A Neural Lip-Sync Framework for Synthesizing Photorealistic Virtual News Anchors

Ruobing Zheng, Zhou Zhu, Bo Song, Ji Changjiang

Responsive image

Auto-TLDR; Lip-sync: Synthesis of a Virtual News Anchor for Low-Delayed Applications

Slides Poster

Lip sync has emerged as a promising technique to generate mouth movements from audio signals. However, synthesizing a high-resolution and photorealistic virtual news anchor with current methods is still challenging. The lack of natural appearance, visual consistency, and processing efficiency is the main issue. In this paper, we present a novel lip-sync framework specially designed for producing a virtual news anchor for a target person. A pair of Temporal Convolutional Networks are used to learn the seq-to-seq mapping from audio signals to mouth movements, followed by a neural rendering model that translates the intermediate face representation to the high-quality appearance. This fully-trainable framework avoids several time-consuming steps in traditional graphics-based methods, meeting the requirements of many low-delay applications. Experiments show that our method has advantages over modern neural-based methods in both visual appearance and processing efficiency.

Similar papers

Talking Face Generation Via Learning Semantic and Temporal Synchronous Landmarks

Aihua Zheng, Feixia Zhu, Hao Zhu, Mandi Luo, Ran He

Responsive image

Auto-TLDR; A semantic and temporal synchronous landmark learning method for talking face generation

Slides Poster Similar

Abstract—Given a speech clip and facial image, the goal of talking face generation is to synthesize a talking face video with accurate mouth synchronization and natural face motion. Recent progress has proven the effectiveness of the landmarks as the intermediate information during talking face generation. However,the large gap between audio and visual modalities makes the prediction of landmarks challenging and limits generation ability. This paper proposes a semantic and temporal synchronous landmark learning method for talking face generation. First, we propose to introduce a word detector to enforce richer semantic information. Then, we propose to preserve the temporal synchronization and consistency between landmarks and audio via the proposed temporal residual loss. Lastly, we employ a U-Net generation network with adaptive reconstruction loss to generate facial images for the predicted landmarks. Experimental results on two benchmark datasets LRW and GRID demonstrate the effectiveness of our model compared to the state-of-the-art methods of talking face generation.

Let's Play Music: Audio-Driven Performance Video Generation

Hao Zhu, Yi Li, Feixia Zhu, Aihua Zheng, Ran He

Responsive image

Auto-TLDR; APVG: Audio-driven Performance Video Generation Using Structured Temporal UNet

Slides Poster Similar

We propose a new task named Audio-driven Performance Video Generation (APVG), which aims to synthesize the video of a person playing a certain instrument guided by a given music audio clip. It is a challenging task to generate the high-dimensional temporal consistent videos from low-dimensional audio modality. In this paper, we propose a multi-staged framework to achieve this new task to generate realistic and synchronized performance video from given music. Firstly, we provide both global appearance and local spatial information by generating the coarse videos and keypoints of body and hands from a given music respectively. Then, we propose to transform the generated keypoints to heatmap via a differentiable space transformer, since the heatmap offers more spatial information but is harder to generate directly from audio. Finally, we propose a Structured Temporal UNet (STU) to extract both intra-frame structured information and inter-frame temporal consistency. They are obtained via graph-based structure module, and CNN-GRU based high-level temporal module respectively for final video generation. Comprehensive experiments validate the effectiveness of our proposed framework.

Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Nina Weng, Jiahao Wang, Annan Li, Yunhong Wang

Responsive image

Auto-TLDR; 2S-TCN: A Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Slides Poster Similar

In the field of facial attractiveness prediction, while deep models using static pictures have shown promising results, little attention is paid to dynamic facial information, which is proven to be influential by psychological studies. Meanwhile, the increasing popularity of short video apps creates an enormous demand of facial attractiveness prediction from short video clips. In this paper, we target on the dynamic facial attractiveness prediction problem. To begin with, a large-scale video-based facial attractiveness prediction dataset (VFAP) with more than one thousand clips from TikTok is collected. A two-stream temporal convolutional network (2S-TCN) is then proposed to capture dynamic attractiveness feature from both facial appearance and landmarks. We employ attentive feature enhancement along with specially designed modality and temporal fusion strategies to better explore the temporal dynamics. Extensive experiments on the proposed VFAP dataset demonstrate that 2S-TCN has a distinct advantage over the state-of-the-art static prediction methods.

Learning Visual Voice Activity Detection with an Automatically Annotated Dataset

Stéphane Lathuiliere, Pablo Mesejo, Radu Horaud

Responsive image

Auto-TLDR; Deep Visual Voice Activity Detection with Optical Flow

Slides Similar

Visual voice activity detection (V-VAD) uses visual features to predict whether a person is speaking or not. V-VAD is useful whenever audio VAD (A-VAD) is inefficient either because the acoustic signal is difficult to analyze or is simply missing. We propose two deep architectures for V-VAD, one based on facial landmarks and one based on optical flow. Moreover, available datasets, used for learning and for testing V-VAD, lack content variability. We introduce a novel methodology to automatically create and annotate very large datasets in-the-wild, based on combining A-VAD and face detection. A thorough empirical evaluation shows the advantage of training the proposed deep V-VAD models with such a dataset.

Learning Disentangled Representations for Identity Preserving Surveillance Face Camouflage

Jingzhi Li, Lutong Han, Hua Zhang, Xiaoguang Han, Jingguo Ge, Xiaochu Cao

Responsive image

Auto-TLDR; Individual Face Privacy under Surveillance Scenario with Multi-task Loss Function

Poster Similar

In this paper, we focus on protecting the person face privacy under the surveillance scenarios, whose goal is to change the visual appearances of faces while keep them to be recognizable by current face recognition systems. This is a challenging problem as that we should retain the most important structures of captured facial images, while alter the salient facial regions to protect personal privacy. To address this problem, we introduce a novel individual face protection model, which can camouflage the face appearance from the perspective of human visual perception and preserve the identity features of faces used for face authentication. To that end, we develop an encoder-decoder network architecture that can separately disentangle the person feature representation into an appearance code and an identity code. Specifically, we first randomly divide the face image into two groups, the source set and the target set, where the source set is used to extract the identity code and the target set provides the appearance code. Then, we recombine the identity and appearance codes to synthesize a new face, which has the same identity with the source subject. Finally, the synthesized faces are used to replace the original face to protect the privacy of individual. Furthermore, our model is trained end-to-end with a multi-task loss function, which can better preserve the identity and stabilize the training loss. Experiments conducted on Cross-Age Celebrity dataset demonstrate the effectiveness of our model and validate our superiority in terms of visual quality and scalability.

Detecting Manipulated Facial Videos: A Time Series Solution

Zhang Zhewei, Ma Can, Gao Meilin, Ding Bowen

Responsive image

Auto-TLDR; Face-Alignment Based Bi-LSTM for Fake Video Detection

Slides Poster Similar

We propose a new method to expose fake videos based on a time series solution. The method is based on bidirectional long short-term memory (Bi-LSTM) backbone architecture with two different types of features: {Face-Alignment} and {Dense-Face-Alignment}, in which both of them are physiological signals that can be distinguished between fake and original videos. We choose 68 landmark points as the feature of {Face-Alignment} and Pose Adaptive Feature (PAF) for {Dense-Face-Alignment}. Based on these two facial features, we designed two deep networks. In addition, we optimize our network by adding an attention mechanism that improves detection precision. Our method is tested over benchmarks of Face Forensics/Face Forensics++ dataset and show a promising performance on inference speed while maintaining accuracy with state-of art solutions that deal against DeepFake.

Three-Dimensional Lip Motion Network for Text-Independent Speaker Recognition

Jianrong Wang, Tong Wu, Shanyu Wang, Mei Yu, Qiang Fang, Ju Zhang, Li Liu

Responsive image

Auto-TLDR; Lip Motion Network for Text-Independent and Text-Dependent Speaker Recognition

Slides Poster Similar

Lip motion reflects behavior characteristics of speakers, and thus can be used as a new kind of biometrics in speaker recognition. In the literature, lots of works used two dimensional (2D) lip images to recognize speaker in a text-dependent context. However, 2D lip easily suffers from face orientations. To this end, in this work, we present a novel end-to-end 3D lip motion Network (3LMNet) by utilizing the sentence-level 3D lip motion (S3DLM) to recognize speakers in both the text-independent and text-dependent contexts. A novel regional feedback module (RFM) is proposed to explore attentions in different lip regions. Besides, prior knowledge of lip motion is investigated to complement RFM, where landmark-level and frame-level features are merged to form a better feature representation. Moreover, we present two methods, i.e., coordinate transformation and face posture correction to pre-process the LSD-AV dataset, which contains 68 speakers and 146 sentences per speaker. The evaluation results on this dataset demonstrate that our proposed 3LMNet is superior to the baseline models, i.e., LSTM, VGG-16 and ResNet-34, and outperforms the state-of-the-art using 2D lip image as well as the 3D face. The code of this work is released at https://github.com/wutong18/Three-Dimensional-Lip-Motion-Ne twork-for-Text-Independent-Speaker-Recognition.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

Dual-MTGAN: Stochastic and Deterministic Motion Transfer for Image-To-Video Synthesis

Fu-En Yang, Jing-Cheng Chang, Yuan-Hao Lee, Yu-Chiang Frank Wang

Responsive image

Auto-TLDR; Dual Motion Transfer GAN for Convolutional Neural Networks

Slides Poster Similar

Generating videos with content and motion variations is a challenging task in computer vision. While the recent development of GAN allows video generation from latent representations, it is not easy to produce videos with particular content of motion patterns of interest. In this paper, we propose Dual Motion Transfer GAN (Dual-MTGAN), which takes image and video data as inputs while learning disentangled content and motion representations. Our Dual-MTGAN is able to perform deterministic motion transfer and stochastic motion generation. Based on a given image, the former preserves the input content and transfers motion patterns observed from another video sequence, and the latter directly produces videos with plausible yet diverse motion patterns based on the input image. The proposed model is trained in an end-to-end manner, without the need to utilize pre-defined motion features like pose or facial landmarks. Our quantitative and qualitative results would confirm the effectiveness and robustness of our model in addressing such conditioned image-to-video tasks.

Future Urban Scenes Generation through Vehicles Synthesis

Alessandro Simoni, Luca Bergamini, Andrea Palazzi, Simone Calderara, Rita Cucchiara

Responsive image

Auto-TLDR; Predicting the Future of an Urban Scene with a Novel View Synthesis Paradigm

Slides Poster Similar

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stages approach, where interpretable information is included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user itself. This allows us to generate a set of diverse realistic futures starting from the same input in a multi-modal fashion. We visually and quantitatively show the superiority of this approach over traditional end-to-end scene-generation methods on CityFlow, a challenging real world dataset.

Local Facial Attribute Transfer through Inpainting

Ricard Durall, Franz-Josef Pfreundt, Janis Keuper

Responsive image

Auto-TLDR; Attribute Transfer Inpainting Generative Adversarial Network

Slides Poster Similar

The term attribute transfer refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator. In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our Attribute Transfer Inpainting Generative Adversarial Network (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.

Cascade Attention Guided Residue Learning GAN for Cross-Modal Translation

Bin Duan, Wei Wang, Hao Tang, Hugo Latapie, Yan Yan

Responsive image

Auto-TLDR; Cascade Attention-Guided Residue GAN for Cross-modal Audio-Visual Learning

Slides Poster Similar

Since we were babies, we intuitively develop the ability to correlate the input from different cognitive sensors such as vision, audio, and text. However, in machine learning, this cross-modal learning is a nontrivial task because different modalities have no homogeneous properties. Previous works discover that there should be bridges among different modalities. From neurology and psychology perspective, humans have the capacity to link one modality with another one, e.g., associating a picture of a bird with the only hearing of its singing and vice versa. Is it possible for machine learning algorithms to recover the scene given the audio signal? In this paper, we propose a novel Cascade Attention-Guided Residue GAN (CAR-GAN), aiming at reconstructing the scenes given the corresponding audio signals. Particularly, we present a residue module to mitigate the gap between different modalities progressively. Moreover, a cascade attention guided network with a novel classification loss function is designed to tackle the cross-modal learning task. Our model keeps consistency in the high-level semantic label domain and is able to balance two different modalities. The experimental results demonstrate that our model achieves the state-of-the-art cross-modal audio-visual generation on the challenging Sub-URMP dataset.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

Audio-Visual Speech Recognition Using a Two-Step Feature Fusion Strategy

Hong Liu, Wanlu Xu, Bing Yang

Responsive image

Auto-TLDR; A Two-Step Feature Fusion Network for Speech Recognition

Slides Poster Similar

Lip-reading methods and fusion strategy are crucial for audio-visual speech recognition. In recent years, most approaches involve two separate audio and visual streams with early or late fusion strategies. Such a single-stage fusion method may fail to guarantee the integrity and representativeness of fusion information simultaneously. This paper extends a traditional single-stage fusion network to a two-step feature fusion network by adding an audio-visual early feature fusion (AV-EFF) stream to the baseline model. This method can learn the fusion information of different stages, preserving the original features as much as possible and ensuring the independence of different features. Besides, to capture long-range dependencies of video information, a non-local block is added to the feature extraction part of the visual stream (NL-Visual) to obtain the long-term spatio-temporal features. Experimental results on the two largest public datasets in English (LRW) and Mandarin (LRW-1000) demonstrate our method is superior to other state-of-the-art methods.

Pixel-based Facial Expression Synthesis

Arbish Akram, Nazar Khan

Responsive image

Auto-TLDR; pixel-based facial expression synthesis using GANs

Slides Poster Similar

Recently, Facial expression synthesis has shown remarkable advances with the advent of Generative Adversarial Networks (GANs). However, these GAN-based approaches mostly generate photo-realistic results as long as the target data distribution is close to the training data distribution. The quality of GANs results significantly degrades when testing images are from a slightly different distribution. In this work, we propose a pixel-based facial expression synthesis method. Recent work has shown that facial expression synthesis changes only local regions of faces. In the proposed method, each output pixel observes only one input pixel. The proposed method achieves generalization capability by leveraging only few hundred images. Experimental results demonstrate that the proposed method performs comparably with the recent GANs on in-dataset images and significantly outperforms on in the wild images. In addition, the proposed method is faster and it also achieves significantly better performance with two orders of magnitudes lesser computational and storage cost as compared to state-of-the-art GAN-based methods.

Audio-Visual Predictive Coding for Self-Supervised Visual Representation Learning

Mani Kumar Tellamekala, Michel Valstar, Michael Pound, Timo Giesbrecht

Responsive image

Auto-TLDR; AV-PPC: A Multi-task Learning Framework for Learning Semantic Visual Features from Unlabeled Video Data

Slides Poster Similar

Self-supervised learning has emerged as a candidate approach to learn semantic visual features from unlabeled video data. In self-supervised learning, intrinsic correspondences between data points are used to define a proxy task that forces the model to learn semantic representations. Most existing proxy tasks applied to video data exploit only either intra-modal (e.g. temporal) or cross-modal (e.g. audio-visual) correspondences separately. In theory, jointly learning both these correspondences may result in richer visual features; but, as we show in this work, doing so is non-trivial in practice. To address this problem, we introduce `Audio-Visual Permutative Predictive Coding' (AV-PPC), a multi-task learning framework designed to fully leverage the temporal and cross-modal correspondences as natural supervision signals. In AV-PPC, the model is trained to simultaneously learn multiple intra- and cross-modal predictive coding sub-tasks. By using visual speech recognition (lip-reading) as the downstream evaluation task, we show that our proposed proxy task can learn higher quality visual features than existing proxy tasks. We also show that AV-PPC visual features are highly data-efficient. Without further finetuning, AV-PPC visual encoder achieves 80.30% spoken word classification rate on the LRW dataset, performing on par with directly or fully supervised visual encoders learned from large amounts of labeled data.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

Interpretable Emotion Classification Using Temporal Convolutional Models

Manasi Bharat Gund, Abhiram Ravi Bharadwaj, Ifeoma Nwogu

Responsive image

Auto-TLDR; Understanding the Dynamics of Facial Emotion Expression with Spatiotemporal Representations

Slides Poster Similar

As with many problems solved by deep neural networks, existing solutions rarely explain, precisely, the important factors responsible for the predictions made by the model. This work looks to investigate how different spatial regions and landmark points change in position over time, to better explain the underlying factors responsible for various facial emotion expressions. By pinpointing the specific regions or points responsible for the classification of a particular facial expression, we gain better insight into the dynamics of the face when displaying that emotion. To accomplish this, we examine two spatiotemporal representations of moving faces, while expressing different emotions. The representations are then presented to a convolutional neural network for emotion classification. Class activation maps are used in highlighting the regions of interest and the results are qualitatively compared with the well known facial action units, using the facial action coding system. The model was originally trained and tested on the CK+ dataset for emotion classification, and then generalized to the SAMM dataset. In so doing, we successfully present an interpretable technique for understanding the dynamics that occur during convolutional-based prediction tasks on sequences of face data.

GarmentGAN: Photo-Realistic Adversarial Fashion Transfer

Amir Hossein Raffiee, Michael Sollami

Responsive image

Auto-TLDR; GarmentGAN: A Generative Adversarial Network for Image-Based Garment Transfer

Slides Poster Similar

The garment transfer problem comprises two tasks: learning to separate a person's body (pose, shape, color) from their clothing (garment type, shape, style) and then generating new images of the wearer dressed in arbitrary garments. We present GarmentGAN, a new algorithm that performs image-based garment transfer through generative adversarial methods. The GarmentGAN framework allows users to virtually try-on items before purchase and generalizes to various apparel types. GarmentGAN requires as input only two images, namely, a picture of the target fashion item and an image containing the customer. The output is a synthetic image wherein the customer is wearing the target apparel. In order to make the generated image look photo-realistic, we employ the use of novel generative adversarial techniques. GarmentGAN improves on existing methods in the realism of generated imagery and solves various problems related to self-occlusions. Our proposed model incorporates additional information during training, utilizing both segmentation maps and body key-point information. We show qualitative and quantitative comparisons to several other networks to demonstrate the effectiveness of this technique.

Spatial Bias in Vision-Based Voice Activity Detection

Kalin Stefanov, Mohammad Adiban, Giampiero Salvi

Responsive image

Auto-TLDR; Spatial Bias in Vision-based Voice Activity Detection in Multiparty Human-Human Interactions

Poster Similar

We present models for automatic vision-based voice activity detection (VAD) in multiparty human-human interactions that are aimed at complementing the acoustic VAD methods. We provide evidence that this type of vision-based VAD models are susceptible to spatial bias in the datasets. The physical settings of the interaction, usually constant throughout data acquisition, determines the distribution of head poses of the participants. Our results show that when the head pose distributions are significantly different in the training and test sets, the performance of the models drops significantly. This suggests that previously reported results on datasets with a fixed physical configuration may overestimate the generalization capabilities of this type of models. We also propose a number of possible remedies to the spatial bias, including data augmentation, input masking and dynamic features, and provide an in-depth analysis of the visual cues used by our models.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Coherence and Identity Learning for Arbitrary-Length Face Video Generation

Shuquan Ye, Chu Han, Jiaying Lin, Guoqiang Han, Shengfeng He

Responsive image

Auto-TLDR; Face Video Synthesis Using Identity-Aware GAN and Face Coherence Network

Slides Poster Similar

Face synthesis is an interesting yet challenging task in computer vision. It is even much harder to generate a portrait video than a single image. In this paper, we propose a novel video generation framework for synthesizing arbitrary-length face videos without any face exemplar or landmark. To overcome the synthesis ambiguity of face video, we propose a divide-and-conquer strategy to separately address the video face synthesis problem from two aspects, face identity synthesis and rearrangement. To this end, we design a cascaded network which contains three components, Identity-aware GAN (IA-GAN), Face Coherence Network, and Interpolation Network. IA-GAN is proposed to synthesize photorealistic faces with the same identity from a set of noises. Face Coherence Network is designed to re-arrange the faces generated by IA-GAN while keeping the inter-frame coherence. Interpolation Network is introduced to eliminate the discontinuity between two adjacent frames and improve the smoothness of the face video. Experimental results demonstrate that our proposed network is able to generate face video with high visual quality while preserving the identity. Statistics show that our method outperforms state-of-the-art unconditional face video generative models in multiple challenging datasets.

Unsupervised Face Manipulation Via Hallucination

Keerthy Kusumam, Enrique Sanchez, Georgios Tzimiropoulos

Responsive image

Auto-TLDR; Unpaired Face Image Manipulation using Autoencoders

Slides Poster Similar

This paper addresses the problem of manipulatinga face image in terms of changing its pose. To achieve this, wepropose a new method that can be trained under the very general“unpaired” setting. To this end, we firstly propose to modelthe general appearance, layout and background of the inputimage using a low-resolution version of it which is progressivelypassed through a hallucination network to generate featuresat higher resolutions. We show that such a formulation issignificantly simpler than previous approaches for appearancemodelling based on autoencoders. Secondly, we propose a fullylearnable and spatially-aware appearance transfer module whichcan cope with misalignment between the input source image andthe target pose and can effectively combine the features fromthe hallucination network with the features produced by ourgenerator. Thirdly, we introduce an identity preserving methodthat is trained in an unsupervised way, by using an auxiliaryfeature extractor and a contrastive loss between the real andgenerated images. We compare our method against the state-of-the-art reporting significant improvements both quantitatively, interms of FID and IS, and qualitatively.

Unsupervised Contrastive Photo-To-Caricature Translation Based on Auto-Distortion

Yuhe Ding, Xin Ma, Mandi Luo, Aihua Zheng, Ran He

Responsive image

Auto-TLDR; Unsupervised contrastive photo-to-caricature translation with style loss

Slides Poster Similar

Photo-to-caricature aims to synthesize the caricature as a rendered image exaggerating the features through sketching, pencil strokes, or other artistic drawings. Style rendering and geometry deformation are the most important aspects in photo-to-caricature translation task. To take both into consideration, we propose an unsupervised contrastive photo-to-caricature translation architecture. Considering the intuitive artifacts in the existing methods, we propose a contrastive style loss for style rendering to enforce the similarity between the style of rendered photo and the caricature, and simultaneously enhance its discrepancy to the photos. To obtain an exaggerating deformation in an unpaired/unsupervised fashion, we propose a Distortion Prediction Module (DPM) to predict a set of displacements vectors for each input image while fixing some controlling points, followed by the thin plate spline interpolation for warping. The model is trained on unpaired photo and caricature while can offer bidirectional synthesizing via inputting either a photo or a caricature. Extensive experiments demonstrate that the proposed model is effective to generate hand-drawn like caricatures compared with existing competitors.

AttendAffectNet: Self-Attention Based Networks for Predicting Affective Responses from Movies

Thi Phuong Thao Ha, Bt Balamurali, Herremans Dorien, Roig Gemma

Responsive image

Auto-TLDR; AttendAffectNet: A Self-Attention Based Network for Emotion Prediction from Movies

Slides Poster Similar

In this work, we propose different variants of the self-attention based network for emotion prediction from movies, which we call AttendAffectNet. We take both audio and video into account and incorporate the relation among multiple modalities by applying self-attention mechanism in a novel manner into the extracted features for emotion prediction. We compare it to the typically temporal integration of the self-attention based model, which in our case, allows to capture the relation of temporal representations of the movie while considering the sequential dependencies of emotion responses. We demonstrate the effectiveness of our proposed architectures on the extended COGNIMUSE dataset [1], [2] and the MediaEval 2016 Emotional Impact of Movies Task [3], which consist of movies with emotion annotations. Our results show that applying the self-attention mechanism on the different audio-visual features, rather than in the time domain, is more effective for emotion prediction. Our approach is also proven to outperform state-of-the-art models for emotion prediction.

Continuous Learning of Face Attribute Synthesis

Ning Xin, Shaohui Xu, Fangzhe Nan, Xiaoli Dong, Weijun Li, Yuanzhou Yao

Responsive image

Auto-TLDR; Continuous Learning for Face Attribute Synthesis

Slides Poster Similar

The generative adversarial network (GAN) exhibits great superiority in the face attribute synthesis task. However, existing methods have very limited effects on the expansion of new attributes. To overcome the limitations of a single network in new attribute synthesis, a continuous learning method for face attribute synthesis is proposed in this work. First, the feature vector of the input image is extracted and attribute direction regression is performed in the feature space to obtain the axes of different attributes. The feature vector is then linearly guided along the axis so that images with target attributes can be synthesized by the decoder. Finally, to make the network capable of continuous learning, the orthogonal direction modification module is used to extend the newly-added attributes. Experimental results show that the proposed method can endow a single network with the ability to learn attributes continuously, and, as compared to those produced by the current state-of-the-art methods, the synthetic attributes have higher accuracy.

Self-Supervised Learning of Dynamic Representations for Static Images

Siyang Song, Enrique Sanchez, Linlin Shen, Michel Valstar

Responsive image

Auto-TLDR; Facial Action Unit Intensity Estimation and Affect Estimation from Still Images with Multiple Temporal Scale

Slides Poster Similar

Facial actions are spatio-temporal signals by nature, and therefore their modeling is crucially dependent on the availability of temporal information. In this paper, we focus on inferring such temporal dynamics of facial actions when no explicit temporal information is available, i.e. from still images. We present a novel approach to capture multiple scales of such temporal dynamics, with an application to facial Action Unit (AU) intensity estimation and dimensional affect estimation. In particular, 1) we propose a framework that infers a dynamic representation (DR) from a still image, which captures the bi-directional flow of time within a short time-window centered at the input image; 2) we show that we can train our method without the need of explicitly generating target representations, allowing the network to represent dynamics more broadly; and 3) we propose to apply a multiple temporal scale approach that infers DRs for different window lengths (MDR) from a still image. We empirically validate the value of our approach on the task of frame ranking, and show how our proposed MDR attains state of the art results on BP4D for AU intensity estimation and on SEMAINE for dimensional affect estimation, using only still images at test time.

Mutual Alignment between Audiovisual Features for End-To-End Audiovisual Speech Recognition

Hong Liu, Yawei Wang, Bing Yang

Responsive image

Auto-TLDR; Mutual Iterative Attention for Audio Visual Speech Recognition

Slides Poster Similar

Asynchronization issue caused by different types of modalities is one of the major problems in audio visual speech recognition (AVSR) research. However, most AVSR systems merely rely on up sampling of video or down sampling of audio to align audio and visual features, assuming that the feature sequences are aligned frame-by-frame. These pre-processing steps oversimplify the asynchrony relation between acoustic signal and lip motion, lacking flexibility and impairing the performance of the system. Although there are systems modeling the asynchrony between the modalities, sometimes they fail to align speech and video precisely in some even all noise conditions. In this paper, we propose a mutual feature alignment method for AVSR which can make full use of cross modility information to address the asynchronization issue by introducing Mutual Iterative Attention (MIA) mechanism. Our method can automatically learn an alignment in a mutual way by performing mutual attention iteratively between the audio and visual features, relying on the modified encoder structure of Transformer. Experimental results show that our proposed method obtains absolute improvements up to 20.42% over the audio modality alone depending upon the signal-to-noise-ratio (SNR) level. Better recognition performance can also be achieved comparing with the traditional feature concatenation method under both clean and noisy conditions. It is expectable that our proposed mutual feature alignment method can be easily generalized to other multimodal tasks with semantically correlated information.

Exposing Deepfake Videos by Tracking Eye Movements

Meng Li, Beibei Liu, Yujiang Hu, Yufei Wang

Responsive image

Auto-TLDR; A Novel Approach to Detecting Deepfake Videos

Slides Poster Similar

It has recently become a major threat to the public media that fake videos are rapidly spreading over the Internet. The advent of Deepfake, a deep-learning based toolkit, has facilitated a massive abuse of improper synthesized videos, which may influence the media credibility and human rights. A worldwide alert has been set off that finding ways to detect such fake videos is not only crucial but also urgent. This paper reports a novel approach to expose deepfake videos. We found that most fake videos are markedly different from the real ones in the way the eyes move. We are thus motivated to define four features that could well capture such differences. The features are then fed to SVM for classification. It is shown to be a promising approach that without high dimensional features and complicated neural networks, we are able to achieve competitive results on several public datasets. Moreover, the proposed features could well participate with other existing methods in the confrontation with deepfakes.

Automatic Annotation of Corpora for Emotion Recognition through Facial Expressions Analysis

Alex Mircoli, Claudia Diamantini, Domenico Potena, Emanuele Storti

Responsive image

Auto-TLDR; Automatic annotation of video subtitles on the basis of facial expressions using machine learning algorithms

Slides Poster Similar

The recent diffusion of social networks has made available an unprecedented amount of user-generated content, which may be analyzed in order to determine people's opinions and emotions about a large variety of topics. Research has made many efforts in defining accurate algorithms for analyzing emotions expressed by users in texts; however, their performance often rely on the existence of large annotated datasets, whose current scarcity represents a major issue. The manual creation of such datasets represents a costly and time-consuming activity and hence there is an increasing demand for techniques for the automatic annotation of corpora. In this work we present a methodology for the automatic annotation of video subtitles on the basis of the analysis of facial expressions of people in videos, with the goal of creating annotated corpora that may be used to train emotion recognition algorithms. Facial expressions are analyzed through machine learning algorithms, on the basis of a set of manually-engineered facial features that are extracted from video frames. The soundness of the proposed methodology has been evaluated through an extensive experimentation aimed at determining the performance on real datasets of each methodological step.

Identity-Aware Facial Expression Recognition in Compressed Video

Xiaofeng Liu, Linghao Jin, Xu Han, Jun Lu, Jonghye Woo, Jane You

Responsive image

Auto-TLDR; Exploring Facial Expression Representation in Compressed Video with Mutual Information Minimization

Slides Similar

This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a novel collaborative min-min game for mutual information (MI) minimization in latent space. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$\times$ faster inference with compressed data.

Mask-Based Style-Controlled Image Synthesis Using a Mask Style Encoder

Jaehyeong Cho, Wataru Shimoda, Keiji Yanai

Responsive image

Auto-TLDR; Style-controlled Image Synthesis from Semantic Segmentation masks using GANs

Slides Poster Similar

In recent years, the advances in Generative Adversarial Networks (GANs) have shown impressive results for image generation and translation tasks. In particular, the image-to-image translation is a method of learning mapping from a source domain to a target domain and synthesizing an image. Image-to-image translation can be applied to a variety of tasks, making it possible to quickly and easily synthesize realistic images from semantic segmentation masks. However, in the existing image-to-image translation method, there is a limitation on controlling the style of the translated image, and it is not easy to synthesize an image by controlling the style of each mask element in detail. Therefore, we propose an image synthesis method that controls the style of each element by improving the existing image-to-image translation method. In the proposed method, we implement a style encoder that extracts style features for each mask element. The extracted style features are concatenated to the semantic mask in the normalization layer, and used the style-controlled image synthesis of each mask element. In experiments, we train style-controlled images synthesis using the datasets consisting of semantic segmentation masks and real images. The results show that the proposed method has excellent performance for style-controlled images synthesis for each element.

Learning Knowledge-Rich Sequential Model for Planar Homography Estimation in Aerial Video

Pu Li, Xiaobai Liu

Responsive image

Auto-TLDR; Sequential Estimation of Planar Homographic Transformations over Aerial Videos

Slides Poster Similar

This paper presents an unsupervised approach that leverages raw aerial videos to learn to estimate planar homographic transformation between consecutive video frames. Previous learning-based estimators work on pairs of images to estimate their planar homographic transformations but suffer from severe over-fitting issues, especially when applying over aerial videos. To address this concern, we develop a sequential estimator that directly processes a sequence of video frames and estimates their pairwise planar homographic transformations in batches. We also incorporate a set of spatial-temporal knowledge to regularize the learning of such a sequence-to-sequence model. We collect a set of challenging aerial videos and compare the proposed method to the alternative algorithms. Empirical studies suggest that our sequential model achieves significant improvement over alternative image-based methods and the knowledge-rich regularization further boosts our system performance. Our codes and dataset could be found at https://github.com/Paul-LiPu/DeepVideoHomography

High Resolution Face Age Editing

Xu Yao, Gilles Puy, Alasdair Newson, Yann Gousseau, Pierre Hellier

Responsive image

Auto-TLDR; An Encoder-Decoder Architecture for Face Age editing on High Resolution Images

Slides Poster Similar

Face age editing has become a crucial task in film post-production, and is also becoming popular for general purpose photography. Recently, adversarial training has produced some of the most visually impressive results for image manipulation, including the face aging/de-aging task. In spite of considerable progress, current methods often present visual artifacts and can only deal with low-resolution images. In order to achieve aging/de-aging with the high quality and robustness necessary for wider use, these problems need to be addressed. This is the goal of the present work. We present an encoder-decoder architecture for face age editing. The core idea of our network is to encode a face image to age-invariant features, and learn a modulation vector corresponding to a target age. We then combine these two elements to produce a realistic image of the person with the desired target age. Our architecture is greatly simplified with respect to other approaches, and allows for fine-grained age editing on high resolution images in a single unified model. Source codes are available at https://github.com/InterDigitalInc/HRFAE.

Learning Semantic Representations Via Joint 3D Face Reconstruction and Facial Attribute Estimation

Zichun Weng, Youjun Xiang, Xianfeng Li, Juntao Liang, Wanliang Huo, Yuli Fu

Responsive image

Auto-TLDR; Joint Framework for 3D Face Reconstruction with Facial Attribute Estimation

Slides Poster Similar

We propose a novel joint framework for 3D face reconstruction (3DFR) that integrates facial attribute estimation (FAE) as an auxiliary task. One of the essential problems of 3DFR is to extract semantic facial features (e.g., Big Nose, High Cheekbones, and Asian) from in-the-wild 2D images, which is inherently involved with FAE. These two tasks, though heterogeneous, are highly relevant to each other. To achieve this, we leverage a Convolutional Neural Network to extract shared facial representations for both shape decoder and attribute classifier. We further develop an in-batch hybrid-task training scheme that enables our model to learn from heterogeneous facial datasets jointly within a mini-batch. Thanks to the joint loss that provides supervision from both 3DFR and FAE domains, our model learns the correlations between 3D shapes and facial attributes, which benefit both feature extraction and shape inference. Quantitative evaluation and qualitative visualization results confirm the effectiveness and robustness of our joint framework.

RWF-2000: An Open Large Scale Video Database for Violence Detection

Ming Cheng, Kunjing Cai, Ming Li

Responsive image

Auto-TLDR; Flow Gated Network for Violence Detection in Surveillance Cameras

Slides Poster Similar

In recent years, surveillance cameras are widely deployed in public places, and the general crime rate has been reduced significantly due to these ubiquitous devices. Usually, these cameras provide cues and evidence after crimes were conducted, while they are rarely used to prevent or stop criminal activities in time. It is both time and labor consuming to manually monitor a large amount of video data from surveillance cameras. Therefore, automatically recognizing violent behaviors from video signals becomes essential. In this paper, we summarize several existing video datasets for violence detection and propose a new video dataset with 2,000 videos all captured by surveillance cameras in real-world scenes. Also, we present a new method that utilizes both the merits of 3D-CNNs and optical flow, namely Flow Gated Network. The proposed approach obtains an accuracy of 87.25% on the test set of our proposed RWF-2000 database. The proposed database and source codes of this paper are currently open to access.

Multi-Laplacian GAN with Edge Enhancement for Face Super Resolution

Shanlei Ko, Bi-Ru Dai

Responsive image

Auto-TLDR; Face Image Super-Resolution with Enhanced Edge Information

Slides Poster Similar

Face image super-resolution has become a research hotspot in the field of image processing. Nowadays, more and more researches add additional information, such as landmark, identity, to reconstruct high resolution images from low resolution ones, and have a good performance in quantitative terms and perceptual quality. However, these additional information is hard to obtain in many cases. In this work, we focus on reconstructing face images by extracting useful information from face images directly rather than using additional information. By observing edge information in each scale of face images, we propose a method to reconstruct high resolution face images with enhanced edge information. In additional, with the proposed training procedure, our method reconstructs photo-realistic images in upscaling factor 8x and outperforms state-of-the-art methods both in quantitative terms and perceptual quality.

CardioGAN: An Attention-Based Generative Adversarial Network for Generation of Electrocardiograms

Subhrajyoti Dasgupta, Sudip Das, Ujjwal Bhattacharya

Responsive image

Auto-TLDR; CardioGAN: Generative Adversarial Network for Synthetic Electrocardiogram Signals

Slides Poster Similar

Electrocardiogram (ECG) signal is studied to obtain crucial information about the condition of a patient's heart. Machine learning based automated medical diagnostic systems that may help to evaluate the condition of the heart from this signal are required to be trained using large volumes of labelled training samples and the same may increase the chance of compromising with the patients' privacy. To solve this issue, generation of synthetic electrocardiogram signals by learning only from the general distributions of the available real training samples have been attempted in the literature. However, these studies did not pay necessary attention to the specific vital details of these signals, such as the P wave, the QRS complex, and the T wave. This shortcoming often results in the generation of unrealistic synthetic signals, such as a signal which does not contain one or more of the above components. In the present study, a novel deep generative architecture, termed as CardioGAN, based on generative adversarial network and powered by the effective attention mechanism has been designed which is capable of learning the intricate inter-dependencies among the various parts of real samples leading to the generation of more realistic electrocardiogram signals. Also, it helps in reducing the risk of breaching the privacy of patients. Extensive experimentation performed by us establishes that the proposed method achieves a better performance in generating synthetic electrocardiogram signals in comparison to the existing methods. The source code will be made available on github.

Sequential Non-Rigid Factorisation for Head Pose Estimation

Stefania Cristina, Kenneth Patrick Camilleri

Responsive image

Auto-TLDR; Sequential Shape-and-Motion Factorisation for Head Pose Estimation in Eye-Gaze Tracking

Slides Poster Similar

Within the context of eye-gaze tracking, the capability of permitting the user to move naturally is an important step towards allowing for more natural user interaction in less constrained scenarios. Natural movement can be characterised by changes in head pose, as well as non-rigid face deformations as the user performs different facial expressions. While the estimation of head pose within the domain of eye-gaze tracking is being increasingly considered, the face is most often regarded as a rigid body. The few methods that factor the challenge of handling face deformations into the head pose estimation problem, often require the availability of a pre-defined face model or a considerable amount of training data. In this paper, we direct our attention towards the application of shape-and-motion factorisation for head pose estimation, since this does not generally rely on the availability of an initial face model. Over the years, various shape-and-motion factorisation methods have been proposed to address the challenges of rigid and non-rigid shape and motion recovery, in a batch or sequential manner. However, the real-time recovery of non-rigid shape and motion by factorisation remains, in general, an open problem. Our work addresses this open problem by proposing a sequential factorisation method for non-rigid shape and motion recovery, which does not rely on the availability of a pre-defined face deformation model or training data. Quantitative and qualitative results show that our method can handle various non-rigid face deformations without deterioration of the head pose estimation accuracy.

A Quantitative Evaluation Framework of Video De-Identification Methods

Sathya Bursic, Alessandro D'Amelio, Marco Granato, Giuliano Grossi, Raffaella Lanzarotti

Responsive image

Auto-TLDR; Face de-identification using photo-reality and facial expressions

Slides Poster Similar

We live in an era of privacy concerns, motivating a large research effort in face de-identification. As in other fields, we are observing a general movement from hand-crafted methods to deep learning methods, mainly involving generative models. Although these methods produce more natural de-identified images or videos, we claim that the mere evaluation of the de-identification is not sufficient, especially when it comes to processing the images/videos further. In this note, we take into account the issue of preserving privacy, facial expressions, and photo-reality simultaneously, proposing a general testing framework. The method is applied to four open-source tools, producing a baseline for future de-identification methods.

Robust Audio-Visual Speech Recognition Based on Hybrid Fusion

Hong Liu, Wenhao Li, Bing Yang

Responsive image

Auto-TLDR; Hybrid Fusion Based AVSR with Residual Networks and Bidirectional Gated Recurrent Unit for Robust Speech Recognition in Noise Conditions

Slides Poster Similar

The fusion of audio and visual modalities is an important stage of audio-visual speech recognition (AVSR), which is generally approached through feature fusion or decision fusion. Feature fusion can exploit the covariations between features from different modalities effectively, whereas decision fusion shows the robustness of capturing an optimal combination of multi-modality. In this work, to take full advantage of the complementarity of the two fusion strategies and address the challenge of inherent ambiguity in noisy environments, we propose a novel hybrid fusion based AVSR method with residual networks and Bidirectional Gated Recurrent Unit (BGRU), which is able to distinguish homophones in both clean and noisy conditions. Specifically, a simple yet effective audio-visual encoder is used to map audio and visual features into a shared latent space to capture more discriminative multi-modal feature and find the internal correlation between spatial-temporal information for different modalities. Furthermore, a decision fusion module is designed to get final predictions in order to robustly utilize the reliability measures of audio-visual information. Finally, we introduce a combined loss, which shows its noise-robustness in learning the joint representation across various modalities. Experimental results on the largest publicly available dataset (LRW) demonstrate the robustness of the proposed method under various noisy conditions.

Enriching Video Captions with Contextual Text

Philipp Rimle, Pelin Dogan, Markus Gross

Responsive image

Auto-TLDR; Contextualized Video Captioning Using Contextual Text

Slides Poster Similar

Understanding video content and generating caption with context is an important and challenging task. Unlike prior methods that typically attempt to generate generic video captions without context, our architecture contextualizes captioning by infusing extracted information from relevant text data. We propose an end-to-end sequence-to-sequence model which generates video captions based on visual input, and mines relevant knowledge such as names and locations from contextual text. In contrast to previous approaches, we do not preprocess the text further, and let the model directly learn to attend over it. Guided by the visual input, the model is able to copy words from the contextual text via a pointer-generator network, allowing to produce more specific video captions. We show competitive performance on the News Video Dataset and, through ablation studies, validate the efficacy of contextual video captioning as well as individual design choices in our model architecture.

Vertex Feature Encoding and Hierarchical Temporal Modeling in a Spatio-Temporal Graph Convolutional Network for Action Recognition

Konstantinos Papadopoulos, Enjie Ghorbel, Djamila Aouada, Bjorn Ottersten

Responsive image

Auto-TLDR; Spatio-Temporal Graph Convolutional Network for Skeleton-Based Action Recognition

Slides Poster Similar

Spatio-temporal Graph Convolutional Networks (ST-GCNs) have shown great performance in the context of skeleton-based action recognition. Nevertheless, ST-GCNs use raw skeleton data as vertex features. Such features have low dimensionality and might not be optimal for action discrimination. Moreover, a single layer of temporal convolution is used to model short-term temporal dependencies but can be insufficient for capturing both long-term. In this paper, we extend the Spatio-Temporal Graph Convolutional Network for skeleton-based action recognition by introducing two novel modules, namely, the Graph Vertex Feature Encoder (GVFE) and the Dilated Hierarchical Temporal Convolutional Network (DH-TCN). On the one hand, the GVFE module learns appropriate vertex features for action recognition by encoding raw skeleton data into a new feature space. On the other hand, the DH-TCN module is capable of capturing both short-term and long-term temporal dependencies using a hierarchical dilated convolutional network. Experiments have been conducted on the challenging NTU RGB-D 60, NTU RGB-D 120 and Kinetics datasets. The obtained results show that our method competes with state-of-the-art approaches while using a smaller number of layers and parameters; thus reducing the required training time and memory.

JUMPS: Joints Upsampling Method for Pose Sequences

Lucas Mourot, Francois Le Clerc, Cédric Thébault, Pierre Hellier

Responsive image

Auto-TLDR; JUMPS: Increasing the Number of Joints in 2D Pose Estimation and Recovering Occluded or Missing Joints

Slides Poster Similar

Human Pose Estimation is a low-level task useful for surveillance, human action recognition, and scene understanding at large. It also offers promising perspectives for the animation of synthetic characters. For all these applications, and especially the latter, estimating the positions of many joints is desirable for improved performance and realism. To this purpose, we propose a novel method called JUMPS for increasing the number of joints in 2D pose estimates and recovering occluded or missing joints. We believe this is the first attempt to address the issue. We build on a deep generative model that combines a GAN and an encoder. The GAN learns the distribution of high-resolution human pose sequences, the encoder maps the input low-resolution sequences to its latent space. Inpainting is obtained by computing the latent representation whose decoding by the GAN generator optimally matches the joints locations at the input. Post-processing a 2D pose sequence using our method provides a richer representation of the character motion. We show experimentally that the localization accuracy of the additional joints is on average on par with the original pose estimates.

UCCTGAN: Unsupervised Clothing Color Transformation Generative Adversarial Network

Shuming Sun, Xiaoqiang Li, Jide Li

Responsive image

Auto-TLDR; An Unsupervised Clothing Color Transformation Generative Adversarial Network

Slides Poster Similar

Clothing color transformation refers to changing the clothes color in an original image to the clothes color in a target image. In this paper, we propose an Unsupervised Clothing Color Transformation Generative Adversarial Network (UCCTGAN) for the task. UCCTGAN adopts the color histogram of a target clothes as color guidance and an improved U-net architecture called AntennaNet is put forward to fuse the extracted color information with the original image. Meanwhile, to accomplish unsupervised learning, the loss function is carefully designed according to color moment, which evaluates the chromatic aberration between the target clothing and the generated clothing. Experimental results show that our network has the ability to generate convincing color transformation results.

Unsupervised Co-Segmentation for Athlete Movements and Live Commentaries Using Crossmodal Temporal Proximity

Yasunori Ohishi, Yuki Tanaka, Kunio Kashino

Responsive image

Auto-TLDR; A guided attention scheme for audio-visual co-segmentation

Slides Poster Similar

Audio-visual co-segmentation is a task to extract segments and regions corresponding to specific events on unlabelled audio and video signals. It is particularly important to accomplish it in an unsupervised way, since it is generally very difficult to manually label all the objects and events appearing in audio-visual signals for supervised learning. Here, we propose to take advantage of temporal proximity of corresponding audio and video entities included in the signals. For this purpose, we newly employ a guided attention scheme to this task to efficiently detect and utilize temporal cooccurrences of audio and video information. The experiments using a real TV broadcasting of Sumo wrestling, a sport event, with live commentaries show that our model can automatically extract specific athlete movements and its spoken descriptions in an unsupervised manner.

Exemplar Guided Cross-Spectral Face Hallucination Via Mutual Information Disentanglement

Haoxue Wu, Huaibo Huang, Aijing Yu, Jie Cao, Zhen Lei, Ran He

Responsive image

Auto-TLDR; Exemplar Guided Cross-Spectral Face Hallucination with Structural Representation Learning

Slides Poster Similar

Recently, many Near infrared-visible (NIR-VIS) heterogeneous face recognition (HFR) methods have been proposed in the community. But it remains a challenging problem because of the sensing gap along with large pose variations. In this paper, we propose an Exemplar Guided Cross-Spectral Face Hallucination (EGCH) to reduce the domain discrepancy through disentangled representation learning. For each modality, EGCH contains a spectral encoder as well as a structure encoder to disentangle spectral and structure representation, respectively. It also contains a traditional generator that reconstructs the input from the above two representations, and a structure generator that predicts the facial parsing map from the structure representation. Besides, mutual information minimization and maximization are conducted to boost disentanglement and make representations adequately expressed. Then the translation is built on structure representations between two modalities. Provided with the transformed NIR structure representation and original VIS spectral representation, EGCH is capable to produce high-fidelity VIS images that preserve the topology structure of the input NIR while transfer the spectral information of an arbitrary VIS exemplar. Extensive experiments demonstrate that the proposed method achieves more promising results both qualitatively and quantitatively than the state-of-the-art NIR-VIS methods.

The Role of Cycle Consistency for Generating Better Human Action Videos from a Single Frame

Runze Li, Bir Bhanu

Responsive image

Auto-TLDR; Generating Videos with Human Action Semantics using Cycle Constraints

Slides Poster Similar

This paper addresses the challenging problem of generating videos with human action semantics. Unlike previous work which predict future frames in a single forward pass, this paper introduces the cycle constraints in both forward and backward passes in the generation of human actions. This is achieved by enforcing the appearance and motion consistency across a sequence of frames generated in the future. The approach consists of two stages. In the first stage, the pose of a human body is generated. In the second stage, an image generator is used to generate future frames by using (a) generated human poses in the future from the first stage, (b) the single observed human pose, and (c) the single corresponding future frame. The experiments are performed on three datasets: Weizmann dataset involving simple human actions, Penn Action dataset and UCF-101 dataset containing complicated human actions, especially in sports. The results from these experiments demonstrate the effectiveness of the proposed approach.