Interpretable Emotion Classification Using Temporal Convolutional Models

Manasi Bharat Gund, Abhiram Ravi Bharadwaj, Ifeoma Nwogu

Responsive image

Auto-TLDR; Understanding the Dynamics of Facial Emotion Expression with Spatiotemporal Representations

Slides Poster

As with many problems solved by deep neural networks, existing solutions rarely explain, precisely, the important factors responsible for the predictions made by the model. This work looks to investigate how different spatial regions and landmark points change in position over time, to better explain the underlying factors responsible for various facial emotion expressions. By pinpointing the specific regions or points responsible for the classification of a particular facial expression, we gain better insight into the dynamics of the face when displaying that emotion. To accomplish this, we examine two spatiotemporal representations of moving faces, while expressing different emotions. The representations are then presented to a convolutional neural network for emotion classification. Class activation maps are used in highlighting the regions of interest and the results are qualitatively compared with the well known facial action units, using the facial action coding system. The model was originally trained and tested on the CK+ dataset for emotion classification, and then generalized to the SAMM dataset. In so doing, we successfully present an interpretable technique for understanding the dynamics that occur during convolutional-based prediction tasks on sequences of face data.

Similar papers

Automatic Annotation of Corpora for Emotion Recognition through Facial Expressions Analysis

Alex Mircoli, Claudia Diamantini, Domenico Potena, Emanuele Storti

Responsive image

Auto-TLDR; Automatic annotation of video subtitles on the basis of facial expressions using machine learning algorithms

Slides Poster Similar

The recent diffusion of social networks has made available an unprecedented amount of user-generated content, which may be analyzed in order to determine people's opinions and emotions about a large variety of topics. Research has made many efforts in defining accurate algorithms for analyzing emotions expressed by users in texts; however, their performance often rely on the existence of large annotated datasets, whose current scarcity represents a major issue. The manual creation of such datasets represents a costly and time-consuming activity and hence there is an increasing demand for techniques for the automatic annotation of corpora. In this work we present a methodology for the automatic annotation of video subtitles on the basis of the analysis of facial expressions of people in videos, with the goal of creating annotated corpora that may be used to train emotion recognition algorithms. Facial expressions are analyzed through machine learning algorithms, on the basis of a set of manually-engineered facial features that are extracted from video frames. The soundness of the proposed methodology has been evaluated through an extensive experimentation aimed at determining the performance on real datasets of each methodological step.

Facial Expression Recognition Using Residual Masking Network

Luan Pham, Vu Huynh, Tuan Anh Tran

Responsive image

Auto-TLDR; Deep Residual Masking for Automatic Facial Expression Recognition

Slides Poster Similar

Automatic facial expression recognition (FER) has gained much attention due to its applications in human-computer interaction. Among the approaches to improve FER tasks, this paper focuses on deep architecture with the attention mechanism. We propose a novel Masking idea to boost the performance of CNN in facial expression task. It uses a segmentation network to refine feature maps, enabling the network to focus on relevant information to make correct decisions. In experiments, we combine the ubiquitous Deep Residual Network and Unet-like architecture to produce a Residual Masking Network. The proposed method holds state-of-the-art (SOTA) accuracy on the well-known FER2013 and private VEMO datasets. Our works are available on Github.

Identity-Aware Facial Expression Recognition in Compressed Video

Xiaofeng Liu, Linghao Jin, Xu Han, Jun Lu, Jonghye Woo, Jane You

Responsive image

Auto-TLDR; Exploring Facial Expression Representation in Compressed Video with Mutual Information Minimization

Slides Similar

This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression-related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a novel collaborative min-min game for mutual information (MI) minimization in latent space. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$\times$ faster inference with compressed data.

Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Nina Weng, Jiahao Wang, Annan Li, Yunhong Wang

Responsive image

Auto-TLDR; 2S-TCN: A Two-Stream Temporal Convolutional Network for Dynamic Facial Attractiveness Prediction

Slides Poster Similar

In the field of facial attractiveness prediction, while deep models using static pictures have shown promising results, little attention is paid to dynamic facial information, which is proven to be influential by psychological studies. Meanwhile, the increasing popularity of short video apps creates an enormous demand of facial attractiveness prediction from short video clips. In this paper, we target on the dynamic facial attractiveness prediction problem. To begin with, a large-scale video-based facial attractiveness prediction dataset (VFAP) with more than one thousand clips from TikTok is collected. A two-stream temporal convolutional network (2S-TCN) is then proposed to capture dynamic attractiveness feature from both facial appearance and landmarks. We employ attentive feature enhancement along with specially designed modality and temporal fusion strategies to better explore the temporal dynamics. Extensive experiments on the proposed VFAP dataset demonstrate that 2S-TCN has a distinct advantage over the state-of-the-art static prediction methods.

Video-Based Facial Expression Recognition Using Graph Convolutional Networks

Daizong Liu, Hongting Zhang, Pan Zhou

Responsive image

Auto-TLDR; Graph Convolutional Network for Video-based Facial Expression Recognition

Slides Poster Similar

Facial expression recognition (FER), aiming to classify the expression present in the facial image or video, has attracted a lot of research interests in the field of artificial intelligence and multimedia. In terms of video based FER task, it is sensible to capture the dynamic expression variation among the frames to recognize facial expression. However, existing methods directly utilize CNN-RNN or 3D CNN to extract the spatial-temporal features from different facial units, instead of concentrating on a certain region during expression variation capturing, which leads to limited performance in FER. In our paper, we introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based FER. First, the GCN layer is utilized to learn more contributing facial expression features which concentrate on certain regions after sharing information between nodes those represent CNN extracted features. Then, a LSTM layer is applied to learn long-term dependencies among the GCN learned features to model the variation. In addition, a weight assignment mechanism is also designed to weight the output of different nodes for final classification by characterizing the expression intensities in each frame. To the best of our knowledge, it is the first time to use GCN in FER task. We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0, and the experimental results demonstrate that our method has superior performance to existing methods.

Depth Videos for the Classification of Micro-Expressions

Ankith Jain Rakesh Kumar, Bir Bhanu, Christopher Casey, Sierra Cheung, Aaron Seitz

Responsive image

Auto-TLDR; RGB-D Dataset for the Classification of Facial Micro-expressions

Slides Poster Similar

Facial micro-expressions are spontaneous, subtle, involuntary muscle movements occurring briefly on the face. The spotting and recognition of these expressions are difficult due to the subtle behavior, and the time duration of these expressions is about half a second, which makes it difficult for humans to identify them. These micro-expressions have many applications in our daily life, such as in the field of online learning, game playing, lie detection, and therapy sessions. Traditionally, researchers use RGB images/videos to spot and classify these micro-expressions, which pose challenging problems, such as illumination, privacy concerns and pose variation. The use of depth videos solves these issues to some extent, as the depth videos are not susceptible to the variation in illumination. This paper describes the collection of a first RGB-D dataset for the classification of facial micro-expressions into 6 universal expressions: Anger, Happy, Sad, Fear, Disgust, and Surprise. This paper shows the comparison between the RGB and Depth videos for the classification of facial micro-expressions. Further, a comparison of results shows that depth videos alone can be used to classify facial micro-expressions correctly in a decision tree structure by using the traditional and deep learning approaches with good classification accuracy. The dataset will be released to the public in the near future.

Deep Multi-Task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing

Rui Zhao, Tianshan Liu, Jun Xiao, P. K. Daniel Lun, Kin-Man Lam

Responsive image

Auto-TLDR; Multi-task Learning for Facial Expression Recognition and Synthesis

Slides Poster Similar

Multi-task learning is an effective learning strategy for deep-learning-based facial expression recognition tasks. However, most existing methods take into limited consideration the feature selection, when transferring information between different tasks, which may lead to task interference when training the multi-task networks. To address this problem, we propose a novel selective feature-sharing method, and establish a multi-task network for facial expression recognition and facial expression synthesis. The proposed method can effectively transfer beneficial features between different tasks, while filtering out useless and harmful information. Moreover, we employ the facial expression synthesis task to enlarge and balance the training dataset to further enhance the generalization ability of the proposed method. Experimental results show that the proposed method achieves state-of-the-art performance on those commonly used facial expression recognition benchmarks, which makes it a potential solution to real-world facial expression recognition problems.

SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit Detection

Zhihua Li, Zheng Zhang, Lijun Yin

Responsive image

Auto-TLDR; Temporal Fusion and Self-Attention Network for Facial Action Unit Detection

Slides Poster Similar

Research on facial action unit detection has shown remarkable performances by using deep spatial learning models in recent years, however, it is far from reaching its full capacity in learning due to the lack of use of temporal information of AUs across time. Since the AU occurrence in one frame is highly likely related to previous frames in a temporal sequence, exploring temporal correlation of AUs across frames becomes a key motivation of this work. In this paper, we propose a novel temporal fusion and AU-supervised self-attention network (a so-called SAT-Net) to address the AU detection problem. First of all, we input the deep features of a sequence into a convolutional LSTM network and fuse the previous temporal information into the feature map of the last frame, and continue to learn the AU occurrence. Second, considering the AU detection problem is a multi-label classification problem that individual label depends only on certain facial areas, we propose a new self-learned attention mask by focusing the detection of each AU on parts of facial areas through the learning of individual attention mask for each AU, thus increasing the AU independence without the loss of any spatial relations. Our extensive experiments show that the proposed framework achieves better results of AU detection over the state-of-the-arts on two benchmark databases (BP4D and DISFA).

Attentive Hybrid Feature Based a Two-Step Fusion for Facial Expression Recognition

Jun Weng, Yang Yang, Zichang Tan, Zhen Lei

Responsive image

Auto-TLDR; Attentive Hybrid Architecture for Facial Expression Recognition

Slides Poster Similar

Facial expression recognition is inherently a challenging task, especially for the in-the-wild images with various occlusions and large pose variations, which may lead to the loss of some crucial information. To address it, in this paper, we propose an attentive hybrid architecture (AHA) which learns global, local and integrated features based on different face regions. Compared with one type of feature, our extracted features own complementary information and can reduce the loss of crucial information. Specifically, AHA contains three branches, where all sub-networks in those branches employ the attention mechanism to further localize the interested pixels/regions. Moreover, we propose a two-step fusion strategy based on LSTM to deeply explore the hidden correlations among different face regions. Extensive experiments on four popular expression databases (i.e., CK+, FER-2013, SFEW 2.0, RAF-DB) show the effectiveness of the proposed method.

Quantified Facial Temporal-Expressiveness Dynamics for Affect Analysis

Md Taufeeq Uddin, Shaun Canavan

Responsive image

Auto-TLDR; quantified facial Temporal-expressiveness Dynamics for quantified affect analysis

Poster Similar

The quantification of visual affect data (e.g. face images) is essential to build and monitor automated affect modeling systems efficiently. Considering this, this work proposes quantified facial Temporal-expressiveness Dynamics (TED) to quantify the expressiveness of human faces. The proposed algorithm leverages multimodal facial features by incorporating static and dynamic information to enable accurate measurements of facial expressiveness. We show that TED can be used for high-level tasks such as summarization of unstructured visual data, expectation from and interpretation of automated affect recognition models. To evaluate the positive impact of using TED, a case study was conducted on spontaneous pain using the UNBC-McMaster spontaneous shoulder pain dataset. Experimental results show the efficacy of using TED for quantified affect analysis.

Inner Eye Canthus Localization for Human Body Temperature Screening

Claudio Ferrari, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Localization of the Inner Eye Canthus in Thermal Face Images using 3D Morphable Face Model

Slides Poster Similar

In this paper, we propose an automatic approach for localizing the inner eye canthus in thermal face images. We first coarsely detect 5 facial keypoints corresponding to the center of the eyes, the nosetip and the ears. Then we compute a sparse 2D-3D points correspondence using a 3D Morphable Face Model (3DMM). This correspondence is used to project the entire 3D face onto the image, and subsequently locate the inner eye canthus. Detecting this location allows to obtain the most precise body temperature measurement for a person using a thermal camera. We evaluated the approach on a thermal face dataset provided with manually annotated landmarks. However, such manual annotations are normally conceived to identify facial parts such as eyes, nose and mouth, and are not specifically tailored for localizing the eye canthus region. As additional contribution, we enrich the original dataset by using the annotated landmarks to deform and project the 3DMM onto the images. Then, by manually selecting a small region corresponding to the eye canthus, we enrich the dataset with additional annotations. By using the manual landmarks, we ensure the correctness of the 3DMM projection, which can be used as ground-truth for future evaluations. Moreover, we supply the dataset with the 3D head poses and per-point visibility masks for detecting self-occlusions. The data will be publicly released.

Real-Time Driver Drowsiness Detection Using Facial Action Units

Malaika Vijay, Nandagopal Netrakanti Vinayak, Maanvi Nunna, Subramanyam Natarajan

Responsive image

Auto-TLDR; Real-Time Detection of Driver Drowsiness using Facial Action Units using Extreme Gradient Boosting

Slides Poster Similar

This paper presents a two-stage, vision-based pipeline for the real-time detection of driver drowsiness using Facial Action Units (FAUs). FAUs capture movements in groups of muscles in the face like widening of the eyes or dropping of the jaw. The first stage of the pipeline employs a Convolutional Neural Network (CNN) trained to detect FAUs. The output of the penultimate layer of this network serves as an image embedding that captures features relevant to FAU detection. These embeddings are then used to predict drowsiness using an Extreme Gradient Boosting (XGBoost) classifier. A separate XGBoost model is trained for each user of the system so that behavior specific to each user can be modeled into the drowsiness classifier. We show that user-specific classifiers require very little data and low training time to yield high prediction accuracies in real-time.

Pose-Based Body Language Recognition for Emotion and Psychiatric Symptom Interpretation

Zhengyuan Yang, Amanda Kay, Yuncheng Li, Wendi Cross, Jiebo Luo

Responsive image

Auto-TLDR; Body Language Based Emotion Recognition for Psychiatric Symptoms Prediction

Slides Poster Similar

Inspired by the human ability to infer emotions from body language, we propose an automated framework for body language based emotion recognition starting from regular RGB videos. In collaboration with psychologists, we further extend the framework for psychiatric symptom prediction. Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set and possess a good transferability. The proposed system in the first stage generates sequences of body language predictions based on human poses estimated from input videos. In the second stage, the predicted sequences are fed into a temporal network for emotion interpretation and psychiatric symptom prediction. We first validate the accuracy and transferability of the proposed body language recognition method on several public action recognition datasets. We then evaluate the framework on a proposed URMC dataset, which consists of conversations between a standardized patient and a behavioral health professional, along with expert annotations of body language, emotions, and potential psychiatric symptoms. The proposed framework outperforms other methods on the URMC dataset.

Learning Emotional Blinded Face Representations

Alejandro Peña Almansa, Julian Fierrez, Agata Lapedriza, Aythami Morales

Responsive image

Auto-TLDR; Blind Face Representations for Emotion Recognition

Slides Poster Similar

This work proposes two new face representations that are blind to the expressions associated to emotional responses. This work is in part motivated by new international regulations for personal data protection, which force data controllers to protect any kind of sensitive information involved in automatic processes. The advances in affective computing have contributed to improve human-machine interfaces, but at the same time, the capacity to monitorize emotional responses trigger potential risks for humans, both in terms of fairness and privacy. We propose two different methods to learn these facial expression blinded features. We show that it is possible to eliminate information related to emotion recognition tasks, while the performance of subject verification, gender recognition, and ethnicity classification are just slightly affected. We also present an application to train fairer classifiers over a protected facial expression attribute. The results demonstrate that it is possible to reduce emotional information in the face representation while retaining competitive performance in other face-based artificial intelligence tasks.

Magnifying Spontaneous Facial Micro Expressions for Improved Recognition

Pratikshya Sharma, Sonya Coleman, Pratheepan Yogarajah, Laurence Taggart, Pradeepa Samarasinghe

Responsive image

Auto-TLDR; Eulerian Video Magnification for Micro Expression Recognition

Slides Poster Similar

Building an effective automatic micro expression recognition (MER) system is becoming increasingly desirable in computer vision applications. However, it is also very challenging given the fine-grained nature of the expressions to be recognized. Hence, we investigate if amplifying micro facial muscle movements as a pre-processing phase, by employing Eulerian Video Magnification (EVM), can boost performance of Local Phase Quantization with Three Orthogonal Planes (LPQ-TOP) to achieve improved facial MER across various datasets. In addition, we examine the rate of increase for recognition to determine if it is uniform across datasets using EVM. Ultimately, we classify the extracted features using Support Vector Machines (SVM). We evaluate and compare the performance with various methods on seven different datasets namely CASME, CAS(ME)2, CASME2, SMIC-HS, SMIC-VIS, SMIC-NIR and SAMM. The results obtained demonstrate that EVM can enhance LPQ-TOP to achieve improved recognition accuracy on the majority of the datasets.

Unconstrained Facial Expression Recogniton Based on Cascade Decision and Gabor Filters

Yanhong Wu, Lijie Zhang, Guannan Chen, Pablo Navarrete Michelini

Responsive image

Auto-TLDR; Convolutional Neural Network for Facial Expression Recognition under unconstrained natural conditions

Slides Similar

Facial Expression Recognition (FER) research with Convolutional Neural Networks (CNN) has been active, especially under unconstrained natural conditions. From our observation, prior arts treat expressions equally in classification and the reconition accuracy of some expression are always higher than others. In this paper, we make the assumption that an expression with a higher accuracy is easier to be recognized, and those expressions easier to recognize will hinder the recognition of uneasy expressions. Then, we propose a novel algorithm for unconstrained FER based on cascade decision and Gabor filters. Easier expressions are recognized before the difficult expressions. This simple method trains up to five models to cascadedly recognize a given facial image expression. The first binary classifier model is for the classification of Happy with the highest accuracy. The second binary classifier model is for the classification of Surprise with the second high accuracy. The third binary classifier model is for the classification of Neutral with the third high accuracy. The forth model is for the classification of Sad with the forth high accuracy. And the final model is 3-class classifier for Angry, Disgust and Fear. Gabor filters are included in every model to enhance robustness on illumination variations and face poses. Extensive experiment results on several datasets validate the effectiveness of the proposed method. We obtain accuracy of 77.6% on FER2013 with the final models, outperforming the latest state-of-the-arts.

End-To-End Triplet Loss Based Emotion Embedding System for Speech Emotion Recognition

Puneet Kumar, Sidharth Jain, Balasubramanian Raman, Partha Pratim Roy, Masakazu Iwamura

Responsive image

Auto-TLDR; End-to-End Neural Embedding System for Speech Emotion Recognition

Slides Poster Similar

In this paper, an end-to-end neural embedding system based on triplet loss and residual learning has been proposed for speech emotion recognition. The proposed system learns the embeddings from the emotional information of the speech utterances. The learned embeddings are used to recognize the emotions portrayed by given speech samples of various lengths. The proposed system implements Residual Neural Network architecture. It is trained using softmax pre-training and triplet loss function. The weights between the fully connected and embedding layers of the trained network are used to calculate the embedding values. The embedding representations of various emotions are mapped onto a hyperplane, and the angles among them are computed using the cosine similarity. These angles are utilized to classify a new speech sample into its appropriate emotion class. The proposed system has demonstrated 91.67\% and 64.44\% accuracy while recognizing emotions for RAVDESS and IEMOCAP dataset, respectively.

Self-Supervised Learning of Dynamic Representations for Static Images

Siyang Song, Enrique Sanchez, Linlin Shen, Michel Valstar

Responsive image

Auto-TLDR; Facial Action Unit Intensity Estimation and Affect Estimation from Still Images with Multiple Temporal Scale

Slides Poster Similar

Facial actions are spatio-temporal signals by nature, and therefore their modeling is crucially dependent on the availability of temporal information. In this paper, we focus on inferring such temporal dynamics of facial actions when no explicit temporal information is available, i.e. from still images. We present a novel approach to capture multiple scales of such temporal dynamics, with an application to facial Action Unit (AU) intensity estimation and dimensional affect estimation. In particular, 1) we propose a framework that infers a dynamic representation (DR) from a still image, which captures the bi-directional flow of time within a short time-window centered at the input image; 2) we show that we can train our method without the need of explicitly generating target representations, allowing the network to represent dynamics more broadly; and 3) we propose to apply a multiple temporal scale approach that infers DRs for different window lengths (MDR) from a still image. We empirically validate the value of our approach on the task of frame ranking, and show how our proposed MDR attains state of the art results on BP4D for AU intensity estimation and on SEMAINE for dimensional affect estimation, using only still images at test time.

MRP-Net: A Light Multiple Region Perception Neural Network for Multi-Label AU Detection

Yang Tang, Shuang Chen, Honggang Zhang, Gang Wang, Rui Yang

Responsive image

Auto-TLDR; MRP-Net: A Fast and Light Neural Network for Facial Action Unit Detection

Slides Poster Similar

Facial Action Units (AUs) are of great significance in communication. Automatic AU detection can improve the understanding of psychological condition and emotional status. Recently, a number of deep learning methods have been proposed to take charge with problems in automatic AU detection. Several challenges, like unbalanced labels and ignorance of local information, remain to be addressed. In this paper, we propose a fast and light neural network called MRP-Net, which is an end-to-end trainable method for facial AU detection to solve these problems. First, we design a Multiple Region Perception (MRP) module aimed at capturing different locations and sizes of features in the deeper level of the network without facial landmark points. Then, in order to balance the positive and negative samples in the large dataset, a batch balanced method adjusting the weight of every sample in one batch in our loss function is suggested. Experimental results on two popular AU datasets, BP4D and DISFA prove that MRP-Net outperforms state-of-the-art methods. Compared with the best method, not only does MRP-Net have an average F1 score improvement of 2.95% on BP4D and 5.43% on DISFA, and it also decreases the number of network parameters by 54.62% and the number of network FLOPs by 19.6%.

Siamese-Structure Deep Neural Network Recognizing Changes in Facial Expression According to the Degree of Smiling

Kazuaki Kondo, Taichi Nakamura, Yuichi Nakamura, Shin'Ichi Satoh

Responsive image

Auto-TLDR; A Siamese-Structure Deep Neural Network for Happiness Recognition

Slides Poster Similar

A smile is a representative expression of happiness or high quality-of-life; however, automatic recognition of a smile according to happiness remains a challenging task. Because expressions of happiness are strongly dependent upon physical condition and occurrence of other emotions, and similar facial expression often occur under different emotions, we consider that there is no absolute visual pattern of a smile corresponding to happiness. Therefore, in this study, we assumed that a ``smile with happiness'' is observed as the temporal ascent in the degree of smiling and attempted to recognize this by capturing changes in facial expression within temporally sequential images. As an implementation of this scheme, we proposed a Siamese-structure deep neural network to compare facial expressions in two input images and estimate the existence of smile ascension or descension. For primal analysis of the proposed network, we developed a unique smiling dataset containing image pairs with various changes in smiling degree, including slight changes. The results demonstrated that the proposed method achieved nearly perfect recognition with >0.95 accuracy when recognizing changes in the degree of smiling that humans certainly recognize. Attention regions that contributed to the predicted labels were concentrated on the mouth, cheeks, and tail of the eyes, which indicates a reasonable function for recognizing changes in smiling degree was constructed by the proposed method.

Facial Expression Recognition by Using a Disentangled Identity-Invariant Expression Representation

Kamran Ali, Charles Hughes

Responsive image

Auto-TLDR; Transfer-based Expression Recognition Generative Adversarial Network (TER-GAN)

Slides Poster Similar

Facial Expression Recognition (FER) is a challenging task because many factors of variation such as pose, illumination, and identity-specific attributes are entangled with the expression information in an expressive face image. Recent works show that the performance of a FER algorithm can be improved by disentangling the expression information from identity features. In this paper, we present Transfer-based Expression Recognition Generative Adversarial Network (TER-GAN) that combines the effectiveness of a novel feature disentanglement technique with the concept of identity-invariant expression representation learning for facial expression recognition. More specifically, TER-GAN learns a disentangled expression representation by extracting expression features from one image and transferring the expression information to the identity of another image. To improve the feature disentanglement process, and to learn an identity-invariant expression representation, we introduce a novel expression consistency loss and an identity consistency loss that exploit expression and identity information from both real and synthetic images. We evaluated the performance of our proposed facial expression recognition technique by employing five public facial expression databases, CK+, Oulu-CASIA, MMI, BU-3DFE, and BU-4DFE, the latter being used for pre-training. The experimental results show the effectiveness of the proposed technique.

Automatic Estimation of Self-Reported Pain by Interpretable Representations of Motion Dynamics

Benjamin Szczapa, Mohammed Daoudi, Stefano Berretti, Pietro Pala, Zakia Hammal, Alberto Del Bimbo

Responsive image

Auto-TLDR; Automatic Pain Intensity Measurement from Facial Points Using Gram Matrices

Slides Poster Similar

We propose an automatic method for pain intensity measurement from video. For each video, pain intensity was measured using the dynamics of facial movement using 66 facial points. Gram matrices formulation was used for facial points trajectory representations on the Riemannian manifold of symmetric positive semi-definite matrices of fixed rank. Curve fitting and temporal alignment were then used to smooth the extracted trajectories. A SVR regression model was then trained to encode the extracted trajectories into ten pain intensity scores consistent with the Visual Analogue Scale for pain intensity measurement. The proposed approach was evaluated using the UNBC McMaster Shoulder Pain Expression database and compared to the state of the art on the same data. Using both 5-folds cross-validation and leave-one-subject-out cross-validation, our results are competitive with respect to state of the art methods.

Quality-Based Representation for Unconstrained Face Recognition

Nelson Méndez-Llanes, Katy Castillo-Rosado, Heydi Mendez-Vazquez, Massimo Tistarelli

Responsive image

Auto-TLDR; activation map for face recognition in unconstrained environments

Slides Similar

Significant advances have been achieved in face recognition in the last decade thanks to the development of deep learning methods. However, recognizing faces captured in uncontrolled environments is still a challenging problem for the scientific community. In these scenarios, the performance of most of existing deep learning based methods abruptly falls, due to the bad quality of the face images. In this work, we propose to use an activation map to represent the quality information in a face image. Different face regions are analyzed to determine their quality and then only those regions with good quality are used to perform the recognition using a given deep face model. For experimental evaluation, in order to simulate unconstrained environments, three challenging databases, with different variations in appearance, were selected: the Labeled Faces in the Wild Database, the Celebrities in Frontal-Profile in the Wild Database, and the AR Database. Three deep face models were used to evaluate the proposal on these databases and in all cases, the use of the proposed activation map allows the improvement of the recognition rates obtained by the original models in a range from 0.3 up to 31%. The obtained results experimentally demonstrated that the proposal is able to select those face areas with higher discriminative power and enough identifying information, while ignores the ones with spurious information.

Recognizing American Sign Language Nonmanual Signal Grammar Errors in Continuous Videos

Elahe Vahdani, Longlong Jing, Ying-Li Tian, Matt Huenerfauth

Responsive image

Auto-TLDR; ASL-HW-RGBD: Recognizing Grammatical Errors in Continuous Sign Language

Slides Poster Similar

As part of the development of an educational tool that can help students achieve fluency in American Sign Language (ASL) through independent and interactive practice with immediate feedback, this paper introduces a near real-time system to recognize grammatical errors in continuous signing videos without necessarily identifying the entire sequence of signs. Our system automatically recognizes if a performance of ASL sentences contains grammatical errors made by ASL students. We first recognize the ASL grammatical elements including both manual gestures and nonmanual signals independently from multiple modalities (i.e. hand gestures, facial expressions, and head movements) by 3D-ResNet networks. Then the temporal boundaries of grammatical elements from different modalities are examined to detect ASL grammatical mistakes by using a sliding window-based approach. We have collected a dataset of continuous sign language, ASL-HW-RGBD, covering different aspects of ASL grammars for training and testing. Our system is able to recognize grammatical elements on ASL-HW-RGBD from manual gestures, facial expressions, and head movements and successfully detect 8 ASL grammatical mistakes.

Responsive Social Smile: A Machine-Learning Based Multimodal Behavior Assessment Framework towards Early Stage Autism Screening

Yueran Pan, Kunjing Cai, Ming Cheng, Xiaobing Zou, Ming Li

Responsive image

Auto-TLDR; Responsive Social Smile: A Machine Learningbased Assessment Framework for Early ASD Screening

Poster Similar

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which causes social deficits in social lives. Early ASD screening for children is an important method to reduce the impact of ASD on people’s whole lives. Traditional screening methods rely on protocol experiments and subjective evaluations from clinicians and domain experts and thereby cost a lot. To standardize the process of ASD screening, we 1 collaborate with a group of ASD experts, and design a ”Responsive Social Smile” protocol and an experiment environment. Also, we propose a machine learningbased assessment framework for early ASD screening. By integrating technologies of speech recognition and computer vision, the framework can quantitatively analyze the behaviors of children under well-designed protocols. By collecting 196 test samples from 41 children in the clinical treatments, our proposed method obtains 85.20% accuracy for the score prediction of individual protocol, and 80.49% unweighted accuracy for the final ASD prediction. This result indicates that our model reaches the average level of domain experts in ASD diagnosis.

Teacher-Student Training and Triplet Loss for Facial Expression Recognition under Occlusion

Mariana-Iuliana Georgescu, Radu Ionescu

Responsive image

Auto-TLDR; Knowledge Distillation for Facial Expression Recognition under Occlusion

Slides Similar

In this paper, we study the task of facial expression recognition under strong occlusion. We are particularly interested in cases where 50% of the face is occluded, e.g. when the subject wears a Virtual Reality (VR) headset. While previous studies show that pre-training convolutional neural networks (CNNs) on fully-visible (non-occluded) faces improves the accuracy, we propose to employ knowledge distillation to achieve further improvements. First of all, we employ the classic teacher-student training strategy, in which the teacher is a CNN trained on fully-visible faces and the student is a CNN trained on occluded faces. Second of all, we propose a new approach for knowledge distillation based on triplet loss. During training, the goal is to reduce the distance between an anchor embedding, produced by a student CNN that takes occluded faces as input, and a positive embedding (from the same class as the anchor), produced by a teacher CNN trained on fully-visible faces, so that it becomes smaller than the distance between the anchor and a negative embedding (from a different class than the anchor), produced by the student CNN. Third of all, we propose to combine the distilled embeddings obtained through the classic teacher-student strategy and our novel teacher-student strategy based on triplet loss into a single embedding vector. We conduct experiments on two benchmarks, FER+ and AffectNet, with two CNN architectures, VGG-f and VGG-face, showing that knowledge distillation can bring significant improvements over the state-of-the-art methods designed for occluded faces in the VR setting. Furthermore, we obtain accuracy rates that are quite close to the state-of-the-art models that take as input fully-visible faces. For example, on the FER+ data set, our VGG-face based on concatenated distilled embeddings attains an accuracy rate of 82.75% on lower-half-visible faces, which is only 2.24% below the accuracy rate of a state-of-the-art VGG-13 that is evaluated on fully-visible faces. Given that our model sees only the lower-half of the face, we consider this to be a remarkable achievement. In conclusion, we consider that our distilled CNN models can provide useful feedback for the task of recognizing the facial expressions of a person wearing a VR headset.

Attribute-Based Quality Assessment for Demographic Estimation in Face Videos

Fabiola Becerra-Riera, Annette Morales-González, Heydi Mendez-Vazquez, Jean-Luc Dugelay

Responsive image

Auto-TLDR; Facial Demographic Estimation in Video Scenarios Using Quality Assessment

Slides Similar

Most existing works regarding facial demographic estimation are focused on still image datasets, although nowadays the need to analyze video content in real applications is increasing. We propose to tackle gender, age and ethnicity estimation in the context of video scenarios. Our main contribution is to use an attribute-specific quality assessment procedure to select best quality frames from a video sequence for each of the three demographic modalities. Best quality frames are classified with fine-tuned MobileNet models and a final video prediction is obtained with a majority voting strategy among the best selected frames. Our validation on three different datasets and our comparison with state-of-the-art models, show the effectiveness of the proposed demographic classifiers and the quality pipeline, which allows to reduce both: the number of frames to be classified and the processing time in practical applications; and improves the soft biometrics prediction accuracy.

Detecting Manipulated Facial Videos: A Time Series Solution

Zhang Zhewei, Ma Can, Gao Meilin, Ding Bowen

Responsive image

Auto-TLDR; Face-Alignment Based Bi-LSTM for Fake Video Detection

Slides Poster Similar

We propose a new method to expose fake videos based on a time series solution. The method is based on bidirectional long short-term memory (Bi-LSTM) backbone architecture with two different types of features: {Face-Alignment} and {Dense-Face-Alignment}, in which both of them are physiological signals that can be distinguished between fake and original videos. We choose 68 landmark points as the feature of {Face-Alignment} and Pose Adaptive Feature (PAF) for {Dense-Face-Alignment}. Based on these two facial features, we designed two deep networks. In addition, we optimize our network by adding an attention mechanism that improves detection precision. Our method is tested over benchmarks of Face Forensics/Face Forensics++ dataset and show a promising performance on inference speed while maintaining accuracy with state-of art solutions that deal against DeepFake.

Learning Visual Voice Activity Detection with an Automatically Annotated Dataset

Stéphane Lathuiliere, Pablo Mesejo, Radu Horaud

Responsive image

Auto-TLDR; Deep Visual Voice Activity Detection with Optical Flow

Slides Similar

Visual voice activity detection (V-VAD) uses visual features to predict whether a person is speaking or not. V-VAD is useful whenever audio VAD (A-VAD) is inefficient either because the acoustic signal is difficult to analyze or is simply missing. We propose two deep architectures for V-VAD, one based on facial landmarks and one based on optical flow. Moreover, available datasets, used for learning and for testing V-VAD, lack content variability. We introduce a novel methodology to automatically create and annotate very large datasets in-the-wild, based on combining A-VAD and face detection. A thorough empirical evaluation shows the advantage of training the proposed deep V-VAD models with such a dataset.

A Neural Lip-Sync Framework for Synthesizing Photorealistic Virtual News Anchors

Ruobing Zheng, Zhou Zhu, Bo Song, Ji Changjiang

Responsive image

Auto-TLDR; Lip-sync: Synthesis of a Virtual News Anchor for Low-Delayed Applications

Slides Poster Similar

Lip sync has emerged as a promising technique to generate mouth movements from audio signals. However, synthesizing a high-resolution and photorealistic virtual news anchor with current methods is still challenging. The lack of natural appearance, visual consistency, and processing efficiency is the main issue. In this paper, we present a novel lip-sync framework specially designed for producing a virtual news anchor for a target person. A pair of Temporal Convolutional Networks are used to learn the seq-to-seq mapping from audio signals to mouth movements, followed by a neural rendering model that translates the intermediate face representation to the high-quality appearance. This fully-trainable framework avoids several time-consuming steps in traditional graphics-based methods, meeting the requirements of many low-delay applications. Experiments show that our method has advantages over modern neural-based methods in both visual appearance and processing efficiency.

Sequential Non-Rigid Factorisation for Head Pose Estimation

Stefania Cristina, Kenneth Patrick Camilleri

Responsive image

Auto-TLDR; Sequential Shape-and-Motion Factorisation for Head Pose Estimation in Eye-Gaze Tracking

Slides Poster Similar

Within the context of eye-gaze tracking, the capability of permitting the user to move naturally is an important step towards allowing for more natural user interaction in less constrained scenarios. Natural movement can be characterised by changes in head pose, as well as non-rigid face deformations as the user performs different facial expressions. While the estimation of head pose within the domain of eye-gaze tracking is being increasingly considered, the face is most often regarded as a rigid body. The few methods that factor the challenge of handling face deformations into the head pose estimation problem, often require the availability of a pre-defined face model or a considerable amount of training data. In this paper, we direct our attention towards the application of shape-and-motion factorisation for head pose estimation, since this does not generally rely on the availability of an initial face model. Over the years, various shape-and-motion factorisation methods have been proposed to address the challenges of rigid and non-rigid shape and motion recovery, in a batch or sequential manner. However, the real-time recovery of non-rigid shape and motion by factorisation remains, in general, an open problem. Our work addresses this open problem by proposing a sequential factorisation method for non-rigid shape and motion recovery, which does not rely on the availability of a pre-defined face deformation model or training data. Quantitative and qualitative results show that our method can handle various non-rigid face deformations without deterioration of the head pose estimation accuracy.

GazeMAE: General Representations of Eye Movements Using a Micro-Macro Autoencoder

Louise Gillian C. Bautista, Prospero Naval

Responsive image

Auto-TLDR; Fast and Slow Eye Movement Representations for Sentiment-agnostic Eye Tracking

Slides Poster Similar

Eye movements are intricate and dynamic events that contain a wealth of information about the subject and the stimuli. We propose an abstract representation of eye movements that preserve the important nuances in gaze behavior while being stimuli-agnostic. We consider eye movements as raw position and velocity signals and train a deep temporal convolutional autoencoder to learn micro-scale and macro-scale representations corresponding to the fast and slow features of eye movements. These joint representations are evaluated by fitting a linear classifier on various tasks and outperform other works in biometrics and stimuli classification. Further experiments highlight the validity and generalizability of this method, bringing eye tracking research closer to real-world applications.

Three-Dimensional Lip Motion Network for Text-Independent Speaker Recognition

Jianrong Wang, Tong Wu, Shanyu Wang, Mei Yu, Qiang Fang, Ju Zhang, Li Liu

Responsive image

Auto-TLDR; Lip Motion Network for Text-Independent and Text-Dependent Speaker Recognition

Slides Poster Similar

Lip motion reflects behavior characteristics of speakers, and thus can be used as a new kind of biometrics in speaker recognition. In the literature, lots of works used two dimensional (2D) lip images to recognize speaker in a text-dependent context. However, 2D lip easily suffers from face orientations. To this end, in this work, we present a novel end-to-end 3D lip motion Network (3LMNet) by utilizing the sentence-level 3D lip motion (S3DLM) to recognize speakers in both the text-independent and text-dependent contexts. A novel regional feedback module (RFM) is proposed to explore attentions in different lip regions. Besides, prior knowledge of lip motion is investigated to complement RFM, where landmark-level and frame-level features are merged to form a better feature representation. Moreover, we present two methods, i.e., coordinate transformation and face posture correction to pre-process the LSD-AV dataset, which contains 68 speakers and 146 sentences per speaker. The evaluation results on this dataset demonstrate that our proposed 3LMNet is superior to the baseline models, i.e., LSTM, VGG-16 and ResNet-34, and outperforms the state-of-the-art using 2D lip image as well as the 3D face. The code of this work is released at https://github.com/wutong18/Three-Dimensional-Lip-Motion-Ne twork-for-Text-Independent-Speaker-Recognition.

Audio-Video Detection of the Active Speaker in Meetings

Francisco Madrigal, Frederic Lerasle, Lionel Pibre, Isabelle Ferrané

Responsive image

Auto-TLDR; Active Speaker Detection with Visual and Contextual Information from Meeting Context

Slides Poster Similar

Meetings are a common activity that provides certain challenges when creating systems that assist them. Such is the case of the Active speaker detection, which can provide useful information for human interaction modeling, or human-robot interaction. Active speaker detection is mostly done using speech, however, certain visual and contextual information can provide additional insights. In this paper we propose an active speaker detection framework that integrates audiovisual features with social information, from the meeting context. Visual cue is processed using a Convolutional Neural Network (CNN) that captures the spatio-temporal relationships. We analyze several CNN architectures with both cues: raw pixels (RGB images) and motion (estimated with optical flow). Contextual reasoning is done with an original methodology, based on the gaze of all participants. We evaluate our proposal with a public \textcolor{black}{benchmark} in state-of-art: AMI corpus. We show how the addition of visual and context information improves the performance of the active speaker detection.

Video Face Manipulation Detection through Ensemble of CNNs

Nicolo Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, Stefano Tubaro

Responsive image

Auto-TLDR; Face Manipulation Detection in Video Sequences Using Convolutional Neural Networks

Slides Similar

In the last few years, several techniques for facial manipulation in videos have been successfully developed and made available to the masses (i.e., FaceSwap, deepfake, etc.). These methods enable anyone to easily edit faces in video sequences with incredibly realistic results and a very little effort. Despite the usefulness of these tools in many fields, if used maliciously, they can have a significantly bad impact on society (e.g., fake news spreading, cyber bullying through fake revenge porn). The ability of objectively detecting whether a face has been manipulated in a video sequence is then a task of utmost importance. In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial manipulation techniques. In particular, we study the ensembling of different trained Convolutional Neural Network (CNN) models. In the proposed solution, different models are obtained starting from a base network (i.e., EfficientNetB4) making use of two different concepts: (i) attention layers; (ii) siamese training. We show that combining these networks leads to promising face manipulation detection results on two publicly available datasets with more than 119000 videos.

AttendAffectNet: Self-Attention Based Networks for Predicting Affective Responses from Movies

Thi Phuong Thao Ha, Bt Balamurali, Herremans Dorien, Roig Gemma

Responsive image

Auto-TLDR; AttendAffectNet: A Self-Attention Based Network for Emotion Prediction from Movies

Slides Poster Similar

In this work, we propose different variants of the self-attention based network for emotion prediction from movies, which we call AttendAffectNet. We take both audio and video into account and incorporate the relation among multiple modalities by applying self-attention mechanism in a novel manner into the extracted features for emotion prediction. We compare it to the typically temporal integration of the self-attention based model, which in our case, allows to capture the relation of temporal representations of the movie while considering the sequential dependencies of emotion responses. We demonstrate the effectiveness of our proposed architectures on the extended COGNIMUSE dataset [1], [2] and the MediaEval 2016 Emotional Impact of Movies Task [3], which consist of movies with emotion annotations. Our results show that applying the self-attention mechanism on the different audio-visual features, rather than in the time domain, is more effective for emotion prediction. Our approach is also proven to outperform state-of-the-art models for emotion prediction.

Spatial Bias in Vision-Based Voice Activity Detection

Kalin Stefanov, Mohammad Adiban, Giampiero Salvi

Responsive image

Auto-TLDR; Spatial Bias in Vision-based Voice Activity Detection in Multiparty Human-Human Interactions

Poster Similar

We present models for automatic vision-based voice activity detection (VAD) in multiparty human-human interactions that are aimed at complementing the acoustic VAD methods. We provide evidence that this type of vision-based VAD models are susceptible to spatial bias in the datasets. The physical settings of the interaction, usually constant throughout data acquisition, determines the distribution of head poses of the participants. Our results show that when the head pose distributions are significantly different in the training and test sets, the performance of the models drops significantly. This suggests that previously reported results on datasets with a fixed physical configuration may overestimate the generalization capabilities of this type of models. We also propose a number of possible remedies to the spatial bias, including data augmentation, input masking and dynamic features, and provide an in-depth analysis of the visual cues used by our models.

Hybrid Approach for 3D Head Reconstruction: Using Neural Networks and Visual Geometry

Oussema Bouafif, Bogdan Khomutenko, Mohammed Daoudi

Responsive image

Auto-TLDR; Recovering 3D Head Geometry from a Single Image using Deep Learning and Geometric Techniques

Slides Poster Similar

Recovering the 3D geometric structure of a face from a single input image is a challenging active research area in computer vision. In this paper, we present a novel method for reconstructing 3D heads from a single or multiple image(s) using a hybrid approach based on deep learning and geometric techniques. We propose an encoder-decoder network based on the U-net architecture and trained on synthetic data only. It predicts both pixel-wise normal vectors and landmarks maps from a single input photo. Landmarks are used for the pose computation and the initialization of the optimization problem, which, in turn, reconstructs the 3D head geometry by using a parametric morphable model and normal vector fields. State-of-the-art results are achieved through qualitative and quantitative evaluation tests on both single and multi-view settings. Despite the fact that the model was trained only on synthetic data, it successfully recovers 3D geometry and precise poses for real-world images.

The Application of Capsule Neural Network Based CNN for Speech Emotion Recognition

Xincheng Wen, Kunhong Liu

Responsive image

Auto-TLDR; CapCNN: A Capsule Neural Network for Speech Emotion Recognition

Slides Poster Similar

Moreover, the abstraction of audio features makes it impossible to fully use the inherent relationship among audio features. This paper proposes a model that combines a convolutional neural network(CNN) and a capsule neural network (CapsNet), named as CapCNN. The advantage of CapCNN lies in that it provides a solution to solve time sensitivity and focus on the overall characteristics. In this study, it is found that CapCNN can well handle the speech emotion recognition task. Compared with other state-of-art methods, our algorithm shows high performances on the CASIA and EMODB datasets. The detailed analysis confirms that our method provides balanced results on the various classes.

Relevance Detection in Cataract Surgery Videos by Spatio-Temporal Action Localization

Negin Ghamsarian, Mario Taschwer, Doris Putzgruber, Stephanie. Sarny, Klaus Schoeffmann

Responsive image

Auto-TLDR; relevance-based retrieval in cataract surgery videos

Slides Similar

In cataract surgery, the operation is performed with the help of a microscope. Since the microscope enables watching real-time surgery by up to two people only, a major part of surgical training is conducted using the recorded videos. To optimize the training procedure with the video content, the surgeons require an automatic relevance detection approach. In addition to relevance-based retrieval, these results can be further used for skill assessment and irregularity detection in cataract surgery videos. In this paper, a three-module framework is proposed to detect and classify the relevant phase segments in cataract videos. Taking advantage of an idle frame recognition network, the video is divided into idle and action segments. To boost the performance in relevance detection Mask R-CNN is utilized to detect the cornea in each frame where the relevant surgical actions are conducted. The spatio-temporal localized segments containing higher-resolution information about the pupil texture and actions, and complementary temporal information from the same phase are fed into the relevance detection module. This module consists of four parallel recurrent CNNs being responsible to detect four relevant phases that have been defined with medical experts. The results will then be integrated to classify the action phases as irrelevant or one of four relevant phases. Experimental results reveal that the proposed approach outperforms static CNNs and different configurations of feature-based and end-to-end recurrent networks.

3D Facial Matching by Spiral Convolutional Metric Learning and a Biometric Fusion-Net of Demographic Properties

Soha Sadat Mahdi, Nele Nauwelaers, Philip Joris, Giorgos Bouritsas, Imperial London, Sergiy Bokhnyak, Susan Walsh, Mark Shriver, Michael Bronstein, Peter Claes

Responsive image

Auto-TLDR; Multi-biometric Fusion for Biometric Verification using 3D Facial Mesures

Slides Similar

Face recognition is a widely accepted biometric verification tool, as the face contains a lot of information about the identity of a person. In this study, a 2-step neural-based pipeline is presented for matching 3D facial shape to multiple DNA-related properties (sex, age, BMI and genomic background). The first step consists of a triplet loss-based metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. Most studies in the field of metric learning have only focused on Euclidean data. In this work, geometric deep learning is employed to learn directly from 3D facial meshes. To this end, spiral convolutions are used along with a novel mesh-sampling scheme that retains uniformly sampled 3D points at different levels of resolution. The second step is a multi-biometric fusion by a fully connected neural network. The network takes an ensemble of embeddings and property labels as input and returns genuine and imposter scores. Since embeddings are accepted as an input, there is no need to train classifiers for the different properties and available data can be used more efficiently. Results obtained by a 10-fold cross-validation for biometric verification show that combining multiple properties leads to stronger biometric systems. Furthermore, the proposed neural-based pipeline outperforms a linear baseline, which consists of principal component analysis, followed by classification with linear support vector machines and a Naïve Bayes-based score-fuser.

A Quantitative Evaluation Framework of Video De-Identification Methods

Sathya Bursic, Alessandro D'Amelio, Marco Granato, Giuliano Grossi, Raffaella Lanzarotti

Responsive image

Auto-TLDR; Face de-identification using photo-reality and facial expressions

Slides Poster Similar

We live in an era of privacy concerns, motivating a large research effort in face de-identification. As in other fields, we are observing a general movement from hand-crafted methods to deep learning methods, mainly involving generative models. Although these methods produce more natural de-identified images or videos, we claim that the mere evaluation of the de-identification is not sufficient, especially when it comes to processing the images/videos further. In this note, we take into account the issue of preserving privacy, facial expressions, and photo-reality simultaneously, proposing a general testing framework. The method is applied to four open-source tools, producing a baseline for future de-identification methods.

ESResNet: Environmental Sound Classification Based on Visual Domain Models

Andrey Guzhov, Federico Raue, Jörn Hees, Andreas Dengel

Responsive image

Auto-TLDR; Environmental Sound Classification with Short-Time Fourier Transform Spectrograms

Slides Poster Similar

Environmental Sound Classification (ESC) is an active research area in the audio domain and has seen a lot of progress in the past years. However, many of the existing approaches achieve high accuracy by relying on domain-specific features and architectures, making it harder to benefit from advances in other fields (e.g., the image domain). Additionally, some of the past successes have been attributed to a discrepancy of how results are evaluated (i.e., on unofficial splits of the UrbanSound8K (US8K) dataset), distorting the overall progression of the field. The contribution of this paper is twofold. First, we present a model that is inherently compatible with mono and stereo sound inputs. Our model is based on simple log-power Short-Time Fourier Transform (STFT) spectrograms and combines them with several well-known approaches from the image domain (i.e., ResNet, Siamese-like networks and attention). We investigate the influence of cross-domain pre-training, architectural changes, and evaluate our model on standard datasets. We find that our model out-performs all previously known approaches in a fair comparison by achieving accuracies of 97.0 % (ESC-10), 91.5 % (ESC-50) and 84.2 % / 85.4 % (US8K mono / stereo). Second, we provide a comprehensive overview of the actual state of the field, by differentiating several previously reported results on the US8K dataset between official or unofficial splits. For better reproducibility, our code (including any re-implementations) is made available.

Exploiting the Logits: Joint Sign Language Recognition and Spell-Correction

Christina Runkel, Stefan Dorenkamp, Hartmut Bauermeister, Michael Möller

Responsive image

Auto-TLDR; A Convolutional Neural Network for Spell-correction in Sign Language Videos

Slides Poster Similar

Machine learning techniques have excelled in the automatic semantic analysis of images, reaching human-level performances on challenging bechmarks. Yet, the semantic analysis of videos remains challenging due to the significantly higher dimensionality of the input data, respectively, the significantly higher need for annotated training examples. By studying the automatic recognition of German sign language videos, we demonstrate that on the relatively scarce training data of 2.800 videos, modern deep learning architectures for video analysis (such as ResNeXt) along with transfer learning on large gesture recognition tasks, can achieve about 75% character accuracy. Considering that this leaves us with a probability of under 25% that a five letter word is spelled correctly, spell-correction systems are crucial for producing readable outputs. The contribution of this paper is to propose a convolutional neural network for spell-correction that expects the softmax outputs of the character recognition network (instead of a misspelled word) as an input. We demonstrate that purely learning on softmax inputs in combination with scarce training data yields overfitting as the network learns the inputs by heart. In contrast, training the network on several variants of the logits of the classification output i.e. scaling by a constant factor, adding of random noise, mixing of softmax and hardmax inputs or purely training on hardmax inputs, leads to better generalization while benefitting from the significant information hidden in these outputs (that have 98% top-5 accuracy), yielding a readable text despite the comparably low character accuracy.

Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition

Mirco Planamente, Andrea Bottino, Barbara Caputo

Responsive image

Auto-TLDR; A Single Stream Architecture for Egocentric Action Recognition from the First-Person Point of View

Slides Poster Similar

Wearable cameras are becoming more and more popular in several applications, increasing the interest of the research community in developing approaches for recognizing actions from the first-person point of view. An open challenge in egocentric action recognition is that videos lack detailed information about the main actor's pose and thus tend to record only parts of the movement when focusing on manipulation tasks. Thus, the amount of information about the action itself is limited, making crucial the understanding of the manipulated objects and their context. Many previous works addressed this issue with two-stream architectures, where one stream is dedicated to modeling the appearance of objects involved in the action, and another to extracting motion features from optical flow. In this paper, we argue that learning features jointly from these two information channels is beneficial to capture the spatio-temporal correlations between the two better. To this end, we propose a single stream architecture able to do so, thanks to the addition of a self-supervised block that uses a pretext motion prediction task to intertwine motion and appearance knowledge. Experiments on several publicly available databases show the power of our approach.

Late Fusion of Bayesian and Convolutional Models for Action Recognition

Camille Maurice, Francisco Madrigal, Frederic Lerasle

Responsive image

Auto-TLDR; Fusion of Deep Neural Network and Bayesian-based Approach for Temporal Action Recognition

Slides Poster Similar

The activities we do in our daily-life are generally carried out as a succession of atomic actions, following a logical order. During a video sequence, actions usually follow a logical order. In this paper, we propose a hybrid approach resulting from the fusion of a deep learning neural network with a Bayesian-based approach. The latter models human-object interactions and transition between actions. The key idea is to combine both approaches in the final prediction. We validate our strategy in two public datasets: CAD-120 and Watch-n-Patch. We show that our fusion approach yields performance gains in accuracy of respectively +4\% and +6\% over a baseline approach. Temporal action recognition performances are clearly improved by the fusion, especially when classes are imbalanced.

MEG: Multi-Evidence GNN for Multimodal Semantic Forensics

Ekraam Sabir, Ayush Jaiswal, Wael Abdalmageed, Prem Natarajan

Responsive image

Auto-TLDR; Scalable Image Repurposing Detection with Graph Neural Network Based Model

Slides Poster Similar

Image repurposing is a category of fake news where a digitally unmanipulated image is misrepresented by means of its accompanying metadata such as captions, location, etc., where the image and accompanying metadata together comprise a multimedia package. The problem setup is to authenticate a query multimedia package using a reference dataset of potentially related packages as evidences. Existing methods are limited to using a single evidence (retrieved package), which ignores potential performance improvement from the use of multiple evidences. In this work, we introduce a novel graph neural network based model for image repurposing detection, which effectively utilizes multiple retrieved packages as evidences and is scalable with the number of evidences. We compare the scalability and performance of our model against existing methods. Experimental results show that the proposed model outperforms existing state-of-the-art for image repurposing detection with an error reduction of up to 25%.

Mood Detection Analyzing Lyrics and Audio Signal Based on Deep Learning Architectures

Konstantinos Pyrovolakis, Paraskevi Tzouveli, Giorgos Stamou

Responsive image

Auto-TLDR; Automated Music Mood Detection using Music Information Retrieval

Slides Poster Similar

Digital era has changed the way music is produced and propagated creating new needs for automated and more effective management of music tracks in big volumes. Automated music mood detection constitutes an active task in the field of MIR (Music Information Retrieval) and connected with many research papers in the past few years. In order to approach the task of mood detection, we faced separately the analysis of musical lyrics and the analysis of musical audio signal. Then we applied a uniform multichannel analysis to classify our data in mood classes. The available data we will use to train and evaluate our models consists of a total of 2.000 song titles, classified in four mood classes {happy, angry, sad, relaxed}. The result of this process leads to a uniform prediction for emotional arousal that a music track can cause to a listener and show the way to develop many applications.