Mood Detection Analyzing Lyrics and Audio Signal Based on Deep Learning Architectures

Konstantinos Pyrovolakis, Paraskevi Tzouveli, Giorgos Stamou

Responsive image

Auto-TLDR; Automated Music Mood Detection using Music Information Retrieval

Slides Poster Similar

Digital era has changed the way music is produced and propagated creating new needs for automated and more effective management of music tracks in big volumes. Automated music mood detection constitutes an active task in the field of MIR (Music Information Retrieval) and connected with many research papers in the past few years. In order to approach the task of mood detection, we faced separately the analysis of musical lyrics and the analysis of musical audio signal. Then we applied a uniform multichannel analysis to classify our data in mood classes. The available data we will use to train and evaluate our models consists of a total of 2.000 song titles, classified in four mood classes {happy, angry, sad, relaxed}. The result of this process leads to a uniform prediction for emotional arousal that a music track can cause to a listener and show the way to develop many applications.

Deep Fusion of RGB and NIR Paired Images Using Convolutional Neural Networks

琳 梅, Cheolkon Jung

Responsive image

Auto-TLDR; Deep Fusion of RGB and NIR paired images in low light condition using convolutional neural networks

Slides Poster Similar

In low light condition, the captured color (RGB) images are highly degraded by noise with severe texture loss. In this paper, we propose deep fusion of RGB and NIR paired images in low light condition using convolutional neural networks (CNNs). The proposed deep fusion network consists of three independent sub-networks: denoising, enhancing, and fusion. We build a denoising sub-network to eliminate noise from noisy RGB images. After denoising, we perform an enhancing sub-network to increase the brightness of low light RGB images. Since NIR image contains fine details, we fuse it with the Y channel of RGB image through a fusion sub-network. Experimental results demonstrate that the proposed method successfully fuses RGB and NIR images, and generates high quality fusion results containing textures and colors.

Discriminative Multi-Level Reconstruction under Compact Latent Space for One-Class Novelty Detection

Jaewoo Park, Yoon Gyo Jung, Andrew Teoh

Responsive image

Auto-TLDR; Discriminative Compact AE for One-Class novelty detection and Adversarial Example Detection

Slides Similar

In one-class novelty detection, a model learns solely on the in-class data to single out out-class instances. Autoencoder (AE) variants aim to compactly model the in-class data to reconstruct it exclusively, thus differentiating the in-class from out-class by the reconstruction error. However, compact modeling in an improper way might collapse the latent representations of the in-class data and thus their reconstruction, which would lead to performance deterioration. Moreover, to properly measure the reconstruction error of high-dimensional data, a metric is required that captures high-level semantics of the data. To this end, we propose Discriminative Compact AE (DCAE) that learns both compact and collapse-free latent representations of the in-class data, thereby reconstructing them both finely and exclusively. In DCAE, (a) we force a compact latent space to bijectively represent the in-class data by reconstructing them through internal discriminative layers of generative adversarial nets. (b) Based on the deep encoder's vulnerability to open set risk, out-class instances are encoded into the same compact latent space and reconstructed poorly without sacrificing the quality of in-class data reconstruction. (c) In inference, the reconstruction error is measured by a novel metric that computes the dissimilarity between a query and its reconstruction based on the class semantics captured by the internal discriminator. Extensive experiments on public image datasets validate the effectiveness of our proposed model on both novelty and adversarial example detection, delivering state-of-the-art performance.

A Deep Learning-Based Method for Predicting Volumes of Nasopharyngeal Carcinoma for Adaptive Radiation Therapy Treatment

Bilel Daoud, Ken'Ichi Morooka, Shoko Miyauchi, Ryo Kurazume, Wafa Mnejja, Leila Farhat, Jamel Daoud

Responsive image

Auto-TLDR; TEP-Net: Tumor Evolution Prediction of Nasopharyngeal Carcinoma and Organ-at-risks Using CT Images

Slides Poster Similar

This paper presents a new system for predicting the spatial change of Nasopharyngeal carcinoma(NPC) and organ-at-risks (OARs) volumes over the course of the radiation therapy (RT) treatment for facilitating the workflow of adaptive radiotherapy. The proposed system, called " Tumor Evolution Prediction (TEP-Net)", predicts the spatial distributions of NPC and 5 OARs, separately, in response to RT in the coming week, week n. Here, TEP-Net has (n-1)-inputs that are week 1 to week n-1 of CT axial, coronal or sagittal images acquired once the patient complete the planned RT treatment of the corresponding week. As a result, three predicted results of each target region are obtained from the three-view CT images. To determine the final prediction of NPC and 5 OARs, two integration methods, weighted fully connected layers and weighted voting methods, are introduced. From the experiments using weekly CT images of 140 NPC patients, our proposed system achieves the best performance for predicting NPC and OARs compared with conventional methods.

Self and Channel Attention Network for Person Re-Identification

Asad Munir, Niki Martinel, Christian Micheloni

Responsive image

Auto-TLDR; SCAN: Self and Channel Attention Network for Person Re-identification

Slides Poster Similar

Recent research has shown promising results for person re-identification by focusing on several trends. One is designing efficient metric learning loss functions such as triplet loss family to learn the most discriminative representations. The other is learning local features by designing part based architectures to form an informative descriptor from semantically coherent parts. Some efforts adjust distant outliers to their most similar positions by using soft attention and learn the relationship between distant similar features. However, only a few prior efforts focus on channel-wise dependencies and learn non-local sharp similar part features directly for the degraded data in the person re-identification task. In this paper, we propose a novel Self and Channel Attention Network (SCAN) to model long-range dependencies between channels and feature maps. We add multiple classifiers to learn discriminative global features by using classification loss. Self Attention (SA) module and Channel Attention (CA) module are introduced to model non-local and channel-wise dependencies in the learned features. Spectral normalization is applied to the whole network to stabilize the training process. Experimental results on the person re-identification benchmarks show the proposed components achieve significant improvement with respect to the baseline.

Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features

Hongli Zhou, Guanwen Zhang, Wei Zhou

Responsive image

Auto-TLDR; Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features

Slides Poster Similar

Deep reinforcement learning (DRL) has achieved great success in processing vision-based driving tasks. However, the end-to-end training manner makes DRL agents suffer from overfitting training scenes. The agents easily fail to generalize to unseen environments. In this paper, we propose a deep reinforcement learning for autonomous driving by transferring visual features. We formulate the DRL training as a perception and control module and introduce adversarial training mechanism for autonomous driving. The perception module is able to extract invariant features between different domains through adversarial training. While the DRL agent can then be trained on the basis of low dimensional states. In this manner, the proposed approach enables trained agents to adapt to unseen environments by learning robust features invariant across various scenes. We evaluate the proposed approach by transferring visual features between different simulators. The experimental results demonstrate the driving policy trained in the source domain can be directly applied in the target domain, and achieve great efficient and effective performance for autonomous driving.

Detail-Revealing Deep Low-Dose CT Reconstruction

Xinchen Ye, Yuyao Xu, Rui Xu, Shoji Kido, Noriyuki Tomiyama

Responsive image

Auto-TLDR; A Dual-branch Aggregation Network for Low-Dose CT Reconstruction

Slides Poster Similar

Low-dose CT imaging emerges with low radiation risk due to the reduction of radiation dose, but brings negative impact on the imaging quality. This paper addresses the problem of low-dose CT reconstruction. Previous methods are unsatisfactory due to the inaccurate recovery of image details under the strong noise generated by the reduction of radiation dose, which directly affects the final diagnosis. To suppress the noise effectively while retain the structures well, we propose a detail-revealing dual-branch aggregation network to effectively reconstruct the degraded CT image. Specifically, the main reconstruction branch iteratively exploits and compensates the reconstruction errors to gradually refine the CT image, while the prior branch is to learn the structure details as prior knowledge to help recover the CT image. A sophisticated detail-revealing loss is designed to fuse the information from both branches and guide the learning to obtain better performance from pixel-wise and holistic perspectives respectively. Experimental results show that our method outperforms the state-of-art methods in both PSNR and SSIM metrics.

Label Incorporated Graph Neural Networks for Text Classification

Yuan Xin, Linli Xu, Junliang Guo, Jiquan Li, Xin Sheng, Yuanyuan Zhou

Responsive image

Auto-TLDR; Graph Neural Networks for Semi-supervised Text Classification

Slides Poster Similar

Graph Neural Networks (GNNs) have achieved great success on graph-structured data, and their applications on traditional data structures such as natural language processing and semi-supervised text classification have been extensively explored in recent years. While previous works only consider the text information while building the graph, heterogeneous information such as labels is ignored. In this paper, we consider to incorporate the label information while building the graph by adding text-label-text paths, through which the supervision information will propagate among the graph more directly. Specifically, we treat labels as nodes in the graph which also contains text and word nodes, and then connect labels with texts belonging to that label. Through graph convolutions, label embeddings are jointly learned with text embeddings in the same latent semantic space. The newly incorporated label nodes will facilitate learning more accurate text embeddings by introducing the label information, and thus benefit the downstream text classification tasks. Extensive results on several benchmark datasets show that the proposed framework outperforms baseline methods by a significant margin.

Sparse-Dense Subspace Clustering

Shuai Yang, Wenqi Zhu, Yuesheng Zhu

Responsive image

Auto-TLDR; Sparse-Dense Subspace Clustering with Piecewise Correlation Estimation

Slides Poster Similar

Subspace clustering refers to the problem of clustering high-dimensional data into a union of low-dimensional subspaces. Current subspace clustering approaches are usually based on a two-stage framework. In the first stage, an affinity matrix is generated from data. In the second one, spectral clustering is applied on the affinity matrix. However, the affinity matrix produced by two-stage methods cannot fully reveal the similarity between data points from the same subspace, resulting in inaccurate clustering. Besides, most approaches fail to solve large-scale clustering problems due to poor efficiency. In this paper, we first propose a new scalable sparse method called Iterative Maximum Correlation (IMC) to learn the affinity matrix from data. Then we develop Piecewise Correlation Estimation (PCE) to densify the intra-subspace similarity produced by IMC. Finally we extend our work into a Sparse-Dense Subspace Clustering (SDSC) framework with a dense stage to optimize the affinity matrix for two-stage methods. We show that IMC is efficient for large-scale tasks, and PCE ensures better performance for IMC. We show the universality of our SDSC framework for current two-stage methods as well. Experiments on benchmark data sets demonstrate the effectiveness of our approaches.

A Unified Framework for Distance-Aware Domain Adaptation

Fei Wang, Youdong Ding, Huan Liang, Yuzhen Gao, Wenqi Che

Responsive image

Auto-TLDR; distance-aware domain adaptation

Slides Poster Similar

Unsupervised domain adaptation has achieved significant results by leveraging knowledge from a source domain to learn a related but unlabeled target domain. Previous methods are insufficient to model domain discrepancy and class discrepancy, which may lead to misalignment and poor adaptation performance. To address this problem, in this paper, we propose a unified framework, called distance-aware domain adaptation, which is fully aware of both cross-domain distance and class-discriminative distance. In addition, second-order statistics distance and manifold alignment are also exploited to extract more information from data. In this manner, the generalization error of the target domain in classification problems can be reduced substantially. To validate the proposed method, we conducted experiments on five public datasets and an ablation study. The results demonstrate the good performance of our proposed method.

Are Spoofs from Latent Fingerprints a Real Threat for the Best State-Of-Art Liveness Detectors?

Roberto Casula, Giulia Orrù, Daniele Angioni, Xiaoyi Feng, Gian Luca Marcialis, Fabio Roli

Responsive image

Auto-TLDR; ScreenSpoof: Attacks using latent fingerprints against state-of-art fingerprint liveness detectors and verification systems

Slides Similar

We investigated the threat level of realistic attacks using latent fingerprints against sensors equipped with state-of-art liveness detectors and fingerprint verification systems which integrate such liveness algorithms. To the best of our knowledge, only a previous investigation was done with spoofs from latent prints. In this paper, we focus on using snapshot pictures of latent fingerprints. These pictures provide molds, that allows, after some digital processing, to fabricate high-quality spoofs. Taking a snapshot picture is much simpler than developing fingerprints left on a surface by magnetic powders and lifting the trace by a tape. What we are interested here is to evaluate preliminary at which extent attacks of the kind can be considered a real threat for state-of-art fingerprint liveness detectors and verification systems. To this aim, we collected a novel data set of live and spoof images fabricated with snapshot pictures of latent fingerprints. This data set provide a set of attacks at the most favourable conditions. We refer to this method and the related data set as "ScreenSpoof". Then, we tested with it the performances of the best liveness detection algorithms, namely, the three winners of the LivDet competition. Reported results point out that the ScreenSpoof method is a threat of the same level, in terms of detection and verification errors, than that of attacks using spoofs fabricated with the full consensus of the victim. We think that this is a notable result, never reported in previous work.

LODENet: A Holistic Approach to Offline Handwritten Chinese and Japanese Text Line Recognition

Huu Tin Hoang, Chun-Jen Peng, Hung Tran, Hung Le, Huy Hoang Nguyen

Responsive image

Auto-TLDR; Logographic DEComposition Encoding for Chinese and Japanese Text Line Recognition

Slides Poster Similar

One of the biggest obstacles in Chinese and Japanese text line recognition is how to present their enormous character sets. The most common solution is to merely choose and represent a small subset of characters using one-hot encoding. However, such an approach is costly to describe huge character sets, and ignores their semantic relationships. Recent studies have attempted to utilize different encoding methods, but they struggle to build a bijection mapping. In this work, we propose a novel encoding method, called LOgographic DEComposition encoding (LODEC), that can efficiently perform a 1-to-1 mapping for all Chinese and Japanese characters with a strong awareness of semantic relationships. As such, LODEC enables to encode over 21,000 Chinese and Japanese characters by only 520 fundamental elements. Moreover, to handle the vast variety of handwritten texts in the two languages, we propose a novel deep learning (DL) architecture, called LODENet, together with an end-to-end training scheme, that leverages auxiliary data generated by LODEC or other radical-based encoding methods. We performed systematic experiments on both Chinese and Japanese datasets, and found that our approach surpassed the performance of state-of-the-art baselines. Furthermore, empirical evidence shows that our method can gain significantly better results using synthesized text line images without the need for domain knowledge.

Feature-Aware Unsupervised Learning with Joint Variational Attention and Automatic Clustering

Wang Ru, Lin Li, Peipei Wang, Liu Peiyu

Responsive image

Auto-TLDR; Deep Variational Attention Encoder-Decoder for Clustering

Slides Poster Similar

Deep clustering aims to cluster unlabeled real-world samples by mining deep feature representation. Most of existing methods remain challenging when handling high-dimensional data and simultaneously exploring the complementarity of deep feature representation and clustering. In this paper, we propose a novel Deep Variational Attention Encoder-decoder for Clustering (DVAEC). Our DVAEC improves the representation learning ability by fusing variational attention. Specifically, we design a feature-aware automatic clustering module to mitigate the unreliability of similarity calculation and guide network learning. Besides, to further boost the performance of deep clustering from a global perspective, we define a joint optimization objective to promote feature representation learning and automatic clustering synergistically. Extensive experimental results show the promising performance achieved by our DVAEC on six datasets comparing with several popular baseline clustering methods.

Towards life-long mapping of dynamic environments using temporal persistence modeling

Georgios Tsamis, Ioannis Kostavelis, Dimitrios Giakoumis, Dimitrios Tzovaras

Responsive image

Auto-TLDR; Lifelong Mapping for Mobile Robot Navigation in Dynamic Environments

Slides Poster Similar

The contemporary SLAM mapping systems assume a static environment and build a map that is then used for mobile robot navigation disregarding the dynamic changes in this environment. The paper at hand presents a novel solution for the \emph{lifelong mapping} problem that continually updates a metric map represented as a 2D occupancy grid in large scale indoor environments with movable objects such as people, robots, objects etc. suitable for industrial applications. We formalize each cell's occupancy as a failure analysis problem and contribute temporal persistence modeling (TPM), an algorithm for probabilistic prediction of the time that a cell in an observed location is expected to be ``occupied" or ``empty" given sparse prior observations from a task specific mobile robot. Our work is evaluated in Gazebo simulation environment against the nominal occupancy of cells and the estimated obstacles persistence. We also show that robot navigation with lifelong mapping demands less re-plans and leads to more efficient navigation in highly dynamic environments.

Watermelon: A Novel Feature Selection Method Based on Bayes Error Rate Estimation and a New Interpretation of Feature Relevance and Redundancy

Xiang Xie, Wilhelm Stork

Responsive image

Auto-TLDR; Feature Selection Using Bayes Error Rate Estimation for Dynamic Feature Selection

Slides Poster Similar

Feature selection has become a crucial part of many classification problems in which high-dimensional datasets may contain tens of thousands of features. In this paper, we propose a novel feature selection method scoring the features through estimating the Bayes error rate based on kernel density estimation. Additionally, we update the scores of features dynamically by quantitatively interpreting the effects of feature relevance and redundancy in a new way. Distinguishing from the common heuristic applied by many feature selection methods, which prefers choosing features that are not relevant to each other, our approach penalizes only monotonically correlated features and rewards any other kind of relevance among features based on Spearman’s rank correlation coefficient and normalized mutual information. We conduct extensive experiments on seventeen diverse classification benchmarks, the results show that our approach overperforms other seventeen popular state-of-the-art feature selection methods in most cases.

Extended Depth of Field Preserving Color Fidelity for Automated Digital Cytology

Alexandre Bouyssoux, Riadh Fezzani, Jean-Christophe Olivo-Marin

Responsive image

Auto-TLDR; Multi-Channel Extended Depth of Field for Digital cytology based on the stationary wavelet transform

Poster Similar

This paper presents a multi-channel Extended Depth of Field (EDF) method for digital cytology based on the stationary wavelet transform. With a coefficient selection rule adapted to a precise color recovery, a sharp image can be reconstructed even on images with transparent overlapping cells. The precision and the color fidelity of the proposed method is analyzed. Moreover, an experiment demonstrating the necessity of volume analysis in cytology to achieve precise segmentation on cell clumps is conducted, and the importance of color fidelity in this context is asserted. The proposed method was tested on pap-stained urothelial cells and gray-scale cervical cells with important overlapping.

Time Series Data Augmentation for Neural Networks by Time Warping with a Discriminative Teacher

Brian Kenji Iwana, Seiichi Uchida

Responsive image

Auto-TLDR; Guided Warping for Time Series Data Augmentation

Slides Poster Similar

Neural networks have become a powerful tool in pattern recognition and part of their success is due to generalization from using large datasets. However, unlike other domains, time series classification datasets are often small. In order to address this problem, we propose a novel time series data augmentation called guided warping. While many data augmentation methods are based on random transformations, guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW, a high-level DTW method based on shape descriptors, to deterministically warp sample patterns. In this way, the time series are mixed by warping the features of a sample pattern to match the time steps of a reference pattern. Furthermore, we introduce a discriminative teacher in order to serve as a directed reference for the guided warping. We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN). The code with an easy to use implementation can be found at https://github.com/uchidalab/time_series_augmentation.

RobusterNet: Improving Copy-Move Forgery Detection with Volterra-Based Convolutions

Efthimia Kafali, Nicholas Vretos, Theodoros Semertzidis, Petros Daras

Responsive image

Auto-TLDR; Convolutional Neural Networks with Nonlinear Inception for Copy-Move Forgery Detection

Slides Similar

Convolutional Neural Networks (CNNs) have recently been introduced for addressing copy-move forgery detection (CMFD). However, current CMFD CNN-based approaches have insufficient performance commitment regarding the localization of the positive class. In this paper, this issue is explored by considering both linear and nonlinear interactions between pixels. A nonlinear Inception module based on second-order Volterra kernels is proposed, in order to ameliorate the results of a state-of-the-art CMFD architecture. The outcome of this work shows that a combination of linear and nonlinear convolution kernels can make the input foreground and background pixels more separable. The proposed approach is evaluated on CASIA and CoMoFoD, two publicly available CMFD datasets, and results to an improved positive class localization performance. Moreover, the findings of the proposed method imply that the nonlinear Inception module stimulates immense robustness against miscellaneous post processing attacks.

Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio Alliegro, Davide Boscaini, Tatiana Tommasi

Responsive image

Auto-TLDR; Self-supervision for 3D Shape Classification and Segmentation in Point Clouds

Slides Similar

Point cloud processing and 3D shape understanding are very challenging tasks for which deep learning techniques have demonstrated great potentials. Still further progresses are essential to allow artificial intelligent agents to interact with the real world. In many practical conditions the amount of annotated data may be limited and integrating new sources of knowledge becomes crucial to support autonomous learning. Here we consider several scenarios involving synthetic and real world point clouds where supervised learning fails due to data scarcity and large domain gaps. We propose to enrich standard feature representations by leveraging self-supervision through a multi-task model that can solve a 3D puzzle while learning the main task of shape classification or part segmentation. An extensive analysis investigating few-shot, transfer learning and cross-domain settings shows the effectiveness of our approach with state-of-the-art results for 3D shape classification and part segmentation.

Unsupervised Domain Adaptation for Object Detection in Cultural Sites

Giovanni Pasqualino, Antonino Furnari, Giovanni Maria Farinella

Responsive image

Auto-TLDR; Unsupervised Domain Adaptation for Object Detection in Cultural Sites

Slides Similar

The ability to detect objects in cultural sites from the egocentric point of view of the user can enable interesting applications for both the visitors and the manager of the site. Unfortunately, current object detection algorithms have to be trained on large amounts of labeled data, the collection of which is costly and time-consuming. While synthetic data generated from the 3D model of the cultural site can be used to train object detection algorithms, a significant drop in performance is generally observed when such algorithms are deployed to work with real images. In this paper, we consider the problem of unsupervised domain adaptation for object detection in cultural sites. Specifically, we assume the availability of synthetic labeled images and real unlabeled images for training. To study the problem, we propose a dataset containing 75244 synthetic and 2190 real images with annotations for 16 different artworks. We hence investigate different domain adaptation techniques based on image-to-image translation and feature alignment. Our analysis points out that such techniques can be useful to address the domain adaptation issue, while there is still plenty of space for improvement on the proposed dataset. We release the dataset at our web page to encourage research on this challenging topic: https://iplab.dmi.unict.it/EGO-CH-OBJ-ADAPT/.

Deep Real-Time Hand Detection Using CFPN on Embedded Systems

Pirdiansyah Hendri, Jun-Wei Hsieh, Ping Yang Chen

Responsive image

Auto-TLDR; Concatenated Feature Pyramid Network for Small Hand Detection on Embedded Devices

Slides Poster Similar

Real-time HI (Human Interface) systems need accurate and efficient hand detection models to meet the limited resources in budget, dimension, memory, computing, and electric power. In recent years, object detection became a less challenging task with the latest deep CNN-based state-of-the-art models, i.e., RCNN, SSD, and YOLO; however, these models cannot provide the desired efficiency and accuracy for HI systems on embedded devices due to their complex time-consuming architecture. In addition, the detection of small hands (<30x30 pixels) is still a challenging task for all the above existing methods. Thus, we propose a shallow model named Concatenated Feature Pyramid Network (CFPN) to provide above mentioned performance for small hand detection. The superiority of CFPN is confirmed on a HandFlow dataset with mAP:0.5 of 95.6 and FPS of 33 on Nvidia TX2. The COCO dataset is also used to compare with other state-of-the-art method and shows the highest efficiency and accuracy with the proposed CFPN model. Thus we conclude that the proposed model is useful for real-life small hand detection on embedded devices.