this paper, we proposed a novel task-consistency learning method that allows training a vacant space detection network (target task) based on the logistic consistency with the semantic outcomes from a naive flow-based motion behavior classifier (source task) in a parking lot. By well designing the reward mechanism upon semantic consistency, we show the possibility to train the target network in a reinforcement learning setting. Compared with conventional supervised detection methods, the major contribution of this work is to learn a vacant space detector via semantic consistency rather than supervised labels. The dynamic learning property may make the proposed detector been deployed in different lots easily without heavy training loads. The experiments show that based on the task consistency rewards from the motion behavior classifier, the vacant space detector can be trained successfully.

Stratified Multi-Task Learning for Robust Spotting of Scene Texts

Kinjal Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; Feature Representation Block for Multi-task Learning of Scene Text

Slides Similar

Gaining control over the dynamics of multi-task learning should help to unlock the potential of the deep network to a great extent. In the existing multi-task learning (MTL) approaches of deep network, all the parameters of its feature encoding part are subjected to adjustments corresponding to each of the underlying sub-tasks. On the other hand, different functional areas of human brain are responsible for distinct functions such as the Broca's area of the cerebrum is responsible for speech formation whereas its Wernicke's area is related to the language development etc. Inspired by this fact, in the present study, we propose to introduce a block (termed as Feature Representation Block) of connection weights spanned over a few successive layers of a deep multi-task learning architecture and stratify the same into distinct subsets for their adjustments exclusively corresponding to different sub-tasks. Additionally, we have introduced a novel regularization component for controlled training of this Feature Representation Block. The purpose of the development of this learning framework is efficient end-to-end recognition of scene texts. Simulation results of the proposed strategy on various benchmark scene text datasets such as ICDAR 2015, ICDAR 2017 MLT, COCO-Text and MSRA-TD500 have improved respective SOTA performance.

Boundary Guided Image Translation for Pose Estimation from Ultra-Low Resolution Thermal Sensor

Kohei Kurihara, Tianren Wang, Teng Zhang, Brian Carrington Lovell

Responsive image

Auto-TLDR; Pose Estimation on Low-Resolution Thermal Images Using Image-to-Image Translation Architecture

Slides Poster Similar

This work addresses the pose estimation task on low-resolution images captured using thermal sensors which can operate in a no-light environment. Low-resolution thermal sensors have been widely adopted in various applications for cost control and privacy protection purposes. In this paper, targeting the challenging scenario of ultra-low resolution thermal imaging (3232 pixels), we aim to estimate human poses for the purpose of monitoring health conditions and indoor events. To overcome the challenges in ultra-low resolution thermal imaging such as blurred boundaries and data scarcity, we propose a new Image-to-Image (I2I) translation architecture which can translate the original blurred thermal image into a visible light image with sharper boundaries. Then the generated visible light image can be fed into the off-the-shelf pose estimator which was well-trained in the visible domain. Experimental results suggest that the proposed framework outperforms other state-of-the-art methods in the I2I based pose estimation task for our thermal image dataset. Furthermore, we also demonstrated the merits of the proposed method on the publicly available FLIR dataset by measuring the quality of translated images.

Dynamic Resource-Aware Corner Detection for Bio-Inspired Vision Sensors

Sherif Abdelmonem Sayed Mohamed, Jawad Yasin, Mohammad-Hashem Haghbayan, Antonio Miele, Jukka Veikko Heikkonen, Hannu Tenhunen, Juha Plosila

Responsive image

Auto-TLDR; Three Layer Filtering-Harris Algorithm for Event-based Cameras in Real-Time

Slides Similar

Event-based cameras are vision devices that transmit only brightness changes with low latency and ultra-low power consumption. Such characteristics make event-based cameras attractive in the field of localization and object tracking in resource-constrained systems. Since the number of generated events in such cameras is huge, the selection and filtering of the incoming events are beneficial from both increasing the accuracy of the features and reducing the computational load. In this paper, we present an algorithm to detect asynchronous corners form a stream of events in real-time on embedded systems. The algorithm is called the Three Layer Filtering-Harris or TLF-Harris algorithm. The algorithm is based on an events' filtering strategy whose purpose is 1) to increase the accuracy by deliberately eliminating some incoming events, i.e., noise and 2) to improve the real-time performance of the system, i.e., preserving a constant throughput in terms of input events per second, by discarding unnecessary events with a limited accuracy loss. An approximation of the Harris algorithm, in turn, is used to exploit its high-quality detection capability with a low-complexity implementation to enable seamless real-time performance on embedded computing platforms. The proposed algorithm is capable of selecting the best corner candidate among neighbors and achieves an average execution time savings of 59 % compared with the conventional Harris score. Moreover, our approach outperforms the competing methods, such as eFAST, eHarris, and FA-Harris, in terms of real-time performance, and surpasses Arc* in terms of accuracy.

Variational Deep Embedding Clustering by Augmented Mutual Information Maximization

Qiang Ji, Yanfeng Sun, Yongli Hu, Baocai Yin

Responsive image

Auto-TLDR; Clustering by Augmented Mutual Information maximization for Deep Embedding

Slides Poster Similar

Clustering is a crucial but challenging task in pattern analysis and machine learning. Recent many deep clustering methods combining representation learning with cluster techniques emerged. These deep clustering methods mainly focus on the correlation among samples and ignore the relationship between samples and their representations. In this paper, we propose a novel end-to-end clustering framework, namely variational deep embedding clustering by augmented mutual information maximization (VCAMI). From the perspective of VAE, we prove that minimizing reconstruction loss is equivalent to maximizing the mutual information of the input and its latent representation. This provides a theoretical guarantee for us to directly maximize the mutual information instead of minimizing reconstruction loss. Therefore we proposed the augmented mutual information which highlights the uniqueness of the representations while discovering invariant information among similar samples. Extensive experiments on several challenging image datasets show that the VCAMI achieves good performance. we achieve state-of-the-art results for clustering on MNIST (99.5%) and CIFAR-10 (65.4%) to the best of our knowledge.

Recursive Recognition of Offline Handwritten Mathematical Expressions

Marco Cotogni, Claudio Cusano, Antonino Nocera

Responsive image

Auto-TLDR; Online Handwritten Mathematical Expression Recognition with Recurrent Neural Network

Slides Poster Similar

In this paper we propose a method for Offline Handwritten Mathematical Expression recognition. The method is a fast and accurate thanks to its architecture, which include both a Convolutional Neural Network and a Recurrent Neural Network. The CNN extracts features from the image to recognize and its output is provided to the RNN which produces the mathematical expression encoded in the LaTeX language. To process both sequential and non-sequential mathematical expressions we also included a deconvolutional module which, in a recursive way, segments the image for additional analysis trough a recursive process. The results obtained show a very high accuracy obtained on a large handwritten data set of 9100 samples of handwritten expressions.

LFIR2Pose: Pose Estimation from an Extremely Low-Resolution FIR Image Sequence

Saki Iwata, Yasutomo Kawanishi, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase, Tomoyoshi Aizawa

Responsive image

Auto-TLDR; LFIR2Pose: Human Pose Estimation from a Low-Resolution Far-InfraRed Image Sequence

Slides Poster Similar

In this paper, we propose a method for human pose estimation from a Low-resolution Far-InfraRed (LFIR) image sequence captured by a 16 × 16 FIR sensor array. Human body estimation from such a single LFIR image is a hard task. For training the estimation model, annotation of the human pose to the images is also a difficult task for human. Thus, we propose the LFIR2Pose model which accepts a sequence of LFIR images and outputs the human pose of the last frame, and also propose an automatic annotation system for the model training. Additionally, considering that the scale of human body motion is largely different among body parts, we also propose a loss function focusing on the difference. Through an experiment, we evaluated the human pose estimation accuracy using an original data set, and confirmed that human pose can be estimated accurately from an LFIR image sequence.

Object-Oriented Map Exploration and Construction Based on Auxiliary Task Aided DRL

Junzhe Xu, Jianhua Zhang, Shengyong Chen, Honghai Liu

Responsive image

Auto-TLDR; Auxiliary Task Aided Deep Reinforcement Learning for Environment Exploration by Autonomous Robots

Similar

Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or multiple fixed goals, while ignoring the perception and construction of external environments. In this paper, we propose a novel environment exploration task based on DRL, which requires a robot fast and completely perceives all objects of interest, and reconstructs their poses in a global environment map, as much as the robot can do. To this end, we design an auxiliary task aided DRL model, which is integrated with the auxiliary object detection and 6-DoF pose estimation components. The outcome of auxiliary tasks can improve the learning speed and robustness of DRL, as well as the accuracy of object pose estimation. Comprehensive experimental results on the indoor simulation platform AI2-THOR have shown the effectiveness and robustness of our method.